

www.ti.com

DIRECT RAMBUS™ CLOCK GENERATOR

FEATURES

- 533-MHz Differential Clock Source for Direct Rambus™ Memory Systems for an 1066-MHz Data Transfer Rate
- Fail-Safe Power Up Initialization
- Synchronizes the Clock Domains of the Rambus Channel With an External System or Processor Clock
- Three Power Operating Modes to Minimize Power for Mobile and Other Power-Sensitive Applications
- Operates From a Single 3.3-V Supply and 120 mW at 300 MHz (Typ)
- Packaged in a Shrink Small-Outline Package (DBQ)
- Supports Frequency Multipliers: 4, 6, 8, 16/3
- No External Components Required for PLL
- Supports Independent Channel Clocking
- Spread Spectrum Clocking Tracking Capability to Reduce EMI
- Designed for Use With TI's 133-MHz Clock Synthesizers CDC924 and CDC921
- Cycle-Cycle Jitter Is Less Than 40 ps at 533 MHz
- Certified by Gigatest Labs to Exceed the Rambus DRCG Validation Requirement
- Supports Industrial Temperature Range of –40°C to 85°C

NC - No internal connection

DESCRIPTION

The Direct Rambus clock generator (DRCG) provides the necessary clock signals to support a Direct Rambus memory subsystem. It includes signals to synchronize the Direct Rambus channel clock to an external system or processor clock. It is designed to support Direct Rambus memory on a desktop, workstation, server, and mobile PC motherboards. DRCG also provides an off-the-shelf solution for a broad range of Direct Rambus memory applications.

The DRCG provides clock multiplication and phase alignment for a Direct Rambus memory subsystem to enable synchronous communication between the Rambus channel and ASIC clock domains. In a Direct Rambus memory subsystem, a system clock source provides the REFCLK and PCLK clock references to the DRCG and memory controller, respectively. The DRCG multiplies REFCLK and drives a high-speed BUSCLK to RDRAMs and the memory controller. Gear ratio logic in the memory controller divides the PCLK and BUSCLK frequencies by ratios M and N such that PCLKM = SYNCLKN, where SYNCLK = BUSCLK/4. The DRCG detects the phase difference between PCLKM and SYNCLKN and adjusts the phase of BUSCLK such that the skew between PCLKM and SYNCLKN is minimized. This allows data to be transferred across the SYNCLK/PCLK boundary without incurring additional latency.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DIRECT RAMBUS, Rambus are trademarks of Rambus Inc.

User control is provided by multiply and mode selection terminals. The multiply terminals provide selection of one of four clock frequency multiply ratios, generating BUSCLK frequencies ranging from 267 MHz to 533 MHz with clock references ranging from 33 MHz to 100 MHz. The mode select terminals can be used to select a bypass mode where the frequency multiplied reference clock is directly output to the Rambus channel for systems where synchronization between the Rambus clock and a system clock is not required. Test modes are provided to bypass the PLL and output REFCLK on the Rambus channel and to place the outputs in a high-impedance state for board testing.

The CDCFR83A has a fail-safe power up initialization state-machine which supports proper operation under all power up conditions.

The CDCFR83A is characterized for operation over free-air temperatures of -40°C to 85°C.

FUNCTIONAL BLOCK DIAGRAM PWRDWNB S0 S2 **STOPB Test MUX Bypass MUX ByPCLK PLLCLK** CLK PLL Phase **CLKB REFCLK** В Aligner **PACLK** $\varphi_{\boldsymbol{D}}$ 2 PCLKM | SYNCLKN **MULTO**

FUNCTION TABLE(1)

MODE	S0	S1	S2	CLK	CLKB
Normal	0	0	0	Phase aligned clock	Phase aligned clock B
Bypass	1	0	0	PLLCLK	PLLCLKB
Test	1	1	0	REFCLK	REFCLKB
Output test (OE)	0	1	Х	Hi-Z	Hi-Z
Reserved	0	0	1	-	_
Reserved	1	0	1	-	_
Reserved	1	1	1	Hi-Z	Hi-Z

(1) X = don't care, Hi-Z = high impedance

MULT1

TERMINAL FUNCTIONS

TERMINAL			DECEDIPTION				
NAME	NO.	I/O	DESCRIPTION				
CLK	20	0	Output clock				
CLKB	18	0	Output clock (complement)				
GNDC	8		GND for phase aligner				
GNDI	5		GND for control inputs				
GNDO	17, 21		GND for clock outputs				
GNDP	4		GND for PLL				
MULT0	15	I	PLL multiplier select				
MULT1	14	I	PLL multiplier select				
NC	19		Not used				
PCLKM	6	I	Phase detector input				
PWRDNB	12	I	Active low power down				
REFCLK	2	ı	Reference clock				
S0	24	I	Mode control				
S1	23	I	Mode control				
S2	13	I	Mode control				
STOPB	11	ı	Active low output disable				
SYNCLKN	7	ı	Phase detector input				
V _{DD} C	9		V _{DD} for phase aligner				
V _{DD} IPD	10		Reference voltage for phase detector inputs and STOPB				
$V_{DD}IR$	1		Reference voltage for REFCLK				
V _{DD} O	16, 22		V _{DD} for clock outputs				
$V_{DD}P$	3		V _{DD} for PLL				

PLL DIVIDER SELECTION

Table 1 lists the supported REFCLK and BUSCLK frequencies. Other REFCLK frequencies are permitted, provided that (267 MHz < BUSCLK < 533 MHz) and (33 MHz < REFCLK < 100 MHz).

Table 1. REFCLK and BUSCLK Frequencies

MULT0	MULT1	REFCLK (MHz)	MULTIPLY RATIO	BUSCLK ⁽¹⁾ (MHz)
0	0	67	4	267
0	1	50	6	300
0	1	67	6	400
1	1	33	8	267
1	1	50	8	400
1	1	67	8	533
1	0	67	16/3	356

⁽¹⁾ BUSCLK will be undefined until a valid reference clock is available at REFCLK. After applying REFCLK, the PLL requires stabilization time to achieve phase lock.

Table 2. Clock Output Driver States

STATE	PWRDNB	STOPB	CLK	CLKB
Powerdown	0	X	GND	GND
CLK stop	1	0	V _{X, STOP}	$V_{X, STOP}$
Normal	1	1	PACLK/PLLCLK/REFCLK ⁽¹⁾	PACLKB/PLLCLKB/REFCLKB

⁽¹⁾ Depending on the state of S0, S1, and S2

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

		UNIT
V_{DD}	Supply voltage range ⁽²⁾	-0.5 V to 4 V
V_{O}	Output voltage range at any output terminal	$-0.5 \text{ V to V}_{DD} + 0.5 \text{ V}$
V_{I}	Input voltage rangeat any input terminal	–0.5 V to V _{DD} + 0.5 V
	Continuous total power dissipation	See Dissipation Rating Table
T_A	Operating free-air temperature range	-40°C to 85°C
T _{stg}	Storage temperature range	−65°C to 150°C
	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE $T_A = 25^{\circ}C^{(1)}$	POWER RATING	POWER RATING
DBQ	1400 mW	11 mW/°C	905 mW	740 mW

⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

⁽²⁾ All voltage values are with respect to the GND terminals.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{DD}	Supply voltage	3.135	3.3	3.465	V
V_{IH}	High-level input voltage (CMOS)	$0.7 \times V_{DD}$			V
V_{IL}	Low-level input voltage (CMOS)			$0.3 \times V_{DD}$	V
	Initial phase error at phase detector inputs (required range for phase aligner)	$-0.5 \times t_{c(PD)}$		$0.5 \times t_{c(PD)}$	V
V_{IL}	REFCLK low-level input voltage			$0.3 \times V_{DD}IR$	V
V_{IH}	REFCLK high-level input voltage	$0.7 \times V_{DD}IR$			V
V_{IL}	Input signal low voltage (STOPB)			$0.3 \times V_{DD}IPD$	V
V_{IH}	Input signal high voltage (STOPB)	$0.7 \times V_{DD}IPD$			V
	Input reference voltage for (REFCLK) (V _{DD} IR)	1.235		3.465	V
	Input reference voltage for (PCLKM and SYSCLKN) (V _{DD} IPD)	1.235		3.465	V
I _{OH}	High-level output current			-16	mA
I _{OL}	Low-level output current			16	mA
T _A	Operating free-air temperature	-40		85	°C

TIMING REQUIREMENTS

		MIN	MAX	UNIT
t _{c(in)}	Input cycle time	10	40	ns
	Input cycle-to-cycle jitter		250	ps
	Input duty cycle over 10,000 cycles	40%	60%	
f _{mod}	Input frequency modulation	30	33	kHz
	Modulation index, nonlinear maximum 0.5%		0.6%	
	Phase detector input cycle time (PCLKM and SYNCLKN)	30	100	ns
SR	Input slew rate	1	4	V/ns
	Input duty cycle (PCLKM and SYNCLKN)	25%	75%	

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CON	MIN	TYP ⁽²⁾	MAX	UNIT	
V _{O(STOP)}	Output voltage during	CLK Stop (STOPB = 0)	See Figure 1		1.1		2	
V _{O(X)}	Output crossing-point	voltage	See Figure 1 and F	1.3		1.8	V	
Vo	Output voltage swing		See Figure 1		0.4		0.6	V
V _{IK}	Input clamp voltage		$V_{DD} = 3.135 \text{ V},$	$I_1 = -18 \text{ mA}$			-1.2	V
			See Figure 1				2	
V _{OH}	High-level output volta	age	$V_{DD} = min to max,$	$I_{OH} = -1 \text{ mA}$	V _{DD} - 0.1			V
			$V_{DD} = 3.135 \text{ V},$	I _{OH} = -16 mA	2.4			
			See Figure 1		1			
V _{OL}	Low-level output volta	age	$V_{DD} = min to max,$	I _{OH} = 1 mA			0.1	V
			$V_{DD} = 3.135 \text{ V},$	$I_{OH} = 16 \text{ mA}$			0.5	
			$V_{DD} = 3.135 \text{ V},$	V _O = 1 V	-32	-52		
I _{OH}	High-level output curr	ent	V _{DD} = 3.3 V,	V _O = 1.65 V		– 51		mA
			V _{DD} = 3.465 V,	V _O = 3.135 V		-14.5	-21	
			$V_{DD} = 3.135 \text{ V},$	$V_{O} = 1.95 \text{ V}$	43	61.5		
I_{OL}	Low-level output curre	ent	$V_{DD} = 3.3 V,$	V _O = 1.65 V		65		mA
			$V_{DD} = 3.465 \text{ V},$	$V_0 = 0.4 \ V$		25.5	36	
I _{OZ}	High-impedance-state	output current	S0 = 0, S1 = 1				±10	μΑ
I _{OZ(STOP)}	High-impedance-state during CLK stop	e output current	Stop = 0, $V_O = GNI$			±100	μΑ	
I _{OZ(PD)}	High-impedance-state power-down state	output current in	PWRDNB = 0, V _O =	= GND or V _{DD}	-10		100	μΑ
	High-level input	REFCLK, PCLKM, SYNCLKN, STOPB		., .,			10	
I _{IH}	current	PWRDNB, S0, S1, S2, MULT0, MULT1	$V_{DD} = 3.465 \text{ V},$	$V_I = V_{DD}$			10	μΑ
	Low-level input	REFCLK, PCLKM, SYNCLKN, STOPB	V 0.405.V				-10	^
I _{IL}	current	PWRDNB, S0, S1, S2, MULT0, MULT1	$V_{DD} = 3.465 \text{ V},$	V _I = 0			-10	μΑ
7	Output in a dance	High state	R _I at I _O - 14.5 mA to	o –16.5 mA	15	35	50	0
Z _O	Output impedance	Low state	R _I at I _O 14.5 mA to	16.5 mA	11	17	35	Ω
	Defense	V 10 V 100	V 0.405.V	PWRDNB = 0			50	μΑ
	Reference current	$V_{DD}IR$, $V_{DD}IPD$	$V_{DD} = 3.465 \text{ V}$	PWRDNB = 1			0.5	mA
C _I	Input capacitance		$V_{I} = V_{DD}$ or GND			2		рF
Co	Output capacitance		$V_O = V_{DD}$ or GND			3		pF
I _{DD(PD)}	Supply current in pwoer-down state		REFCLK = 0 MHz to 100 MHz, PWDNB = 0, STOPB = 1				100	μΑ
I _{DD(CLKSTOP)}	Supply current in CLF	Stop state	BUSCLK configure			45	mA	
I _{DD(NORMAL)}	Supply current in norr	mal state	BUSCLK = 533 MH	lz			100	mA

 V_{DD} refers to any of the following; $V_{DD},\,V_{DD}IPD,\,V_{DD}IR,\,V_{DD}O,\,V_{DD}C,$ and $V_{DD}P$ All typical values are at V_{DD} = 3.3 V, T_A = 25°C.

SWITCHING CHARACTERISTICS

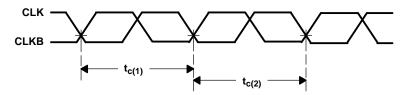
over recommended operating free-air temperature range (unless otherwise noted)

	PARAME	TER		TEST CONDITIONS	MIN	TYP ⁽¹⁾ MAX	UNIT
t _{c(out)}	Clock output cycle time				1.87	3.75	ns
			267 MHz			80	
		Infinite and	300 MHz	Soo Figure 2		70	
t _(jitter)	Total cycle jitter over 1, 2, 3, 4, 5, or 6 clock cycles	stopped phase	356 MHz	See Figure 3		60	ps
	o, 1, 0, 01 0 oldok oyoloo	alignment	400 MHz			50	
			533 MHz ⁽²⁾			40	
t _(phase)	Phase detector phase error for distributed loop			Static phase error ⁽³⁾	-100	100	ps
t _(phase, SSC)	PLL output phase error whe	en tracking SSC		Dynamic phase error ⁽³⁾	-100	100	ps
I _(DC)	Output duty cycle over 10,0	000 cycles		See Figure 4	45%	55%	
		Infinite and stopped phase alignment	267 MHz			80	
	• • • • • • • • • • • • • • • • • • • •		300 MHz			70	
t(DC, err)	Output cycle-to-cycle duty cycle error		356 MHz	See Figure 5		60	ps
	cycle circi		400 MHz			50	
			533 MHz			50	
t_r , t_f	Output rise and fall times (measured at 20%–80% of output voltage)			See Figure 7	160	400	ps
Δt	Difference between rise and fall times on a single device (20%–80%) $ t_f - t_r $			See Figure 7		100	ps

STATE TRANSITION LATENCY SPECIFICATIONS

PARAMETER		FROM	то	TEST CONDITIONS	MIN TYP(1)	MAX	UNIT
t _(powerup)	Delay time, PWRDNB↑ to CLK/CLKB output settled (excluding t _(DISTLOCK))	Powerdown	Normal	See Figure 8		3	
	Delay time, PWRDNB↑ to internal PLL and clock are on and settled	Powerdown	inomai			3	ms
t _(VDDpowerup)	Delay time, power up to CLK/CLKB output settled	V	Normal	See Figure 8		3	ms
	Delay time, power up to internal PLL and clock are on and settled	V _{DD} Normal –				3	1115
t _(MULT)	MULT0 and MULT1 change to CLK/CLKB output resettled (excluding t _(DISTLOCK))	Normal	Normal	See Figure 9		1	ms
t _(CLKON)	STOPB [↑] to CLK/CLKB glitch-free clock edges	CLK Stop	Normal	See Figure 10		10	ns
t(CLKSETL)	STOPB [↑] to CLK/CLKB output settled to within 50 ps of the phase before STOPB was disabled	CLK Stop	Normal	See Figure 10		20	cycles
t _(CLKOFF)	STOPB↓ to CLK/CLKB output disabled	Normal	CLK Stop	See Figure 10		5	ns
t _(powerdown)	Delay time, PWRDNB↓ to the device in the power-down mode	Normal	Powerdown	See Figure 8		1	ms
t _(STOP)	Maximum time in CLKSTOP (STOPB = 0) before reentering normal mode (STOPB = 1)	STOPB	Normal	See Figure 10		100	μs
t _(ON)	Minimum time in normal mode (STOPB = 1) before reentering CLKSTOP (STOPB = 0)	Normal	CLK Stop	See Figure 10	100		ms
t(DISTLOCK)	Time from when CLK/CLKB output is settled to when the phase error between SYNCLKN and PCLKM falls within t _(phase)	Unlocked	Locked			5	ms

⁽¹⁾ All typical values are at V_{DD} = 3.3 V, T_A = 25°C.


 $[\]begin{array}{ll} \hbox{(1)} & \hbox{All typical values are at $V_{DD}=3.3$ V, $T_A=25^\circ$C.} \\ \hbox{(2)} & \hbox{Jitter measurement according to Rambus validation specification} \\ \hbox{(3)} & \hbox{Assured by design} \end{array}$

PARAMETER MEASUREMENT INFORMATION

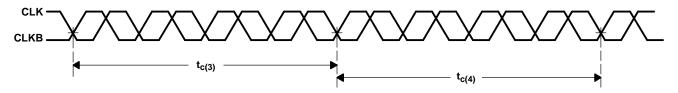


Figure 1. Test Load and Voltage Definitions ($V_{O(STOP)}$, $V_{O(X)}$, V_{O} , V_{OH} , V_{OL})

Cycle-to-cycle jitter = $|t_{c(1)} - t_{c(2)}|$ over 10000 consecutive cycles

Figure 2. Cycle-to-Cycle Jitter

Cycle-to-cycle jitter = $|t_{c(3)} - t_{c(4)}|$ over 10000 consecutive cycles

Figure 3. Short Term Cycle-to-Cycle Jitter Over Four Cycles

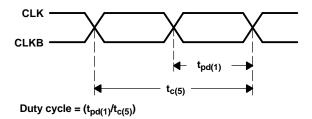


Figure 4. Output Duty Cycle

PARAMETER MEASUREMENT INFORMATION (continued)

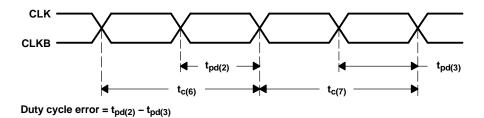


Figure 5. Duty Cycle Error (Cycle-to-Cycle)

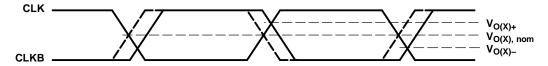
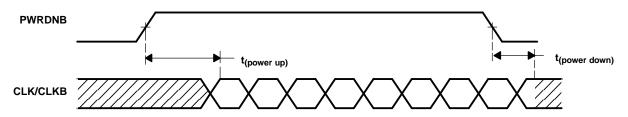


Figure 6. Crossing-Point Voltage



Figure 7. Voltage Waveforms



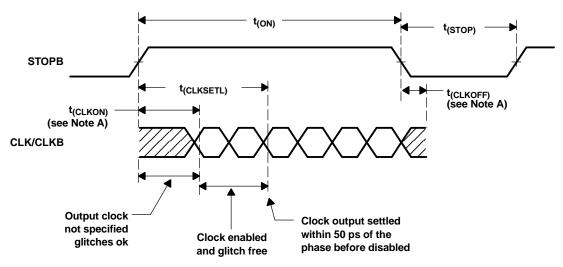
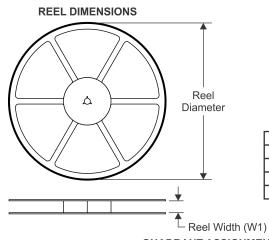
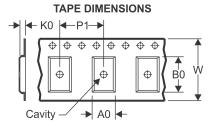


Figure 8. PWRDNB Transition Timings

Figure 9. MULT Transition Timings

PARAMETER MEASUREMENT INFORMATION (continued)


A. $V_{ref} = V_O \pm 200 \text{ mV}$


Figure 10. STOPB Transition Timings

PACKAGE MATERIALS INFORMATION

www.ti.com 12-May-2017

TAPE AND REEL INFORMATION

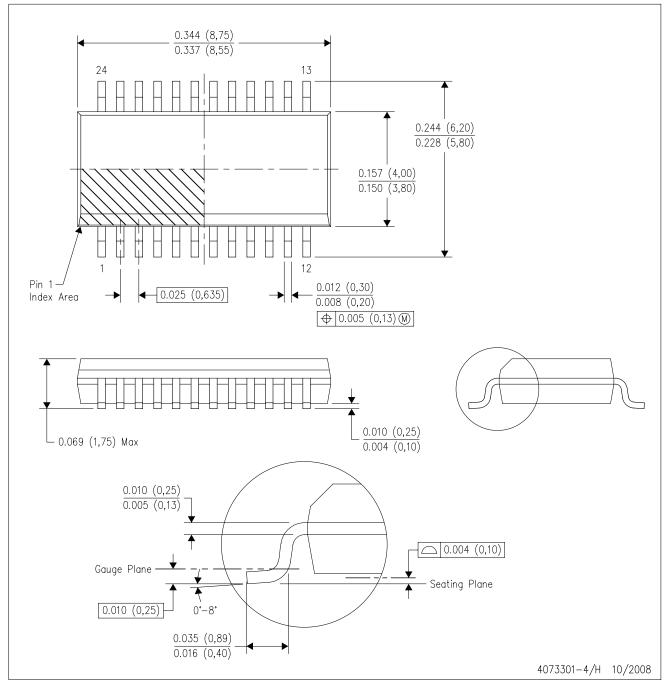
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCFR83ADBQR	SSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

www.ti.com 12-May-2017

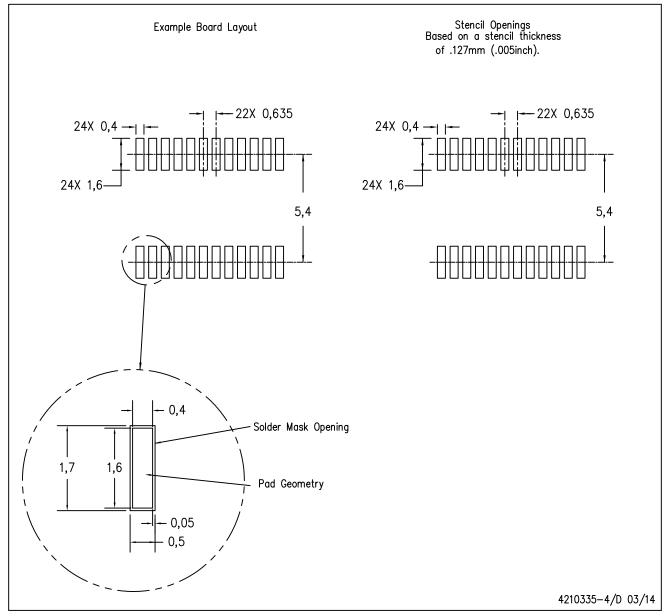


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCFR83ADBQR	SSOP	DBQ	24	2500	367.0	367.0	38.0

DBQ (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.
- D. Falls within JEDEC MO-137 variation AE.

DBQ (R-PDSO-G24)

PLASTIC SMALL OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.