

2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager

Check for Samples: bq30z554-R1

FEATURES

- Fully Integrated 2-Series, 3-Series, and 4-Series Li-Ion or Li-Polymer Cell Battery Pack Manager and Protection
- **High Side N-CH Protection FET Drive** •
- Impedance Track[™] Gas Gauging .
- Integrated Cell Balancing While Charging or At Rest
- PF Snapshot and Black Box Technology ٠ **Analyze Returned Packs**
- **AC Peak Power Information Capability** (TURBO Mode)
- SBS v1.1 Interface
- Low Power Modes
 - Low Power: < 180 μA</p>
 - Sleep < 76 μA
- **Complete Set of Advanced Protections:**
 - Internal Cell Short
 - Cell Imbalance
 - Cell Voltage
 - Overcurrent
 - Temperature
 - FET Protection
- Sophisticated Charge Algorithms
 - JEITA
- Enhanced Charging
- Adaptive Charging
- Cell Balancing While Charging or At Rest
- **General Purpose Output for Power Interrupt**
- **Diagnostic Lifetime Data Monitor**
- SHA-1 Authentication
- Small Package: TSSOP

APPLICATIONS

- **Notebook/Netbook PCs**
- Medical and Test Equipment
- **Portable Instrumentation**

DESCRIPTION

The bq30z554-R1 device is a fully integrated Impedance Track[™] gas gauge and analog monitoring single-package solution that provides protection and monitoring with authentication for 2-series, 3-series, and 4-series cell Li-Ion battery packs. The bq30z554-R1 device incorporates sophisticated algorithms that offer cell balancing while charging or at rest.

The device communicates via an SBS v1.1 interface, providing high accuracy cell parameter reporting and control of battery pack operation, and can be designed into systems that require AC peak power (TURBO mode), using a method to ensure that system performance is not disrupted.

An optimum balance of quick response hardwarebased protection along with intelligent CPU control delivers an ideal pack solution. The device has flexible user-programmable settings of critical system parameters, such as voltage, current, temperature, and cell imbalance, among other conditions.

The bq30z554-R1 device has advanced charge algorithms, including JEITA support, enhanced cell charging, and adaptive charging compensating charge losses, enabling faster charging. In addition, the bq30z554-R1 device can monitor critical parameters over the life of the battery pack, tracking usage conditions.

A general purpose output is used for power interruption, employing an external push button switch.

The advanced snapshot and black box functionality show critical information for analysis of returned battery packs.

SHA-1 authentication with secure memory for authentication keys enables identification for genuine battery packs beyond doubt.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Impedance Track is a trademark of Texas Instruments.

Not Recommended for New Designs

bq30z554-R1

SLUSBD4-OCTOBER 2013

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

	ORDERING INFORMATION								
т	PART NUMBER	PACKAGE	PACKAGE	PACKAGE	ORDERING INFORMATION ⁽¹⁾				
'A	PARTNUMBER	PACKAGE	DESIGNATOR	MARKING	TUBE ⁽²⁾	TAPE AND REEL ⁽³⁾			
-40°C to 85°C	bq30z554-R1	TSSOP-30	DBT	bq30z554-R1	bq30z554DBT-R1	bq30z554DBTR-R1			

(1) For the most current package and ordering information, see the Package Option Addendum at the end of the document, or see the TI website at www.ti.com.

(2) A single tube quantity is 50 units.

(3) A single reel quantity is 2000 units.

THERMAL INFORMATION

		bq30z554-R1	
	THERMAL METRIC ⁽¹⁾	TSSOP	UNITS
		30 PINS	
θ _{JA, High K}	Junction-to-ambient thermal resistance ⁽²⁾	73.1	
θ _{JC(top)}	Junction-to-case(top) thermal resistance ⁽³⁾	17.5	
θ _{JB}	Junction-to-board thermal resistance (4)	34.5	00444
Ψ _{JT}	Junction-to-top characterization parameter ⁽⁵⁾	0.3	°C/W
Ψ _{JB}	Junction-to-board characterization parameter ⁽⁶⁾	30.3	
θ _{JC(bottom)}	Junction-to-case(bottom) thermal resistance (7)	n/a	

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.

(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(5) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(6) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

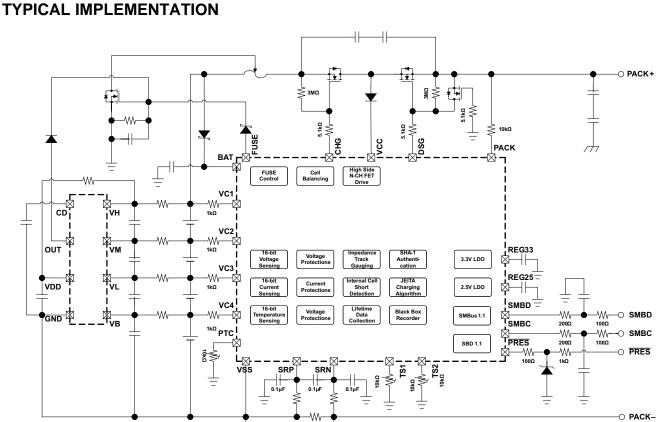


Figure 1. bq30z554-R1 Implementation

5mΩ

Not Recommended for New Designs

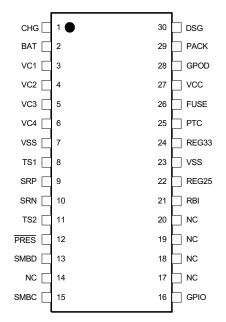
DSG

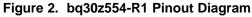
30

0

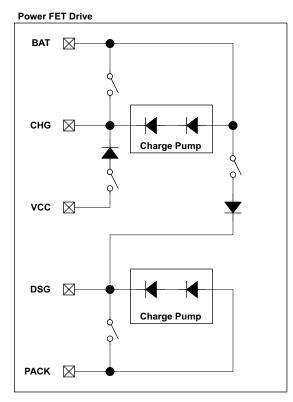
Charge N-FET gate drive

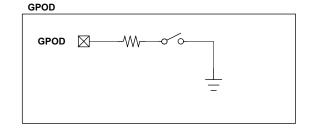
Texas Instruments


SLUSBD4-OCT	OBER 2013		www.ti.co
			TERMINAL FUNCTIONS
PIN NAME	PIN NUMBER	TYPE	DESCRIPTION
CHG	1	0	Discharge N-FET gate drive
BAT	2	Р	Alternate power source
VC1	3	I	Sense input for positive voltage of the top-most cell in the series, and cell balancing input for the top-most cell in the series
VC2	4	I	Sense input for positive voltage of the third lowest cell in the series, and cell balancing input for the third lowest cell in the series
VC3	5	I	Sense input for positive voltage of the second lowest cell in the series, and cell balancing input for the second lowest cell in the series
VC4	6	I	Sense input for positive voltage of the lowest cell in the series, and cell balancing input for the lowest cell in the series
VSS	7	Р	Device ground
TS1	8	AI	Temperature sensor 1 thermistor input
SRP	9	AI	Differential coulomb counter input
TS2	11	AI	Temperature sensor 2 thermistor input
SRN	10	AI	Differential coulomb counter input
PRES	12	I	Host system present input
SMBD	13	I/OD	SBS 1.1 data line
NC	14	—	Not connected, connect to VSS
SMBC	15	I/OD	SBS 1.1 clock line
GPIO	16	I/OD	General Purpose Input-Output
NC	17,18,19,20	—	Not connected
RBI	21	Р	RAM backup
REG25	22	Р	2.5-V regulator output
VSS	23	Р	Device ground
REG33	24	Р	3.3-V regulator output
PTC	25	_	Test pin connect to VSS
FUSE	26	0	Fuse drive
VCC	27	Р	Power supply voltage
GPOD	28	I/OD	High voltage general purpose I/O
PACK	29	Р	Alternate power source
	1		

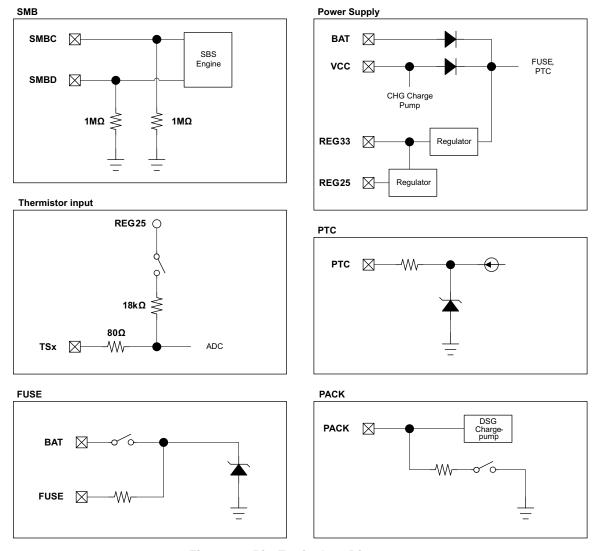


Texas Instruments


www.ti.com


PINOUT DIAGRAM

PIN EQUIVALENT DIAGRAMS



bq30z554-R1 SLUSBD4-OCTOBER 2013

www.ti.com

INSTRUMENTS

Texas

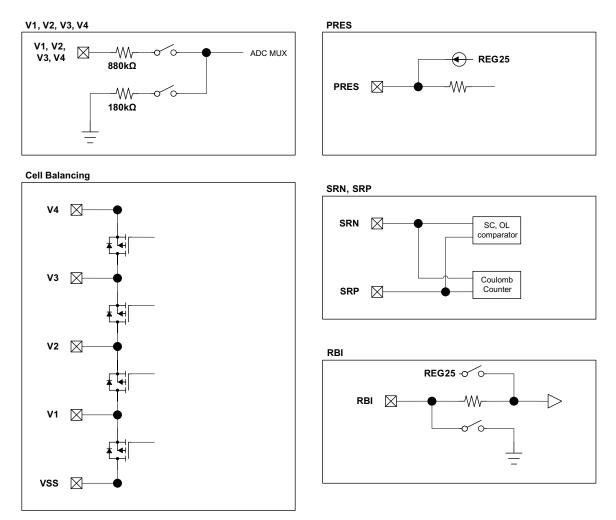


Figure 5. Pin Equivalent Diagram 3

bq30z554-R1

SLUSBD4-OCTOBER 2013

www.ti.com

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

DESCRIPTION	PINS	VALUE
Supply voltage range, V _{MAX}	VCC, PTC, PACK w.r.t. Vss	–0.3 V to 34 V
	VC1, BAT	V_{VC2} – 0.3 V to V_{VC2} + 8.5 or 34 V, whichever is lower
	VC2	V_{VC3} – 0.3 V to V_{VC3} + 8.5 V
	VC3	$V_{\rm VC4}$ – 0.3 V to $V_{\rm VC4}$ + 8.5 V
Input voltage range, V _{IN}	VC4	V_{SRP} - 0.3 V to V_{SRP} + 8.5 V
	SRP, SRN	–0.3 V to 0.3 V
	SMBC, SMBD	V_{SS} – 0.3 V to 6.0 V
	TS1, TS2, PRES, GPIO	-0.3 V to V _{REG25} + 0.3 V
	DSG	–0.3 V to V_{PACK} + 20 V or V_{SS} + 34 V, whichever is lower
Output voltage range, V _O	CHG	–0.3 V to V _{BAT} + 20 V or V _{SS} + 34 V, whichever is lower
Culput Voltage Talige, VO	GPOD, FUSE	–0.3 V to 34 V
	RBI, REG25	–0.3 V to 2.75 V
	REG33	–0.3 V to 5.0 V
Maximum VSS current, I _{SS}		50 mA
Current for cell balancing, I _{CB}		10 mA
ESD Rating	HBM, VCx Only	1 kV
Functional Temperature, T _{FUNC}		–40 to 110 °C
Storage temperature range, T _{STG}		–65 to 150 °C
Lead temperature (soldering, 10 s), T _S	OLDER	300 °C

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

		MIN	TYP	MAX	UNIT
Supply voltage	VCC, PACK			25	V
Supply voltage	BAT	3.8		V _{VC2} + 5.0	
V _{STARTUP}	Start up voltage at PACK	3.0		5.5	V
	VC1, BAT	V _{VC2}		V _{VC2} + 5.0	
	VC2	V _{VC3}		V _{VC3} + 5.0	
	VC3	V _{VC4}		25 V _{VC2} + 5.0 5.5 V _{VC2} + 5.0	V
	VC4	V _{SRP}			v
V _{IN} Input voltage range	VCn - VC(n+1), (n=1, 2, 3, 4)	0		5.0	
	PACK			25	
	PTC	0		2	V
	SRP to SRN	-0.2		0.2	V
C _{REG33} External 3.3-V REG capacitor		1			μF
CREG25 External 2.5-V REG capacitor		1			μF
T _{OPR} Operating temperature		-40		85	°C

ELECTRICAL CHARACTERISTICS: Supply Current

Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CC}	Normal	CHG on, DSG on, no Flash write	410		μA	
	Sleep	CHG off, DSG on, no SBS Communication		129		μA
		CHG off, DSG off, no SBS Communication		83		μA
	Shutdown				1	μA

ELECTRICAL CHARACTERISTICS: Power On Reset (POR)

Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

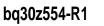
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IT-}	Negative-going voltage input	At REG25	1.9	2.0	2.1	V
V _{HYS}	POR Hysteresis	At REG25	65	125	165	mV

ELECTRICAL CHARACTERISTICS: WAKE FROM SLEEP

Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
V _{WAKE} V _{WAKE} Threshold		$V_{WAKE} = 1.2 \text{ mV}$	0.2	1.2	2.0	mV
		$V_{WAKE} = 2.4 \text{ mV}$	0.4	2.4	3.6	
VWAKE	V _{WAKE} Threshold	V _{WAKE} = 5 mV	0.2 1.2 2.0			
		V _{WAKE} = 10 mV	5.3	10	2.0 3.6 6.8	
V _{WAKE_TCO}	Temperature drift of VWAKE accuracy			0.5		%/°C
t _{WAKE}	Time from application of current and wake of bq30z554-R1			0.2	1	ms

ELECTRICAL CHARACTERISTICS: RBI RAM Backup


Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_{RB} > V_{(RB)MIN}$, VCC < VIT		20	1100	nA
I _(RBI)	RBI data-retention input current	$\label{eq:VRB} \begin{array}{l} VRB > V_{(RB)MIN}, \ VCC < VIT, \\ T_{A} = 0 \ ^{\circ}C \ \mathrm{to} \ 70 \ ^{\circ}C \end{array}$			500	
V _(RBI)	RBI data-retention voltage		1			V

ELECTRICAL CHARACTERISTICS: 3.3-V Regulator

Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		3.8 V < VCC or BAT \leq 5 V, I _{CC} \leq 4 mA	2.4		3.5	V
V _{REG33}	Regulator output voltage	5 V < VCC or BAT \leq 6.8 V, I _{CC} \leq 13 mA	3.1	3.3	3.5	V
		6.8 V < VCC or BAT \leq 20 V, I _{CC} \leq 30 mA	3.1	3.3	3.5	V
I _{REG33}	Regulator Output Current		2			mA

SLUSBD4-OCTOBER 2013

www.ti.com

ELECTRICAL CHARACTERISTICS: 3.3-V Regulator (continued)

Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
V _(VDDTEMP)	Regulator output change with temperature	VCC or BAT = 14.4 V, IREG33 = 2 mA		0.2			
$\Delta V_{(VDDLINE)}$	Line regulation	VCC or BAT = 14.4 V, IREG33 = 2 mA		1	13	mV	
$\Delta V_{(VDDLOAD)}$	Load regulation	VCC or BAT = 14.4 V, IREG33 = 2 mA		5	18	mV	
	Current limit	VCC or BAT = 14.4 V, REG33 = 3 V			70	mA	
I(REG33MAX)	Current limit	VCC or BAT = 14.4 V, REG33 = 0 V			33		

ELECTRICAL CHARACTERISTICS: 2.5-V Regulator

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REG25}	Regulator output voltage	1 - 10 - 10	2.35	2.5	2.55	V
I _{REG25}	Regulator Output Current	I _{REG25} = 10 mA	3			mA
$\Delta V_{(VDDTEMP)}$	Regulator output change with temperature	VCC or BAT = 14.4 V, IREG25 = 2 mA		0.25		%
$\Delta V_{(VDDLINE)}$	Line regulation	VCC or BAT = 14.4 V, IREG25 = 2 mA		1	4	mV
$\Delta V_{(VDDLOAD)}$	Load regulation	VCC or BAT = 14.4 V, IREG25 = 2 mA		20	40	mV
1	Current limit	VCC or BAT = 14.4 V, REG25 = 2.3 V			65	mA
l(REG33MAX)		VCC or BAT = 14.4 V, REG25 = 0 V			23	

ELECTRICAL CHARACTERISTICS: PRES, SMBD, SMBC, GPIO

Typical values stated where TA = 25° C and VCC = 14.4 V, Min/Max values stated where TA = -40° C to 85° C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IH}	High-level input	PRES, SMBD, SMBC, GPIO	2.0			V
V _{IL}	Low-level input	\overline{PRES} , SMBD, SMBC, GPIO IL = -0.5 mA			0.8	V
V _{OL}	Low-level output voltage	SMBD, SMBC, GPIO, IL = 7 mA			0.4	V
C _{IN}	Input capacitance	PRES, SMBD, SMBC, GPIO		5		pF
I _{LKG}	Input leakage current	PRES, SMBD, SMBC, GPIO			1	μA
I _{WPU}	Weak Pull Up Current	$\overline{\text{PRES}}$, GPIO, V _{OH} = V _{REG25} – 0.5 V	60		120	μA
R _{PD(SMBx)}	SMBC, SMBD Pull-Down	$T_A = -40$ °C to 100 °C	550	775	1000	kΩ

ELECTRICAL CHARACTERISTICS: CHG, DSG FET Drive

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_{O(FETONDSG)} = V_{(DSG)} - V_{PACK},$ VGS connect 10 M Ω , VCC 3.8 V to 8.4 V	8.0	9.7	12	V
V _(FETON)	Output voltage, charge, and	$V_{O(FETONDSG)} = V_{(DSG)} - V_{PACK},$ VGS connect 10 M Ω , VCC > 8.4 V	9.0	11	12	V
(. 2. 0.1)	discharge FETs on	$\label{eq:V_O(FETONCHG)} \begin{split} V_{O(FETONCHG)} = V_{(CHG)} - V_{BAT}, \ V_{GS} \\ connect \ 10 \ M\Omega, \ VCC \ 3.8 \ V \ to \ 8.4 \ V \end{split}$	8.0	9.7	12	V
		$\label{eq:VO(FETONCHG)} \begin{split} V_{O(FETONCHG)} = V_{(CHG)} - V_{BAT}, \ V_{GS} \\ connect \ 10 \ M\Omega, \ VCC > 8.4 \ V \end{split}$	9.0	11	12	V
V _(FETOFF)	Output voltage, charge and discharge FETs off	$VO_{(FETOFFDSG)} = V_{(DSG)} - V_{PACK}$	-0.4		0.4	V
		$V_{O(FETOFFCHG)} = V_{(CHG)} - VBAT$	-0.4		0.4	V
t _r Rise time		$\begin{array}{l} C_L = 4700 \ \text{pF} \\ R_G = 5.1 \ \text{k}\Omega \\ \text{VCC} < 8.4 \\ \text{V}_{DSG} : \ \text{V}_{BAT} \ \text{to} \ \text{V}_{BAT} + 4 \ \text{V}, \\ \text{V}_{CHG} : \ \text{V}_{PACK} \ \text{to} \ \text{V}_{PACK} + 4 \ \text{V} \end{array}$		800	1400	μs
	$\label{eq:Gamma-constraint} \begin{array}{l} C_L = 4700 \ \text{pF} \\ R_G = 5.1 \ \text{k}\Omega \\ \text{VCC} > 8.4 \\ \text{V}_{DSG} : \ \text{V}_{BAT} \ \text{to} \ \text{V}_{BAT} + 4 \ \text{V}, \\ \text{V}_{CHG} : \ \text{V}_{PACK} \ \text{to} \ \text{V}_{PACK} + 4 \ \text{V} \end{array}$		200	500	μs	
t _f	Fall time	$\begin{array}{l} C_L = 4700 \ \text{pF} \\ R_G = 5.1 \ \text{k}\Omega \\ V_{DSG} : V_{BAT} + V_{O(FETONDSG)} \ \text{to} \ V_{BAT} + \\ 1 \ \text{V} \\ V_{CHG} : V_{PACK} + V_{O(FETONCHG)} \ \text{to} \\ V_{PACK} + 1 \ \text{V} \end{array}$		80	200	μs

ELECTRICAL CHARACTERISTICS: GPOD

Typical values stated where TA = 25° C and VCC = 14.4 V, Min/Max values stated where TA = -40° C to 85° C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{PU_GPOD}	GPOD Pull Up Voltage				V _{CC}	V
V _{OL_GPOD}	GPOD Output Voltage Low	I _{OL} = 1 mA	0.3			V

ELECTRICAL CHARACTERISTICS: FUSE

Typical values stated where TA = 25° C and VCC = 14.4 V, Min/Max values stated where TA = -40° C to 85° C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH(FUSE)}	High Level FUSE Output	VCC = 3.8 V to 9 V	2.4		8.5	V
		VCC = 9 V to 25 V	7	8	9	V
V _{IH(FUSE)}			2.8			V
	Weak Pull Up Current in off state	Ensured by design. Not production tested.		100		nA
t _{R(FUSE)}	FUSE Output Rise Time	$C_L = 1 \text{ nF}, \text{ VCC} = 9 \text{ V to } 25 \text{ V},$ $V_{OH(FUSE)} = 0 \text{ V to } 5 \text{ V}$		5	20	μs
Z _{O(FUSE)}	FUSE Output Impedance			2	5	kΩ

ELECTRICAL CHARACTERISTICS: PTC Thermistor Support

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{PTC}	DTO	$V_{PTC} = 0$ to 2 V,				
	PTC	$T_A = -40$ °C to 110 °C	1.3	2	2.7	MΩ
I _{O(PTC)}	DTO	V _{PTC} = 0 to 2 V				
	PTC	$T_A = -40$ °C to 110 °C	-450	-370	-230	nA
t _{PTC}	PTC Blanking Delay	$T_A = -40$ °C to 110 °C	60	80	110	ms

ELECTRICAL CHARACTERISTICS: COULOMB COUNTER

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input voltage range	SRP – SRN	-0.20		0.25	V
	Conversion time	Single conversion		250		ms
	Resolution (no missing codes)		16			bits
	Effective resolution	Single conversion, signed	15			bits
V _{IN}	Offset error	Post Calibrated		10		μV
	Offset error drift			0.3	0.5	µV/°C
	Full-scale error		-0.8%	0.2%	0.8%	
	Full-scale error drift				150	PPM/°C
	Effective input resistance		2.5			MΩ

ELECTRICAL CHARACTERISTICS: VC1, VC2, VC3, VC4

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage range	VC4 – VC3, VC3 – VC2, VC2 – VC1, VC1 – VSS	-0.20		8	V
	Conversion time	Single conversion		32		ms
	Resolution (no missing codes)		16			bits
	Effective resolution	Single conversion, signed	15			bits
R _(BAL)	$R_{DS(ON)}$ for internal FET at V_{DS} > 2 V	$\label{eq:VDS} \begin{array}{l} V_{DS} = VC4 - VC3, \ VC3 - VC2, \\ VC2 - VC1, \ VC1 - VSS \end{array}$	200	310	430	Ω
	$R_{DS(ON)}$ for internal FET at V_{DS} > 4 V	$V_{DS} = VC4 - VC3, VC3 - VC2, VC2 - VC1, VC1 - VSS$	60	125	230	Ω

ELECTRICAL CHARACTERISTICS: TS1, TS2

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
R	Internal Pull Up Resistor		16.5	17.5	19.0	KΩ
R _{DRIFT}	Internal Pull Up Resistor Drift from 25 °C				200	PPM/°C
R _{PAD}	Internal Pin Pad resistance			84		Ω

ELECTRICAL CHARACTERISTICS: TS1, TS2 (continued)

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage range	TS1 – VSS, TS2 – VSS	-0.20		0.8×V _{REG2} 5	V
	Conversion Time			16		ms
	Resolution (no missing codes)		16			Bits
	Effective resolution		11	12		Bits

ELECTRICAL CHARACTERISTICS: Internal Temperature Sensor

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Temperature sensor voltage		-1.9	-2.0	-2.1	mV/°C
V	Conversion Time			16		ms
V(TEMP)	Resolution (no missing codes)		16			Bits
	Effective resolution		11	12		Bits

ELECTRICAL CHARACTERISTICS: Internal Thermal Shutdown

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{MAX}	Maximum REG33 temperature		125		175	
T _{RECOVER}	Recovery hysteresis temperature			10		°C
t _{PROTECT}	Protection time			5		μs

ELECTRICAL CHARACTERISTICS: High Frequency Oscillator

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _(OSC)	Operating frequency of CPU Clock			4.194		MHz
f _(EIO)	Frequency error ⁽¹⁾⁽²⁾	$T_A = -20 \ ^\circ C$ to 70 $\ ^\circ C$	-2%	±0.25%	2%	
		$T_A = -40$ °C to 85 °C	-3%	±0.25%	3%	
t _(SXO)	Start-up time ⁽³⁾	$T_A = -25 \text{ °C to } 85 \text{ °C}$		3	6	ms

(1) The frequency error is measured from 4.194 MHz.

(2) The frequency drift is included and measured from the trimmed frequency at $V_{REG25} = 2.5$ V, $T_A = 25^{\circ}$ C.

3) The startup time is defined as the time it takes for the oscillator output frequency to be ±3% when the device is already powered.

ELECTRICAL CHARACTERISTICS: Low Frequency Oscillator


Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _(LOSC)	Operating frequency			32.768		kHz
f _(LEIO)	F (1)(2)	$T_A = -20 \text{ °C to } 70 \text{ °C}$	-1.5%	±0.25%	1.5%	
	Frequency error ⁽¹⁾⁽²⁾	$T_A = -40 \text{ °C to } 85 \text{ °C}$	-2.5%	±0.25%	2.5%	
t _(LSXO)	Start-up time ⁽³⁾	$T_A = -25 \text{ °C to } 85 \text{ °C}$			100	μs

(1) The frequency drift is included and measured from the trimmed frequency at VCC = 2.5 V, $T_A = 25$ °C.

(2) The frequency error is measured from 32.768 kHz.

(3) The startup time is defined as the time it takes for the oscillator output frequency to be ± 3 %.

SLUSBD4-OCTOBER 2013

ELECTRICAL CHARACTERISTICS: Internal Voltage Reference

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REF}	Internal Reference Voltage		1.215	1.225	1.230	V
V _{REF_DRIFT}	Internal Reference Voltage Drift	$T_A = -25 \text{ °C to } 85 \text{ °C}$	±80			PPM/°C
		$T_A = 0 \ ^{\circ}C \ to \ 60 \ ^{\circ}C$	±50			PPM/°C

ELECTRICAL CHARACTERISTICS: Flash

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER ⁽¹⁾	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Data retention		10			Years
		Data Flash	20k			Cycles
	Flash programming write-cycles	Instruction Flash	1k			Cycles
I _{CC(PROG_DF)}	Data Flash-write supply current	$T_A = -40^{\circ}C$ to $85^{\circ}C$		3	4	mA
I _{CC(ERASE_DF)}	Data Flash-erase supply current	$T_A = -40^{\circ}C$ to $85^{\circ}C$		3	18	mA

(1) Assured by design. Not production tested.

ELECTRICAL CHARACTERISTICS: OCD Current Protection

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
14	OCD detection threshold voltage	RSNS = 0	50	50		mV
V _(OCD)	range, typical	RSNS = 1	25		100	mV
A)/	OCD detection threshold voltage	RSNS = 0		10		mV
$\Delta V_{(OCDT)}$	program step	RSNS = 1		5		mV
V _(OFFSET)	OCD offset		-10		10	mV
V _(Scale_Err)	OCD scale error		-10		10	%
t _(OCDD)	Overcurrent in Discharge Delay		1		31	ms
t(OCDD_STEP)	OCDD Step options			2		ms
t _(DETECT)	Current fault detect time	VSRP – SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and Short Circuit delay time accuracy Accuracy of typical delay time		-20		20	%

ELECTRICAL CHARACTERISTICS: SCD1 Current Protection

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	SCD1 detection threshold voltage	RSNS = 0	100		450	mV
V _(SDC1)	range, typical	RSNS = 1	50		225	mV
A) (SCD1 detection threshold voltage program step	RSNS = 0		50		mV
$\Delta V_{(SCD1T)}$		RSNS = 1		25		mV
V _(OFFSET)	SCD1 offset		-10		10	mV
V _(Scale_Err)	SCD1 scale error		-10		10	%
	Short Circuit in Discharge Delay	AFE.STATE_CNTL[SCDDx2] = 0	0		915	μs
t _(SCD1D)	Short Circuit in Discharge Delay	AFE.STATE_CNTL[SCDDx2] = 1	0		1830	μs
	CODID Stor options	AFE.STATE_CNTL[SCDDx2] = 0		61		μs
t(SCD1D_STEP)	SCD1D Step options	AFE.STATE_CNTL[SCDDx2] = 1		122		μs

ELECTRICAL CHARACTERISTICS: SCD1 Current Protection (continued)

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _(DETECT)	Current fault detect time	VSRP-SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and Short Circuit delay time accuracy	Accuracy of typical delay time	-20		20	%

ELECTRICAL CHARACTERISTICS: SCD2 Current Protection

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
M	SCD2 detection threshold voltage	RSNS = 0	100		450	mV
V _(SDC2)	range, typical	RSNS = 1	50		225	mV
A) /	SCD2 detection threshold voltage	RSNS = 0		50		mV
$\Delta V_{(SCD2T)}$	program step	RSNS = 1		25		mV
V _(OFFSET)	SCD2 offset		-10		10	mV
V _(Scale_Err)	SCD2 scale error		-10		10	%
	Short Circuit in Discharge Delay	AFE.STATE_CNTL[SCDDx2] = 0	0		458	μs
t _(SCD1D)		AFE.STATE_CNTL[SCDDx2] = 1	0		915	μs
4	CODOD Store antione	AFE.STATE_CNTL[SCDDx2] = 0		30.5		μs
t(SCD2D_STEP)	SCD2D Step options	AFE.STATE_CNTL[SCDDx2] = 1		61		μs
t _(DETECT)	Current fault detect time	VSRP – SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and Short Circuit delay time accuracy	Accuracy of typical delay time	-20		20	%

ELECTRICAL CHARACTERISTICS: SCC Current Protection

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
V	SCC detection threshold voltage	RSNS = 0	-100		-300	mV
V _(SCCT)	range, typical	RSNS = 1	-50		-225	mV
A) (SCC detection threshold voltage	RSNS = 0		-50		mV
$\Delta V_{(SCCDT)}$	program step	RSNS = 1		-25		mV
V _(OFFSET)	SCC offset		-10		10	mV
V _(Scale_Err)	SCC scale error		-10		10	%
t _(SCCD)	Short Circuit in Charge Delay		0		915	ms
t(SCCD_STEP)	SCCD Step options			61		ms
t _(DETECT)	Current fault detect time	VSRP – SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and Short Circuit delay time accuracy	Accuracy of typical delay time	-20		20	%

ELECTRICAL CHARACTERISTICS: SBS Timing Characteristics

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{SMB}	SMBus operating frequency	SLAVE mode, SMBC 50% duty cycle	10		100	kHz
f _{MAS}	SMBus master clock frequency	MASTER mode, no clock low slave extend		51.2		kHz

Copyright © 2013, Texas Instruments Incorporated

SLUSBD4-OCTOBER 2013

www.ti.com

STRUMENTS

ELECTRICAL CHARACTERISTICS: SBS Timing Characteristics (continued)

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{BUF}	Bus free time between start and stop		4.7			μs
t _{HD:STA}	Hold time after (repeated) start		4.0			μs
t _{SU:STA}	Repeated start setup time		4.7			μs
t _{SU:STO}	Stop setup time		4.0			μs
t _{HD:DAT}	Data hold time		300			ns
t _{SU:DAT}	Data setup time		250			ns
t _{TIMEOUT}	Error signal/detect	See ⁽¹⁾	25		35	ms
t _{LOW}	Clock low period		4.7			μs
t _{HIGH}	Clock high period	See ⁽²⁾			Disabled	
t _{HIGH}	Clock high period	See ⁽²⁾	4.0		50	μs
t _{LOW:SEXT}	Cumulative clock low slave extend time	See ⁽³⁾			25	ms
t _{LOW:MEXT}	Cumulative clock low master extend time	See ⁽⁴⁾			10	ms
t _F	Clock/data fall time	See ⁽⁵⁾			300	ns
t _R	Clock/data rise time	See ⁽⁶⁾			1000	ns

(1) The bq30z554-R1 times out when any clock low exceeds t_{TIMEOUT}.

 t_{HIGH} , Max, is the minimum bus idle time. SMBC = 1 for t > 50 µs causes reset of any transaction involving bq30z554-R1 in progress. This specification is valid when the THIGH_VAL = 0. If THIGH_VAL = 1 then the value of THIGH is set by THIGH_1,2 and the timeout is (2)

not SMBus standard. (3)

t_{LOW:SEXT} is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop. tLOW:MEXT is the cumulative time a master device is allowed to extend the clock cycles in one message from initial start to the stop.

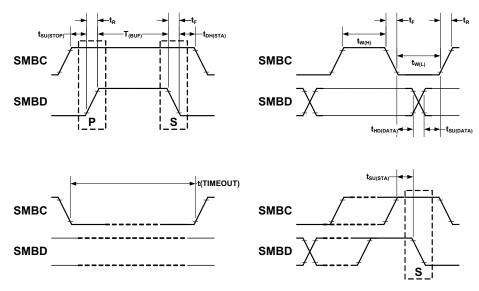
(4)

Rise time tR = $V_{ILMAX} - 0.15$) to ($V_{IHMIN} + 0.15$) (5)

Fall time tF = 0.9 V_{DD} to ($V_{ILMAX} - 0.15$) (6)

ELECTRICAL CHARACTERISTICS: SBS XL Timing Characteristics

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{SMBXL}	SMBus XL operating frequency	SLAVE mode	40	-	400	kHz
t _{BUF}	Bus free time between start and stop		4.7			μs
t _{HD:STA}	Hold time after (repeated) start		4.0			μs
t _{SU:STA}	Repeated start setup time		4.7			μs
t _{SU:STO}	Stop setup time		4.0			μs
t _{TIMEOUT}	Error signal/detect	See ⁽¹⁾	5		20	ms
t _{LOW}	Clock low period				20	μs
t _{HIGH}	Clock high period	See ⁽²⁾			20	μs

(1) The bq30z554-R1 times out when any clock low exceeds t_{TIMEOUT}.

t_{HIGH}, Max, is the minimum bus idle time. (2)

TEXAS INSTRUMENTS

www.ti.com

FEATURE SET

Protections Safety Features

The bq30z554-R1 supports a wide range of battery and system protection features that can easily be configured. The Protections safety features include:

- Cell Undervoltage Protection
- Cell Undervoltage I*R Compensated Protection
- Cell Overvoltage Protection
- Overcurrent in Charge Protection 1 and 2
- Overcurrent in Discharge Protection 1 and 2
- Overload in Discharge Protection
- Short Circuit in Charge Protection
- Short Circuit in Discharge Protection 1 and 2
- Overtemperature in Charge Protection
- Overtemperature in Discharge Protection
- Overtemperature FET protection
- SBS Host Watchdog Protection
- Precharge Timeout Protection
- Fast Charge Timeout Protection
- Overcharge Protection
- Overcharging Current Protection
- Overcharging Voltage Protection

Permanent Fail Safety Features

The FUSE pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. Upon a Permanent Fail event trigger, critical system information is written to non-volatile memory to simplify failure analysis. In addition, the black box stores the sequence of safety events also into non-volatile memory to simplify failure analysis. The Permanent Fail safety features include:

- Cell Undervoltage Protection
- Cell Overvoltage Protection
- Copper Deposition
- Overtemperature Cell
- Overtemperature FET
- QMAX Imbalance
- Cell Balancing
- Capacity Degradation
- Impedance
- Voltage Imbalance at Rest
- Voltage Imbalance Active
- Charge FET and Discharge FET
- Thermistor
- Chemical FUSE
- AFE Register
- AFE Communication
- 2nd-Level Protection
- PTC
- Instruction Flash
- Open Cell Tab Connection
- Data Flash

Charge Control Features

The bq30z554-R1 Charge Control features include:

- Supports JEITA temperature ranges T1, T2, T3, T4, T5, T6. Reports charging voltage and charging current, according to the active temperature range.
- Handles more complex charging profiles. Allows for splitting the standard temperature range into two subranges, and allows for varying the charging current according to the cell voltage.
- Reports the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts.
- Determines the chemical state of charge of each battery cell using Impedance Track and can reduce the charge difference of the battery cells in a fully charged state of the battery pack, gradually using the cell balancing algorithm during rest and charging. This prevents fully charged cells from overcharging and causing excessive degradation, and also increases the usable pack energy by preventing premature charge termination.
- Supports precharging/zero-volt charging
- Supports charge inhibit and charge suspend if the battery pack temperature is out of temperature range.
- Reports charging fault and also indicates charge status via charge and discharge alarms.

Gas Gauging

The bq30z554-R1 uses the Impedance Track technology to measure and calculate the available charge in battery cells. The achievable accuracy is better than 1% error over the lifetime of the battery and there is no full charge or discharge learning cycle required. See the *Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm* application report (SLUA364B) for further details.

Lifetime Data Logging Features

The bq30z554-R1 offers extended lifetime data logging where important measurements are stored for warranty and analysis purposes. The data monitored includes *lifetime*:

- Maximum cell voltage cell0, cell1, cell2, cell3
- Minimum cell voltage cell0, cell1, cell2, cell3
- Maximum cell voltage delta
- Maximum charge and discharge current
- Maximum average discharge current
- Maximum average discharge power
- Maximum cell temperature
- Minimum cell temperature
- Maximum cell temperature delta
- Maximum device temperature
- Minimum device temperature
- Maximum FET temperature
- Total accumulated safety events and last safety event in term of charging cycle
- · Total accumulated charging events and charging events
- Total accumulated gauging events and gauging events
- Total accumulated cell balancing time cell0, cell1, cell2, cell3
- Total device firmware runtime
- Accumulated runtime in JEITA undertemperature range
- Accumulated runtime in JEITA low temperature range
- Accumulated runtime in JEITA standard temperature range
- Accumulated runtime in JEITA recommended temperature range
- Accumulated runtime in JEITA high temperature range
- Accumulated runtime in JEITA overtemperature range

bq30z554-R1

SLUSBD4-OCTOBER 2013

Authentication

- The bq30z554-R1 supports authentication by the host using SHA-1.
- SHA-1 authentication by the gas gauge is required for unsealing and full access.

Power Modes

The bq30z554-R1 supports five power modes to reduce power consumption:

- In NORMAL mode, the bq30z554-R1 performs measurements, calculations, protection decisions, and data updates in 0.25-s intervals. Between these intervals, the bq30z554-R1 is in a reduced power stage. In addition, the device will provide information for peak TURBO mode power operation.
- The bq30z554-R1 supports a TURBO mode operation by providing information to the host MCU about the
 battery pack's ability to deliver peak power. The method of operation is based on the host MCU reading
 register 0x59 (TURBO_POWER) to determine if the selected power level for TURBO mode operation of the
 MCU is below the max power reported by the gas gauge. Additionally, the device reports current information
 during the power pulse by reading register 0x5E (TURBO_CURRENT). The information reported by these two
 registers allows the MCU to determine if the selected TURBO mode operation is safe and will not cause any
 system reset due to transient power pulses.
- In SLEEP mode, the bq30z554-R1 performs measurements, calculations, protection decisions, and data updates in adjustable time intervals. Between these intervals, the bq30z554-R1 is in a reduced power stage. The bq30z554-R1 has a wake function that enables exit from SLEEP mode when current flow or failure is detected.
- In SHUTDOWN mode, the bq30z554-R1 is completely disabled.
- In SHIP mode, the bq30z554-R1 enters a low-power mode with no voltage, current, and temperature measurements, the FETs are turned off, and the MCU is in a halt state. The device wakes up upon SMBus communication detection.

NOTE

For a detailed description of the SBS Commands and Data Flash (DF) Registers, refer to the *bq30z554-R1 Technical Reference Manual* (SLUUA79).

Configuration

System Present Operation

The bq30z554-R1 checks the PRES pin periodically (1 s). If PRES input is pulled to ground by the external system, the bq30z554-R1 detects this as system present.

Battery Power Interrupt Operation

The bq30z554-R1 can interrupt the battery power by using an external push-button switch and detecting a lowlevel threshold signal on the GPIO terminal (pin should be configured with an internal pull-up). Once the push button is pressed, there is a delay of 1 s (default) for debounce to detect the low-level threshold. There is also a data flash command for the battery power interrupt timeout. The default value is 30 minutes. If the push-button switch is selected before this timeout, the battery power is restored based on this action.

Timeout Configuration

The timeout feature allows the battery power to be restored once the timer expires. Alternatively, if the value is set to 0, this feature is disabled.

Class	Subclass ID	Subclass	Offset	Name	Туре	Min	Max	Default	Unit
Power	248	Power Off	0	Timeout	U2	0	65535	30	min

BATTERY PARAMETER MEASUREMENTS

Charge and Discharge Counting

The bq30z554-R1 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a second delta-sigma ADC for individual cell and battery voltage and temperature measurements.

The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SR1 and SR2 pins. The integrating ADC measures bipolar signals from –0.25 V to 0.25 V. The bq30z554-R1 detects charge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is positive, and discharge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is negative. The bq30z554-R1 continuously integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.65 nVh.

Voltage

The bq30z554-R1 updates the individual series cell voltages at 0.25-s intervals. The internal ADC of the bq30z554-R1 measures the voltage, and scales and calibrates it appropriately. This data is also used to calculate the impedance of the cell for the Impedance Track gas gauging.

Current

The bq30z554-R1 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current using a 5-m Ω to 20-m Ω typ. sense resistor.

Auto Calibration

The bq30z554-R1 provides an auto-calibration feature to cancel the voltage offset error across SRN and SRP for maximum charge measurement accuracy. The bq30z554-R1 performs auto-calibration when the SMBus lines stay low continuously for a minimum of 5 s.

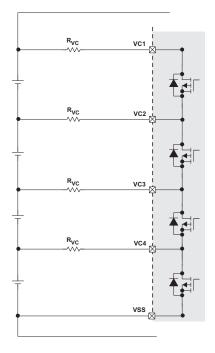
Temperature

The bq30z554-R1 has an internal temperature sensor and inputs for four external temperature sensors. All five temperature sensor options are enabled individually and configured for cell or FET temperature. Two configurable thermistor models are provided to allow the monitoring of cell temperature in addition to FET temperature, which may be of a higher temperature type.

CELL BALANCING

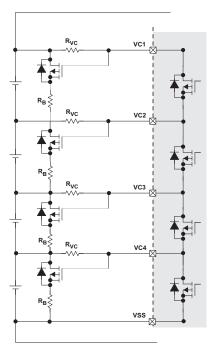
The device supports cell balancing by bypassing the current of each cell during charging or at rest. If the device internal bypass is used, up to 10 mA can be bypassed and multiple cells can be bypassed at the same time. Higher cell balance current can be achieved by using an external cell balancing circuit. In EXTERNAL CELL BALANCING mode, only one cell at a time can be balanced.

The cell balancing algorithm determines the amount of charge needed to be bypassed to balance the capacity of all cells.

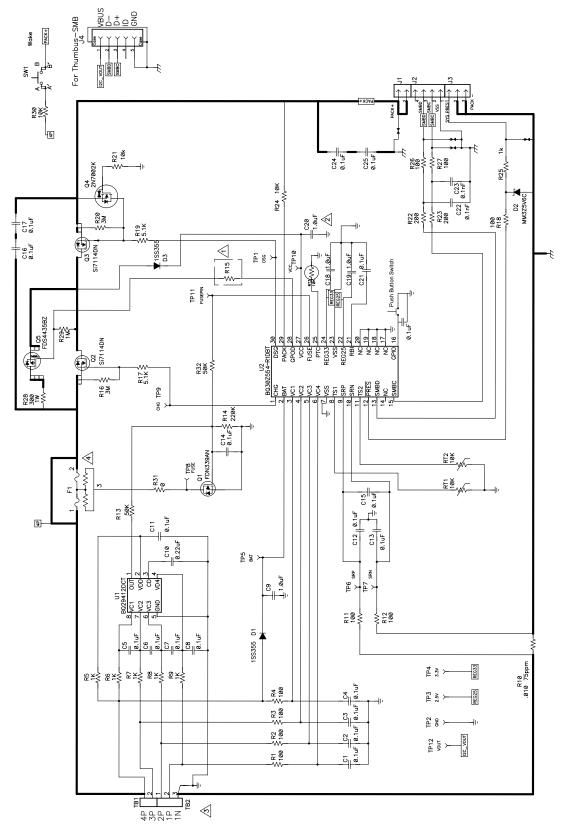

bq30z554-R1

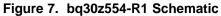
SLUSBD4-OCTOBER 2013

www.ti.com


Internal Cell Balancing

When internal cell balancing is configured, the cell balance current is defined by the external resistor R_{VC} at the VCx input.




External Cell Balancing

When internal cell balancing is configured, the cell balance current is defined by R_B . Only one cell at a time can be balanced.

4-Sep-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
BQ30Z554DBT-R1	NRND	TSSOP	DBT	30	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ30Z554	
BQ30Z554DBTR-R1	NRND	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ30Z554	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

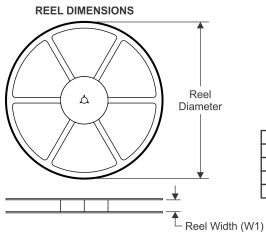
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

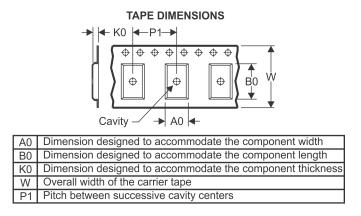
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

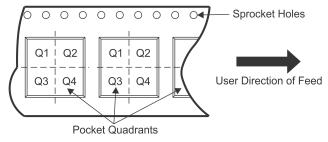
PACKAGE OPTION ADDENDUM

4-Sep-2015


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

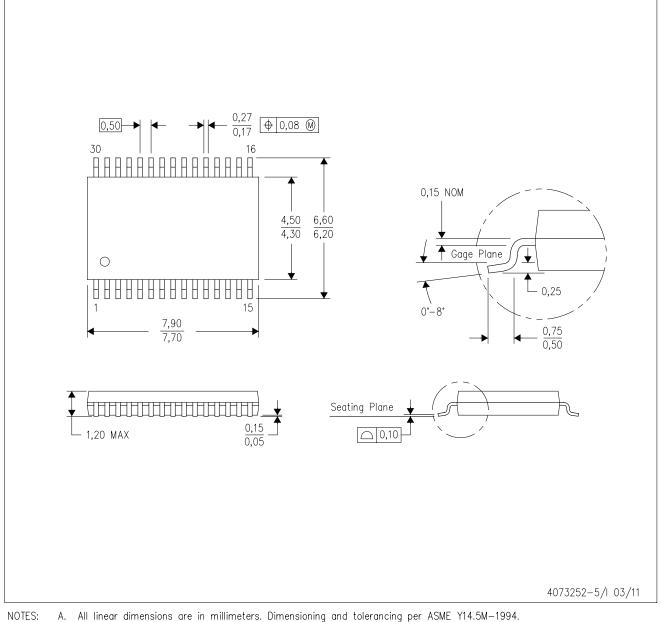
*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ30Z554DBTR-R1	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

8-Sep-2014



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ30Z554DBTR-R1	TSSOP	DBT	30	2000	367.0	367.0	38.0

DBT (R-PDSO-G30)

PLASTIC SMALL OUTLINE

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-153.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated