

Sample &

Buv

SN74AVC16T245-Q1

SCES778A - SEPTEMBER 2008 - REVISED JUNE 2016

SN74AVC16T245-Q1 16-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and 3-State Outputs

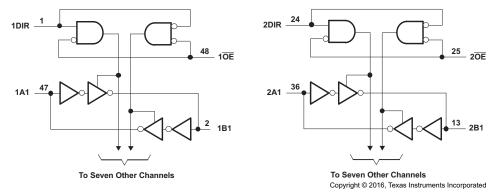
1 Features

- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: -40°C to 125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level H3B (JESD 22 A114-A)
 - Device CDM ESD Classification Level C5 (JESD 22 C101)
- Control Inputs $V_{I\!H}\!/V_{I\!L}$ Levels Are Referenced to V_{CCA} Voltage
- V_{CC} Isolation Feature If Either V_{CC} Input is at GND, Both Ports Are in the High-Impedance State
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2-V to 3.6-V Power-Supply Range
- Ioff Supports Partial-Power-Down Mode Operation
- I/Os Are 4.6-V Tolerant
- Maximum Data Rates
 - 380 Mbps (1.8-V to 3.3-V Translation)
 - 200 Mbps (<1.8-V to 3.3-V Translation)
 - 200 Mbps (Translate to 2.5 V or 1.8 V)
 - 150 Mbps (Translate to 1.5 V)
 - 100 Mbps (Translate to 1.2 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II

2 Applications

- Telematics
- Clusters
- Head Units
- Navigation Systems

3 Description


The SN74AVC16T245-Q1 is a 16-bit noninverting bus transceiver that uses two separate configurable power-supply rails. The SN74AVC16T245-Q1 is optimized to operate with V_{CCA} or V_{CCB} set at 1.4 V to 3.6 V. It is operational with V_{CCA} or V_{CCB} as low as 1.2 V. The A port is designed to track V_{CCA}. V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track V_{CCB}. V_{CCB} accepts any supply voltage from 1.2 V to 3.6 V. The analysis of universal low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The SN74AVC16T245-Q1 is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the outputs so the buses effectively are isolated.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74AVC16T245-Q1	TVSOP (48)	9.70 mm × 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

2

Table of Contents

1	Features 1
2	Applications 1
3	Description 1
4	Revision History 2
5	Description (continued)
6	Pin Configuration and Functions 4
7	Specifications
	7.1 Absolute Maximum Ratings 6
	7.2 ESD Ratings
	7.3 Recommended Operating Conditions7
	7.4 Thermal Information 7
	7.5 Electrical Characteristics
	7.6 Switching Characteristics: V _{CCA} = 1.2 V 9
	7.7 Switching Characteristics: V_{CCA} = 1.5 V ± 0.1 V 9
	7.8 Switching Characteristics: V_{CCA} = 1.8 V ± 0.15 V 10
	7.9 Switching Characteristics: V_{CCA} = 2.5 V ± 0.2 V 10
	7.10 Switching Characteristics: V_{CCA} = 3.3 V ± 0.3 V 11
	7.11 Operating Characteristics 11
	7.12 Typical Characteristics 12
8	Parameter Measurement Information 14

9	Deta	illed Description	15
	9.1	Overview	15
	9.2	Functional Block Diagram	15
	9.3	Feature Description	15
	9.4	Device Functional Modes	15
10	Арр	lication and Implementation	16
	10.1	Application Information	
	10.2	Typical Application	
11	Pow	ver Supply Recommendations	18
12	Lay	out	18
	12.1	Layout Guidelines	18
	12.2	Layout Example	19
13	Dev	ice and Documentation Support	20
	13.1		
	13.2	Receiving Notification of Documentation Updates	20
	13.3	Community Resource	20
	13.4	Trademarks	20
	13.5	Electrostatic Discharge Caution	20
	13.6	Glossary	20
14	Mec	hanical, Packaging, and Orderable	
		rmation	20

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (September 2008) to Revision A

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendationssection, Layout section, Device and Documentation Supportsection,	
and Mechanical, Packaging, and Orderable Information section	. 1
Deleted Ordering Information table; see the POA at the end of the data sheet	. 1
Deleted Overvoltage-Tolerant Inputs/Outputs Allow Mixed- Voltage-Mode Data Communications bullet from Features	. 1
Deleted ESD Protection Exceeds JESD 22 from Features	. 1

www.ti.com

Page

5 Description (continued)

The SN74AVC16T245-Q1 is designed so that the control pins (1DIR, 2DIR, 1 \overline{OE} , and 2 \overline{OE}) are supplied by V_{CCA}.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} must be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

6 Pin Configuration and Functions

	GV Pac 8-Pin T Top Vi	vsŏ	
1DIR [1B1 [1B2 [GND [1B3 [1B4 [Vccb [1B5 [1B6 [GND [2B2 [GND [2B3 [2B4 [Vccb [2B5 [2B5 [2B6 [GND [2B7 [2B7 [2B8 [2B7 [2B8 [300] 2B7 [2B8 [300] 2B7 [300] 300]	Top Vi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 28 27 26] 10E] 1A1] 1A2] GND] 1A3] 1A4] V _{CCA}] 1A6] GND] 1A7] 1A8] 2A1] 2A2] GND] 2A3] 2A4] V _{CCA}] 2A5] 2A6] GND] 2A7] 2A8
2DIR	24	25] 2 <u>0E</u>

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
1A1	47		
1A2	46		
1A3	44		
1A4	43	1/0	Input and output Referenced to V
1A5	41	1/0	
1A6	40		I/O Input and output. Referenced to V _{CCA}
1A7	38		
1A8	37		
1B1	2		
1B2	3		
1B3	5		
1B4	6	1/0	Input and output Referenced to Var-
1B5	8		
1B6	9		
1B7	11		
1B8	12		

Pin Functions (continued)

PIN			DECODIDION					
NAME	NO.	I/O	DESCRIPTION					
2A1	36							
2A2	35							
2A3	33							
2A4	32		hand and ended. Defense and to M					
2A5	30	I/O	Input and output. Referenced to V _{CCA}					
2A6	29		Input and output. Referenced to V _{CCA}					
2A7	27		Input and output. Referenced to V _{CCA} Input and output. Referenced to V _{CCB} Direction-control signal Tri-State output-mode enables. Pull OE high to place all outputs in Tri-State mode. Referenced to V _{CCA}					
2A8	26							
2B1	13							
2B2	14							
2B3	16							
2B4	17							
2B5	19	1/0						
2B6	20							
2B7	22							
2B8	23							
1DIR	1							
2DIR	24	I	Direction-control signal					
1 OE	48		Tri-State output-mode enables. Pull \overline{OE} high to place all outputs in Tri-State mode.					
2 <mark>OE</mark>	25		Referenced to V _{CCA}					
GND	4, 10, 15, 21, 45, 39, 34, 28	_	Ground					
V _{CCA}	42, 31	—	A-port supply voltage. 1.2 V \leq V _{CCB} \leq 3.6 V					
V _{CCB}	7, 18	—	B-port supply voltage. 1.2 V \leq V _{CCB} \leq 3.6 V					

SN74AVC16T245-Q1

SCES778A - SEPTEMBER 2008 - REVISED JUNE 2016

TEXAS INSTRUMENTS

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CCA} V _{CCB}	Supply voltage		-0.5	4.6	V
		I/O ports (A port)	-0.5	4.6	
VI	Input voltage ⁽²⁾ Voltage applied to any output in the high-impedance or power-off state ⁽²⁾ Voltage applied to any output in the high or low state ⁽²⁾⁽³⁾ Input clamp current Output clamp current Continuous output current	I/O ports (B port)	-0.5	4.6	V
		Control inputs	-0.5	4.6	
		A port	-0.5	4.6	V
Vo		B port	-0.5	4.6	v
V	<u> </u>	A port	-0.5	V _{CCA} + 0.5	V
Vo	voltage applied to any output in the high of low state (-)	B port	-0.5	V _{CCB} + 0.5	v
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through each V_{CCA} , V_{CCB} , and GND			±100	mA
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±8000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101	±1000	V
		Machine model (MM), per JEDEC specification JESD22-A115-A	±200	

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6

Copyright © 2008–2016, Texas Instruments Incorporated

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾⁽³⁾

			V _{CCI}	V _{cco}	MIN	MAX	UNIT	
V _{CCA} , V _{CCB}	Supply voltage				1.2	3.6	V	
			1.2 V to 1.95 V		$V_{CCI} \times 0.65$			
VIH	High-level input voltage	Data inputs ⁽⁴⁾	1.95 V to 2.7 V		1.6		V	
	input voltage		2.7 V to 3.6 V		2			
			1.2 V to 1.95 V			$V_{CCI} \times 0.35$		
V _{IL}	Low-level input voltage	Data inputs ⁽⁴⁾	1.95 V to 2.7 V			0.7	V	
	input voltage		2.7 V to 3.6 V			0.8		
High-level			1.2 V to 1.95 V		$V_{CCA} \times 0.65$			
V _{IH}	High-level input voltage	DIR (referenced to V _{CCA}) ⁽⁵⁾	1.95 V to 2.7 V		1.6		V	
	input voltage		2.7 V to 3.6 V		2			
				1.2 V to 1.95 V			$V_{CCA} \times 0.35$	
	Low-level input voltage	DIR (referenced to V_{CCA}) ⁽⁵⁾	1.95 V to 2.7 V			0.7	V	
	input voltage		2.7 V to 3.6 V			0.8		
VI	Input voltage				0	3.6	V	
V		Active state			0	V _{CCO}	V	
Vo	Output voltage	3-state			0	3.6	V	
				1.2 V		-3		
				1.4 V to 1.6 V		-6		
I _{OH}	High-level output cu	rrent		1.65 V to 1.95 V		-8	mA	
				2.3 V to 2.7 V		-9		
				3 V to 3.6 V		-12		
				1.2 V		3		
				1.4 V to 1.6 V		6		
I _{OL}	Low-level output cur	rrent		1.65 V to 1.95 V		8	mA	
				2.3 V to 2.7 V		9		
				3 V to 3.6 V		12		
$\Delta t / \Delta v$	Input transition rise	or fall rate				5	ns/V	
T _A	Operating free-air te	emperature			-40	125	°C	

 V_{CCI} is the V_{CC} associated with the data input port. (1)

(2)

 V_{CCO} is the V_{CC} associated with the output port. All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. See *Implications of Slow or* (3) Floating CMOS Inputs.

(4)

For V_{CCI} values not specified in the data sheet, V_{IH} min = V_{CCI} × 0.7 V, V_{IL} max = V_{CCI} × 0.3 V. For V_{CCA} values not specified in the data sheet, V_{IH} min = V_{CCA} × 0.7 V, V_{IL} max = V_{CCA} × 0.3 V. (5)

7.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	SN74AVC16T245-Q1 DGV (TVSOP)	UNIT
R _{0JA}	Junction-to-ambient thermal resistance	48 PINS 77.2	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	31.4	°C/W
R _{0JB}	Junction-to-board thermal resistance	39.5	°C/W
ΨJT	Junction-to-top characterization parameter	3.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	39	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application (1) report.

SN74AVC16T245-Q1

SCES778A - SEPTEMBER 2008 - REVISED JUNE 2016

www.ti.com

ISTRUMENTS

EXAS

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

PA	RAMETER	TEST COND	ITIONS	V _{CCA}	V _{CCB}	T _A	MIN	TYP	MAX	UNIT
		I _{OH} = -100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C	V _{CCO} – 0.2			
		$I_{OH} = -3 \text{ mA}$		1.2 V	1.2 V	$T_A = 25^{\circ}C$		0.95		
		$I_{OH} = -6 \text{ mA}$		1.4 V	1.4 V	T _A = −40°C to 125°C	1			
V _{OH}	I _{OH} = -8 mA	V _I = V _{IH}	1.65 V	1.65 V	T _A = -40°C to 125°C	1.15			V	
		I _{OH} = -9 mA		2.3 V	2.3 V	T _A = -40°C to 125°C	1.75			
		I _{OH} = -12 mA		3 V	3 V	T _A = −40°C to 125°C	2.3			
		I _{OL} = 100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			0.2	
		I _{OL} = 3 mA		1.2 V	1.2 V	T _A = 25°C		0.15		
		I _{OL} = 6 mA		1.4 V	1.4 V	T _A = -40°C to 125°C			0.4	
V _{OL}	I _{OL} = 8 mA	$V_{I} = V_{IL}$	1.65 V	1.65 V	T _A = -40°C to 125°C			0.45	V	
	I _{OL} = 9 mA		2.3 V	2.3 V	T _A = -40°C to 125°C			0.55		
		I _{OL} = 12 mA		3 V	3 V	T _A = −40°C to 125°C			0.7	
	Control					$T_A = 25^{\circ}C$		±0.025	±0.25	
	inputs	$V_I = V_{CCA}$ or GND		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			±2	μA
						$T_A = 25^{\circ}C$		±0.1	±2.5	
off	A or B port	- V. or V 0 to 3.6 V	r V ₀ = 0 to 3.6 V	0 V	0 to 3.6 V	T _A = -40°C to 125°C			±10	μA
off		V 01 V ₀ = 0 to 3.0 V				$T_A = 25^{\circ}C$		±0.5	±2.5	
	A or B port			0 to 3.6 V	0 V	T _A = -40°C to 125°C			±10	
(2)		$V_{O} = V_{CCO}$ or GND,				$T_A = 25^{\circ}C$		±0.5	±2.5	
oz ⁽³⁾	A or B port	$\frac{V_{I}=}{OE} V_{CCI} \text{ or GND},$ $\frac{V_{I}=}{OE} = V_{IH}$		3.6 V	3.6 V	T _A = -40°C to 125°C			±10	μA
		$V_i = V_{CCi}$ or GND, $I_0 = 0$		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			30	
CCA				0 V	3.6 V	T _A = -40°C to 125°C			-40	μA
				3.6 V	0 V	T _A = -40°C to 125°C			30	
Іссв		$V_{I} = V_{CCI}$ or GND, $I_{O} = 0$		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			30	
				0 V	3.6 V	T _A = -40°C to 125°C			30	μA
				3.6 V	0 V	T _A = -40°C to 125°C			-40	
I _{CCA} + I _{CC}	в	$V_1 = V_{CCI} \text{ or } GND,$ $I_0 = 0$		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			60	μA
Ci	Control inputs	$V_1 = 3.3 \text{ V or GND}$		3.3 V	3.3 V	$T_A = 25^{\circ}C$		3.5		pF
Cio	A or B port	$V_0 = 3.3 \text{ V or GND}$		3.3 V	3.3 V	$T_A = 25^{\circ}C$		7		pF

V_{CCO} is the V_{CC} associated with the output port.
 V_{CCI} is the V_{CC} associated with the input port.
 For I/O ports, the parameter I_{OZ} includes the input leakage current.

7.6 Switching Characteristics: V_{CCA}= 1.2 V

over recommended operating free-air temperature range, $V_{CCA} = 1.2 V$ (see Figure 11)

PARAMETER	FROM	то	V _{CCB} = 1.2	v	Vo	св = 1.5 \	/	Vc	_{CB} = 1.8 V		Vc	_{CB} = 2.5 \	/	Vcc	а = 3.3	v	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _{PLH}	А	в	4.1			3.3			3			2.8			3.2		20
t _{PHL}	A	Б	4.1			3.3			3			2.8			3.2		ns
t _{PLH}	в	А	4.4			4			3.8			3.6			3.5		ns
t _{PHL}	В	A	4.4			4			3.8			3.6			3.5		ns
t _{PZH}	OE	А	6.4			6.4			6.4			6.4			6.4		ns
t _{PZL}	UE	~	6.4			6.4			6.4			6.4			6.4		115
t _{PZH}	OE	в	6			4.6			4			3.4			3.2		ns
t _{PZL}	UE	Б	6			4.6			4			3.4			3.2		115
t _{PHZ}	OE	А	6.6			6.6			6.6			6.6			6.8		
t _{PLZ}	JE	A	6.6			6.6			6.6			6.6			6.8		ns
t _{PHZ}	OE	в	6			4.9			4.9			4.2			5.3		ns
t _{PLZ}	UE	Б	6			4.9			4.9			4.2			5.3		115

7.7 Switching Characteristics: V_{CCA}= 1.5 V \pm 0.1 V

over recommended operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (see Figure 11)

DADAMETER	FROM	то	V _{CCB} = 1.2	٧	V _{CCB} :	= 1.5 V ± 0.	1 V	V _{CCB} = 1.8	V ± 0.15 V	V _{CCB} = 2	2.5 V ± 0.2 V	V _{CCB} =	: 3.3 V ± 0.3 V		
PARAMETER	(INPUT)	(OUTPUT)	MIN TYP	MAX	MIN	TYP	MAX	MIN	TYP MAX	MIN	TYP MAX	MIN	TYP M	٩X	UNIT
t _{PLH}	А	в	3.6		0.5		9.2	0.5	8.2	0.5	7.1	0.5		6.7	ns
t _{PHL}	A	Б	3.6		0.5		9.2	0.5	8.2	0.5	7.1	0.5		6.7	115
t _{PLH}	в	А	3.3		0.5		9.2	0.5	8.9	0.5	8.6	0.5		3.5	ns
t _{PHL}	Б	A	3.3		0.5		9.2	0.5	8.9	0.5	8.6	0.5		3.5	115
t _{PZH}	OE	А	4.3		0.5		13.1	0.5	13.1	0.5	13.1	0.5	1	3.1	ns
t _{PZL}	UE	A	4.3		0.5		13.1	0.5	13.1	0.5	13.1	0.5	1	3.1	115
t _{PZH}	OE	в	5.6		0.5		13.1	0.5	11.1	0.5	8.9	0.5		3.2	ns
t _{PZL}	UE	Б	5.6		0.5		13.1	0.5	11.1	0.5	8.9	0.5		3.2	115
t _{PHZ}	OE	А	4.5		0.5		12.1	0.5	12.1	0.5	12.1	0.5	1	2.1	ns
t _{PLZ}	UE	A	4.5		0.5		12.1	0.5	12.1	0.5	12.1	0.5	1	2.1	115
t _{PHZ}	OE	в	5.5		0.5		11.7	0.5	10.5	0.5	9.5	0.5		9.3	ns
t _{PLZ}	UE	в	5.5		0.5		11.7	0.5	10.5	0.5	9.5	0.5		9.3	115

SN74AVC16T245-Q1

SCES778A - SEPTEMBER 2008 - REVISED JUNE 2016

www.ti.com

STRUMENTS

EXAS

7.8 Switching Characteristics: V_{CCA} = 1.8 V ± 0.15 V

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (see Figure 11)

PARAMETER	FROM	то	V _{CCE}	₃ = 1.2 V		V _{CCB} =	1.5 V ± 0	.1 V	V _{CCB} =	1.8 V ± 0.	15 V	V _{CCB} = 2	2.5 V ± 0	0.2 V	V _{CCB} = 3	3.3 V ±	0.3 V	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _{PLH}	А	В		3.4		0.5		8.9	0.5		7.8	0.5		6.7	0.5		6.3	
t _{PHL}	А	В		3.4		0.5		8.9	0.5		7.8	0.5		6.7	0.5		6.3	ns
t _{PLH}	в	•		3		0.5		8.2	0.5		7.8	0.5		7.5	0.5		7.4	
t _{PHL}	Б	A		3		0.5		8.2	0.5		7.8	0.5		7.5	0.5		7.4	ns
t _{PZH}	OE	А		3.4		0.5		10.8	0.5		10.8	0.5		10.8	0.5		10.8	
t _{PZL}	UE	A		3.4		0.5		10.8	0.5		10.8	0.5		10.8	0.5		10.8	ns
t _{PZH}	OE	В		5.4		0.5		12.2	0.5		10.4	0.5		8.3	0.5		7.5	
t _{PZL}	UE	В		5.4		0.5		12.2	0.5		10.4	0.5		8.3	0.5		7.5	ns
t _{PHZ}	OE	٨		4.2		0.5		10.7	0.5		10.7	0.5		10.7	0.5		10.7	
t _{PLZ}	UE	A		4.2		0.5		10.7	0.5		10.7	0.5		10.7	0.5		10.7	ns
t _{PHZ}	OE	В		5.2		0.5		11.4	0.5		8.9	0.5		8.9	0.5		8.7	20
t _{PLZ}	UE	Б		5.2		0.5		11.4	0.5		8.9	0.5		8.9	0.5		8.7	ns

7.9 Switching Characteristics: V_{CCA} = 2.5 V ± 0.2 V

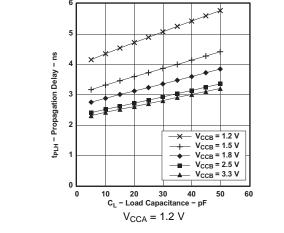
over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (see Figure 11)

DADAMETER	FROM	то	V _{CCB} = 1.2	2 V	V _{CCB} = 1	1.5 V ± 0.1	1 V	V _{CCB} =	1.8 V ± 0.	15 V	V _{CCB} = 2	2.5 V ± 0).2 V	V _{CCB} = 3	3.3 V ±	0.3 V	
PARAMETER	(INPUT)	(OUTPUT)	MIN TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _{PLH}	А	в	3.2		0.5		9.6	0.5		7.5	0.5		6.3	0.5		5.8	ns
t _{PHL}	A	Б	3.2		0.5		8.6	0.5		7.5	0.5		6.3	0.5		5.8	115
t _{PLH}	в	А	2.6		0.5		7.1	0.5		6.7	0.5		6.3	0.5		6.2	ns
t _{PHL}	В	A	2.6		0.5		7.1	0.5		6.7	0.5		6.3	0.5		6.2	115
t _{PZH}	OE	А	2.5		0.5		8.3	0.5		8.3	0.5		8.3	0.5		8.3	
t _{PZL}	UE	A	2.5		0.5		8.3	0.5		8.3	0.5		8.3	0.5		8.3	ns
t _{PZH}	OE	в	5.2		0.5		12.4	0.5		10.3	0.5		8.1	0.5		7.5	ns
t _{PZL}	UE	Б	5.2		0.5		12.4	0.5		10.3	0.5		8.1	0.5		7.5	115
t _{PHZ}	OE	А	3		0.5		9.1	0.5		9.1	0.5		9.1	0.5		9.1	
t _{PLZ}	UE	A	3		0.5		9.1	0.5		9.1	0.5		9.1	0.5		9.1	ns
t _{PHZ}	OE	В	5		0.5		10.9	0.5		9.6	0.5		9.1	0.5		8.2	
t _{PLZ}	JE	в	5		0.5		10.9	0.5		9.6	0.5		9.1	0.5		8.2	ns

7.10 Switching Characteristics: V_{CCA} = 3.3 V ± 0.3 V

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (see Figure 11)

PARAMETER	FROM	то	Vcc	_{:B} = 1.2 \	1	V _{CCB} =	1.5 V ± 0.1 V		V _{CCB} = 1	.8 V ± 0.1	15 V	V _{CCB} = 2	2.5 V ± 0).2 V	V _{CCB} = 3	3.3 V ± (0.3 V	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	TYP MA	x	MIN	TYP	MAX	MIN	TYP	МАХ	MIN	TYP	MAX	UNIT
t _{PLH}	А	В		3.2		0.5	8	.5	0.5		7.4	0.5		6.2	0.5		5.7	-
t _{PHL}	A	Б		3.2		0.5	8	.5	0.5		7.4	0.5		6.2	0.5		5.7	ns
t _{PLH}	в	А		2.8		0.5	6	.7	0.5		6.3	0.5		5.8	0.5		5.7	
t _{PHL}	Б	A		2.8		0.5	6	.7	0.5		6.3	0.5		5.8	0.5		5.7	ns
t _{PZH}	OE	А		2.2		0.5	7	.3	0.5		7.2	0.5		7.1	0.5		7	-
t _{PZL}	UE	~		2.2		0.5	7	.3	0.5		7.2	0.5		7.1	0.5		7	ns
t _{PZH}	OE	В		5.1		0.5	12	.3	0.5		10.2	0.5		7.9	0.5		7	
t _{PZL}	UE	В		5.1		0.5	12	.3	0.5		10.2	0.5		7.9	0.5		7	ns
t _{PHZ}	OE	٨		3.4		0.5		8	0.5		8	0.5		8	0.5		8	
t _{PLZ}	UE	A		3.4		0.5		8	0.5		8	0.5		8	0.5		8	ns
t _{PHZ}	OE	В		4.9		0.5	10	7	0.5		9.5	0.5		8.2	0.5		8	-
t _{PLZ}	UE	Б		4.9		0.5	10	.7	0.5		9.5	0.5		8.2	0.5		8	ns


7.11 Operating Characteristics


T_A= 25°C

	PARAMETE	P	TEST	V _{CCA} =	V _{CCB} =	1.2 V	V _{CCA} =	V _{CCB} = 1.	5 V	V _{CCA} =	= V _{ссв} = 1	.8 V	V _{CCA}	= V _{CCB} =	2.5 V	V _{CCA} =	V _{ссв} = 3	3.3 V	UNIT
	PARAMETE	.ĸ	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	A to B	Outputs enabled			1			1			1			1			2		
C _{pdA} ⁽¹⁾	AIUB	Outputs disabled	C _L = 0, f = 10 MHz,		1			1			1			1			1		pF
OpdA	B to A	Outputs enabled	$t_r = t_f = 1 \text{ ns}$		13			13			14			15			16		рі
	BIOA	Outputs disabled			1			1			1			1			1		
	A to B	Outputs enabled			13			13			14			15			16		
C _{pdB} ⁽¹⁾	AIUB	Outputs disabled	C _L = 0, f = 10 MHz,		1			1			1			1			1		pF
CpdB	B to A	Outputs enabled	$t_r = t_f = 1 \text{ ns}$		1			1			1			1			2		μr
	DIOA	Outputs disabled			1			1			1			1			1		

(1) Power dissipation capacitance per transceiver

7.12 Typical Characteristics

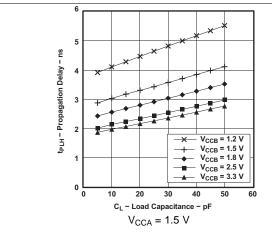
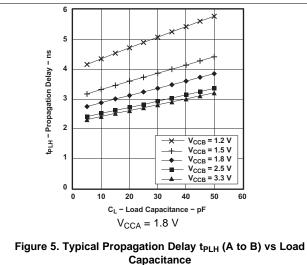



Figure 3. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

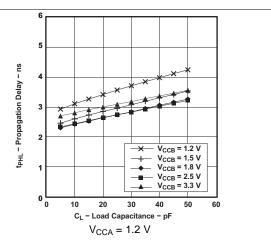
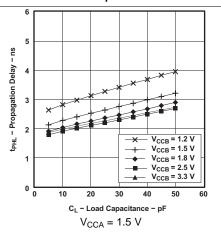
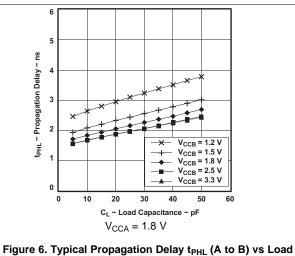
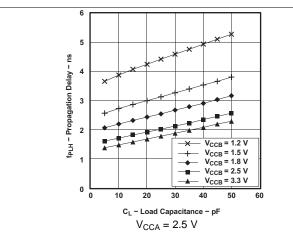
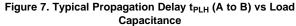
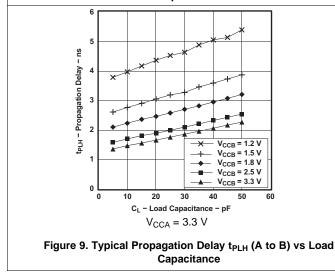


Figure 2. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance


Figure 4. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance




Capacitance

Typical Characteristics (continued)

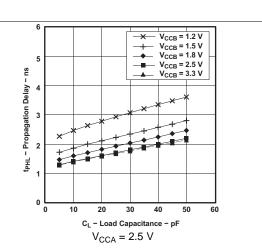
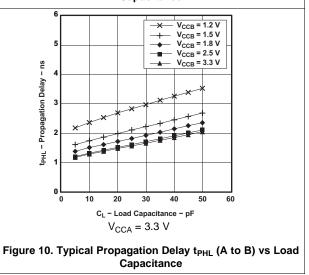
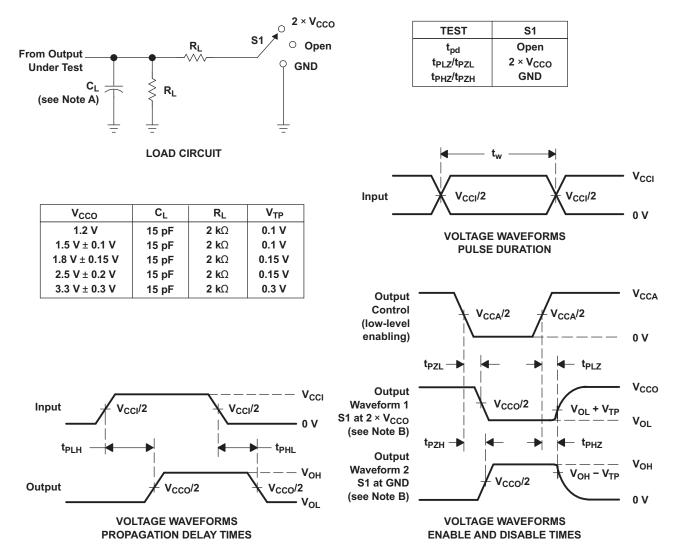




Figure 8. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance

8 Parameter Measurement Information

NOTES: A. C_L includes probe and jig capacitance.

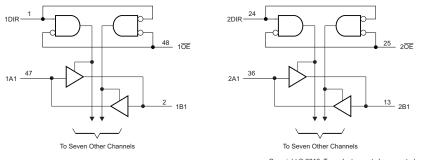
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , dv/dt \geq 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.

Figure 11. Load Circuit and Voltage Waveforms

Detailed Description 9

Overview 9.1


The SN74AVC16T245-Q1 is a 16-bit, dual-supply, noninverting, bidirectional voltage level translation. Pins A and control pins (DIR and \overline{OE}) are supported by V_{CCA} and B pins are supported by V_{CCB}. The A port can accept I/O voltages ranging from 1.2 V to 3.6 V, while the B port can accept I/O voltages from 1.2 V to 3.6 V. A high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A when OE is set to

This device is fully specified for partial-power-down applications using off output current (Ioff).

low. When \overline{OE} is set to high, both A and B are in the high-impedance state.

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are put in a high-impedance state.

9.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

9.3 Feature Description

9.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2-V to 3.6-V Power-Supply Range

Both V_{CCA} and V_{CCB} can be supplied at any voltage from 1.2 V to 3.6 V, making the device suitable for translating between any of the low voltage nodes (1.2 V, 1.8 V, 2.5 V, and 3.3 V).

9.3.2 Partial-Power-Down Mode Operation

This device is fully specified for partial-power-down applications using off output current (I_{off}). The I_{off} circuitry prevents backflow current by disabling I/O output circuits when device is in partial power-down mode.

9.3.3 V_{CC} Isolation

The V_{CC} isolation feature ensures that if either V_{CCA} or V_{CCB} are at GND, both ports are in a high-impedance state (I_{OZ} shown in *Electrical Characteristics*). This prevents false logic levels from being presented to either bus.

9.4 Device Functional Modes

The SN74AVC16T245-Q1 is a voltage level translator that can operate from 1.2 V to 3.6 V (V_{CCA}) and 1.2 V to 3.6 V (V_{CCB}). The signal translation between 1.2 V and 3.6 V requires direction control and output enable control. When OE is low and DIR is high, data transmission is from A to B. When OE is low and DIR is low, data transmission is from B to A. When OE is high, both output ports will be high-impedance. Table 1 lists the functions.

CONTROL	INPUTS	OUTPUT CI	RCUITS	OPERATION
ŌĒ	DIR	A PORT	B PORT	OPERATION
L	L	Enabled	Hi-Z	B data to A bus
L	Н	Hi-Z	Enabled	A data to B bus
Н	Х	Hi-Z	Hi-Z	Isolation

Table 1. Function Table (Each 16-Bit Section)

Copyright © 2008–2016, Texas Instruments Incorporated

16

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The SN74AVC16T245-Q1 device can be used in level-shifting applications for interfacing devices and addressing mixed voltage incompatibility. The SN74AVC16T245-Q1 device is ideal for data transmission where direction is different for each channel.

10.1.1 Enable Times

Calculate the enable times for the SN74AVC16T45 using the following formulas:

t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A)	(1)
t_{PZL} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHL} (B to A)	(2)
t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B)	(3)
t_{PZL} (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B)	(4)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the SN74AVC16T245-Q1 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

www.ti.com

10.2 Typical Application

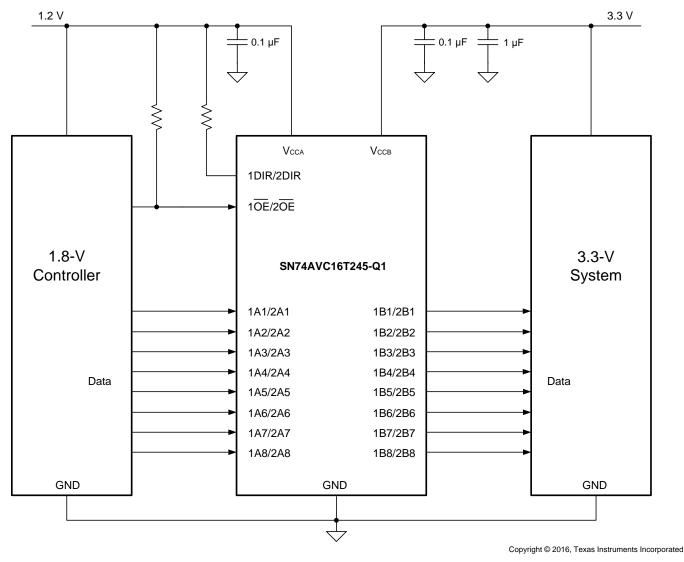


Figure 12. Typical Application Schematic

10.2.1 Design Requirements

This device uses drivers which are enabled depending on the state of the DIR pin. The designer must know the intended flow of data and take care not to violate any of the high or low logic levels. Unused data inputs must not be floating, as this can cause excessive internal leakage on the input CMOS structure. Tie any unused input and output ports directly to ground.

For this design example, use the parameters listed in Table 2.

	gint analistore
DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	1.2 V
Output voltage range	3.3 V

Table 2. Design Parameters

SN74AVC16T245-Q1

SCES778A – SEPTEMBER 2008 – REVISED JUNE 2016

www.ti.com

10.2.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
 - Use the supply voltage of the device that is driving the SN74AVC16T245-Q1 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{IL} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74AVC16T245-Q1 device is driving to determine the output voltage range.

10.2.3 Application Curve

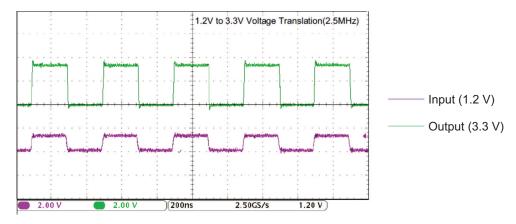


Figure 13. Translation Up (1.2 V to 3.3 V) at 2.5 MHz

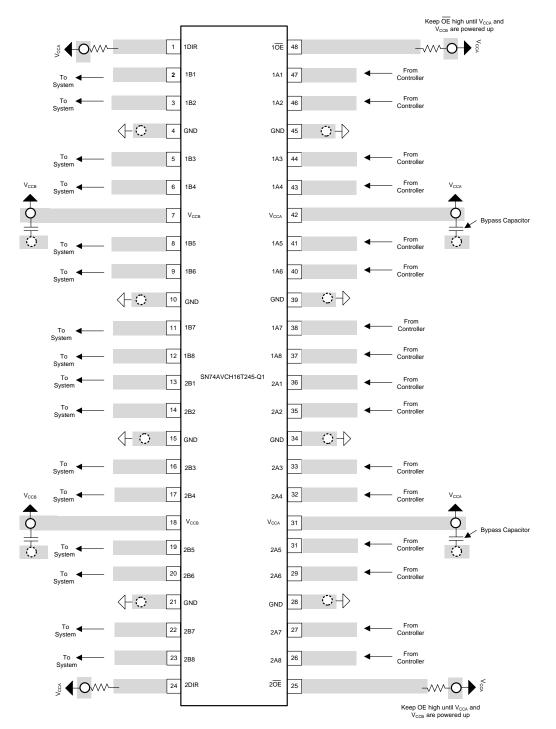
11 Power Supply Recommendations

The SN74AVC16T245-Q1 device uses two separate configurable power-supply rails, V_{CCA} and V_{CCB}. V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V and V_{CCB} accepts any supply voltage from 1.2 V to 3.6 V. The A port and B port are designed to track V_{CCA} and V_{CCB}, respectively, allowing for low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The output-enable \overline{OE} input circuit is designed so that it is supplied by V_{CCA} and when the \overline{OE} input is high, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the \overline{OE} input pin must be tied to V_{CCA} through a pullup resistor and must not be enabled until V_{CCA} and V_{CCB} are fully ramped and stable. The minimum value of the pullup resistor to V_{CCA} is determined by the current-sinking capability of the driver.

12 Layout

12.1 Layout Guidelines


To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended:


- Bypass capacitors must be used on power supplies.
- Short trace lengths must be used to avoid excessive loading.
- Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements.

12.2 Layout Example

TEXAS INSTRUMENTS

www.ti.com

13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation

For related documentation see the following:

- CMOS Power Consumption and Cpd Calculation
- IC Package Thermal Metrics application report
- Implications of Slow or Floating CMOS Inputs

13.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

13.3 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.4 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

13.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
CAVC16T245QDGVRQ1	ACTIVE	TVSOP	DGV	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	WF245Q	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

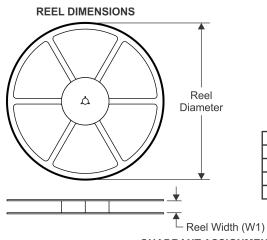
OTHER QUALIFIED VERSIONS OF SN74AVC16T245-Q1 :

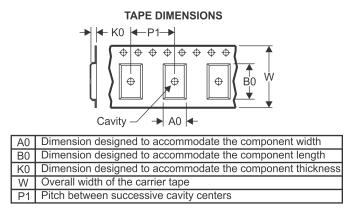
• Catalog: SN74AVC16T245

NOTE: Qualified Version Definitions:

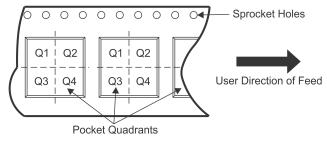
• Catalog - TI's standard catalog product

PACKAGE OPTION ADDENDUM


11-Apr-2013


PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CAVC16T245QDGVRQ1	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1

TEXAS INSTRUMENTS

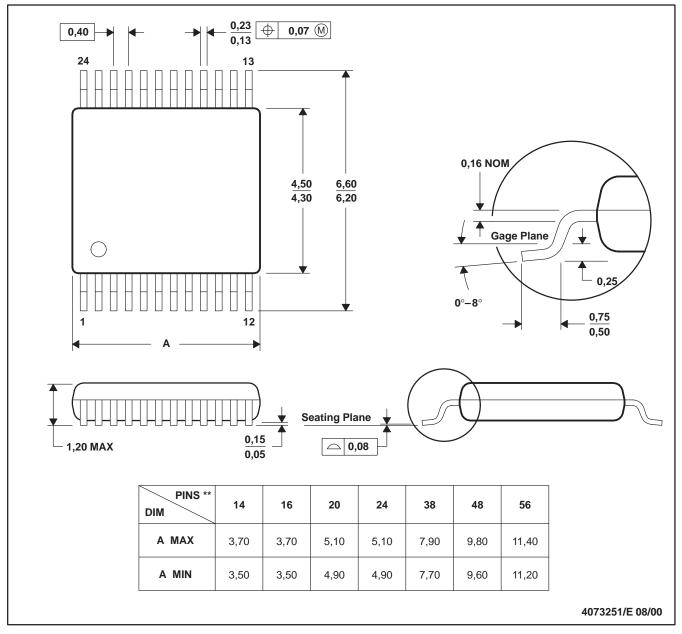
www.ti.com

PACKAGE MATERIALS INFORMATION

13-May-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CAVC16T245QDGVRQ1	TVSOP	DGV	48	2000	367.0	367.0	38.0


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated