

Low-Voltage 1:10 LVPECL/HSTL With Selectable Input Clock Driver

Check for Samples: CDCLVP110

FEATURES

- Distributes One Differential Clock Input Pair LVPECL/HSTL to 10 Differential LVPECL Clock Outputs
- Fully Compatible With LVECL/LVPECL/HSTL
- Single Supply Voltage Required, ±3.3-V or ±2.5-V Supply
- Selectable Clock Input Through CLK_SEL
- Low-Output Skew (Typ 15 ps) for Clock-Distribution Applications
- VBB Reference Voltage Output for Single-Ended Clocking
- Available in a 32-Pin LQFP Package
- Frequency Range From DC to 3.5 GHz
- Pin-to-Pin Compatible With MC100 Series EP111, ES6111, LVEP111, PTN1111

DESCRIPTION

The CDCLVP110 clock driver distributes one differential clock pair of either LVPECL or HSTL (selectable) input, (CLK0, CLK1) to ten pairs of differential LVPECL clock (Q0, Q9) outputs with minimum skew for clock distribution. The CDCLVP110 can accept two clock sources into an input multiplexer. The CLK0 input accepts either LVECL/LVPECL input signals, while CLK1 accepts an HSTL input signal when operated under LVPECL conditions. The CDCLVP110 is specifically designed for driving $50\text{-}\Omega$ transmission lines.

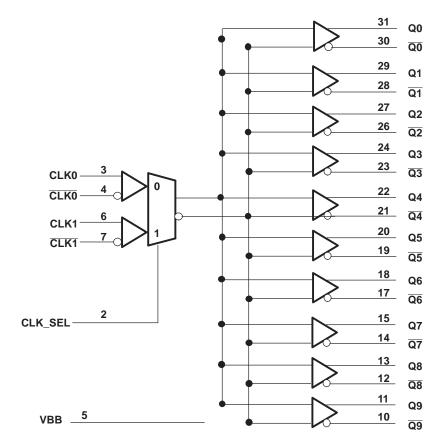
The VBB reference voltage output is used if single-ended input operation is required. In this case the VBB pin should be connected to CLKO and bypassed to GND via a 10-nF capacitor.

However, for high-speed performance up to 3.5 GHz, the differential mode is strongly recommended.

The CDCLVP110 is characterized for operation from -40°C to 85°C.

Table 1. FUNCTION TABLE

CLK_SEL	ACTIVE CLOCK INPUT
0	CLK0, CLK0
1	CLK1, CLK1



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

TERMINAL FUNCTIONS

TER	MINAL	DESCRIPTION
NAME	NO.	DESCRIPTION
CLK_SEL	2	Clock select. Used to select between CLK0 and CLK1 input pairs.
CLK0, CLK0	3, 4	Differential LVECL/LVPECL input pair
CLK1, CLK1	6, 7	Differential HSTL input pair
Q [9:0]	11, 13, 15, 18, 20, 22, 24, 27, 29, 31	LVECL/LVPECL clock outputs, these outputs provide low-skew copies of CLKn.
Q[9:0]	10, 12, 14, 17, 19, 21,23, 26, 28, 30	LVECL/LVPECL complementary clock outputs, these outputs provide copies of CLKn.
V_{BB}	5	Reference voltage output for single-ended input operation
V _{CC}	1, 9, 16, 25, 32	Supply voltage
V _{EE}	8	Device ground or negative supply voltage in ECL mode

ABSOLUTE MAXIMUM RATINGS(1)

		VALUE	UNIT
V_{CC}	Supply voltage	-0.3 to 4.6	V
VI	Input voltage	-0.3 to $V_{CC} + 0.5$	V
Vo	Output voltage	-0.3 to V _{CC} + 0.5	V
I _{IN}	Input current	±20	mA
V_{EE}	Negative supply voltage	-0.3 to 4.6	V
I_{BB}	Sink/source current	-1 to 1	mA
Io	DC output current	-50	mA
T _{stg}	Storage temperature range	-65 to 150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage (relative to V _{EE})	2.375	2.5/3.3	3.8	V
T _A (1)	Operating free-air temperature	-40		85	°C

⁽¹⁾ Operating junction temperature affects device lifetime. The continuous operation junction temperature is recommended to be at max 110°C. The device ac and dc parameters are specified up to 85°C ambient temperature. See the PCB Layout Guidelines for CDCLVP110 application note, literature number SCAA057 for more details.

PACKAGE THERMAL IMPEDANCE

		TEST CONDITIONS	MIN MAX	UNIT
		0 LFM	74	°C/W
	Thermal registeres innetion to embient(1)	150 LFM	66	°C/W
Θ_{JA}	Thermal resistance junction to ambient ⁽¹⁾	250 LFM	64	°C/W
		500 LFM	61	°C/W
Θ_{JC}	Thermal resistance junction to case		39	°C/W

⁽¹⁾ According to JESD 51-7 standard.

LVECL DC ELECTRICAL CHARACTERISTICS

Vsupply: $V_{CC} = 0 \text{ V}$, $V_{EE} = -2.375 \text{ V}$ to -3.8 V

	PARAMETER	TEST CONDITIONS	s	MIN	TYP	MAX	UNIT
			-40°C	40		78	
I_{EE}	Supply internal current	Absolute value of current	25°C	45		82	mA
			85°C	48		85	
			-40°C			343	
I_{CC}	Output and internal supply current	All outputs terminated 50 Ω to V_{CC} – 2 V	25°C			370	mA
	Carrent		85°C			380	
I _{IN}	Input current		–40°C, 25°C, 85°C			150	μΑ
		For $V_{EE} = -3$ to -3.8 V, $I_{BB} = -0.2$ mA	–40°C, 25°C, 85°C	-1.45	-1.3	-1.15	V
V_{BB}	Internally generated bias voltage	$V_{EE} = -2.375 \text{ to } -2.75 \text{ V}, I_{BB} = -0.2 \text{ mA}$	–40°C, 25°C, 85°C	-1.4	-1.25	-1.1	V
V_{IH}	High-level input voltage (CLK_SEL)		–40°C, 25°C, 85°C	-1.165		-0.88	V
V_{IL}	Low-level input voltage (CLK_SEL)		–40°C, 25°C, 85°C	-1.81		-1.475	V
VIN _{PP}	Input amplitude (CLK0, CLK0)	Difference of input 9 V _{IH} –V _{IL} , See Note ⁽¹⁾	–40°C, 25°C, 85°C	0.5		1.3	V
V _{CM}	Common-mode voltage (CLK0, CLK0)	Cross point of input 9 average (V _{IH} , V _{IL})	–40°C, 25°C, 85°C	V _{EE} + 0.975		-0.3	٧
			-40°C	-1.26		-0.9	
V_{OH}	High-level output voltage	I _{OH} = -21 mA	25°C	-1.2		-0.9	V
			85°C	-1.15		-0.9	

⁽¹⁾ VIN_{PP} minimum and maximum is required to maintain ac specifications, actual device function tolerates a minimum VIN_{PP} of 100 mV.

LVECL DC ELECTRICAL CHARACTERISTICS (continued)

Vsupply: $V_{CC} = 0 \text{ V}$, $V_{EE} = -2.375 \text{ V}$ to -3.8 V

	PARAMETER	TEST CONDITIONS			TYP MAX	UNIT
			-40°C	-1.85	-1.5	
V _{OL} Low-level or	Low-level output voltage	$I_{OL} = -5 \text{ mA}$	25°C	-1.85	-1.45	V
			85°C	-1.85	-1.4	
V _{OD}	Differential output voltage swing	Terminated with 50 Ω to V _{CC} – 2 V, See Figure 3	–40°C, 25°C, 85°C	600		V

LVPECL/HSTL DC ELECTRICAL CHARACTERISTICS

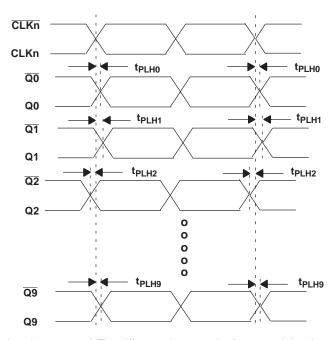
Vsupply: $V_{CC} = 2.375 \text{ V to } 3.8 \text{ V}, V_{EE} = 0 \text{ V}$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
			-40°C	40		78	
I _{EE}	Supply internal current	Absolute value of current	25°C	45		82	mA
			85C	48		85	
			-40°C			343	
I_{CC}	Output and internal supply current	All outputs terminated 50 Ω to V_{CC} – 2 V	25°C			370	mA
	ourron.		85°C			380	
I _{IN}	Input current		–40°C, 25°C, 85°C			150	μΑ
V	Internally generated bias	$V_{EE} = -3 \text{ to } -3.8 \text{ V}, I_{BB} = -0.2 \text{ mA}$	–40°C, 25°C, 85°C	V _{CC} – 1.45	V _{CC} – 1.3	V _{CC} – 1.15	V
V_{BB}	voltage	$V_{EE} = -2.375 \text{ to } -2.75 \text{ V}, I_{BB} = -0.2 \text{ mA}$	–40°C, 25°C, 85°C	V _{CC} - 1.4	V _{CC} - 1.25	V _{CC} - 1.1	V
V_{IH}	High-level input voltage (CLK_SEL)		-40°C, 25°C, 85°C	V _{CC} - 1.165		V _{CC} - 0.88	٧
V _{IL}	Low-level input voltage (CLK_SEL)		-40°C, 25°C, 85°C	V _{CC} - 1.81		V _{CC} - 1.475	V
VIN _{PP}	Input amplitude (CLK0, CLK0)	Difference of input 9 V _{IH} -V _{IL} , see Note ⁽¹⁾	-40°C, 25°C, 85°C	0.5		1.3	V
V _{IC}	Common-mode voltage (CLK0, CLK0)	Cross point of input 9 average (V _{IH} , V _{IL})	-40°C, 25°C, 85°C	0.975		V _{CC} - 0.3	V
V_{ID}	Differential input_voltage (CLK1, CLK1)	Difference of input V _{IH} –V _{IL} , See Note ⁽¹⁾	-40°C, 25°C, 85°C	0.4		1.9	٧
$V_{I(x)}$	Input crossover voltage (CLK1, CLK1)	Cross point of input 9 average (V _{IH} , V _{IL})	-40°C, 25°C, 85°C	0.68		0.9	٧
			-40°C	V _{CC} – 1.26		$V_{CC} - 0.9$	
V_{OH}	High-level output voltage	$I_{OH} = -21 \text{ mA}$	25°C	V _{CC} - 1.2		$V_{CC} - 0.9$	V
	romago		85°C	V _{CC} - 1.15		V _{CC} - 0.9	
			-40°C	V _{CC} - 1.85		V _{CC} - 1.5	
V_{OL}	Low-level output voltage	$I_{OL} = -5 \text{ mA}$	25°C	V _{CC} - 1.85		V _{CC} - 1.45	V
	vollage		85°C	V _{CC} - 1.85		V _{CC} - 1.4	
V _{OD}	Differential output voltage swing	Terminated with 50 Ω to V_{CC} – 2 V, See Figure 4	-40°C, 25°C, 85°C	600			mV

⁽¹⁾ VINPP minimum and maximum is required to maintain ac specifications, actual device function tolerates a minimum VINPP of 100 mV.

AC ELECTRICAL CHARACTERISTICS

Vsupply: V_{CC} = 2.375 V to 3.8 V, V_{EE} = 0 V or LVECL/LVPECL input V_{CC} = 0 V, V_{EE} = -2.375 V to -3.8 V


	PARAMETER	TEST CONDITIO	NS	MIN	TYP	MAX	UNIT
t _{pd}	Differential propagation delay CLK0, CLK0 to all Q0, Q0 Q9, Q9	Input condition: VCM = 1 V, V _{PP} = 0.5 V	-40°C, 25°C, 85°C	230		350	ps
t _{sk(pp)}	Part-to-part skew	See Note B and Figure 1	–40°C, 25°C, 85°C			70	ps
t _{sk(o)}	Output-to-output skew	See Note A and Figure 1	–40°C, 25°C, 85°C		15	30	ps
t _(JITTER)	Cycle-to-cycle RMS jitter		-40°C, 25°C, 85°C			< 1	ps
f _(max)	Maximum frequency	Functional up to 3.5 GHz, timing specifications apply at 1 GHz, see Figure 3	-40°C, 25°C, 85°C			3500	MHz
t _r /t _f	Output rise and fall time (20%, 80%)		–40°C, 25°C, 85°C	100		200	ps

HSTL INPUT

Vsupply: $V_{CC} = 2.375 \text{ V to } 3.8 \text{ V}, V_{EE} = 0 \text{ V}$

	PARAMETER	TEST CONDITION	MIN	TYP MAX	UNIT	
t _{pd}	Differential propagation delay CLK0, CLK0 to all Q0, Q0 Q9, Q9	Input condition: $V_x = 0.68 \text{ V}$, $V_{dif} = 0.4 \text{ V}$	–40°C, 25°C, 85°C	290	370	ps
t _{sk(pp)}	Part-to-part skew	See Note B and Figure 1	–40°C, 25°C, 85°C		70	ps
t _{sk(o)}	Output to output skew	See Note A and Figure 1	–40°C, 25°C, 85°C		10 30	ps
t _(JITTER)	Cycle-to-cycle RMS jitter		–40°C, 25°C, 85°C		<1	ps
f _(max)	Maximum frequency	Functional up to 3.5 GHz, timing specifications apply at 1 GHz, See Figure 4	–40°C, 25°C, 85°C		3500	MHz
t _r /t _f	Output rise and fall time (20%, 80%)		–40°C, 25°C, 85°C	100	200	ps

- A. Output skew is calculated as the greater of: The difference between the fastest and the slowest t_{PLHn} (n = 0, 1,...9) or the difference between the fastest and the slowest t_{PHLn} (n = 0, 1,...9).
- B. Part-to-part skew, is calculated as the greater of: The difference between the fastest and the slowest t_{PLHn} (n = 0, 1,...9) across multiple devices or the difference between the fastest and the slowest t_{PHLn} (n = 0, 1,...9) across multiple devices.

Figure 1. Waveform for Calculating Both Output and Part-to-Part Skew

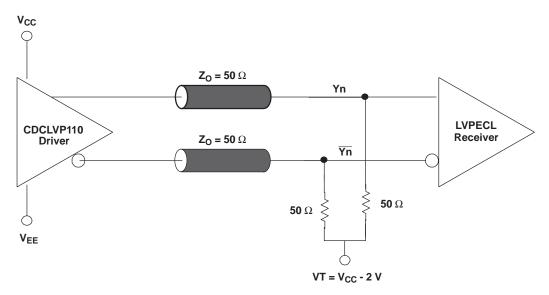


Figure 2. Typical Termination for Output Driver (See the Interfacing Between LVPECL, LVDS, and CML Application Note, Literature Number SCAA056)

Figure 3. LVPECL Input Using CLK0 Pair, VCM = 1 V, VINdif = 0.5 V

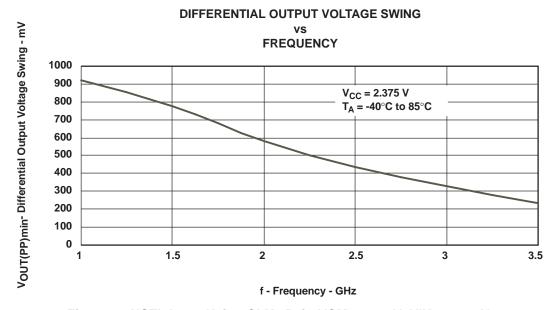


Figure 4. HSTL Input Using CLK1 Pair, VCM = 0.68 V, VIN_{dif} = 0.4 V

REVISION HISTORY

Changes from Revision A (August 2002) to Revision B	Page
Changed PACKAGE THERMAL IMPEDANCE max values	3
Deleted I _{IN} test condition	3
Deleted I _{IN} test condition	
Changes from Revision B (January 2010) to Revision C	Page
• Changed LVECL DC spec for V _{BB} (V _{EE} = −3 to −3.8 V) from 3 rows to 1 row and added TYP value	3
 Changed LVECL DC spec for V_{BB} (V_{EE} = -2.375 to -2.75 V); MIN value from -1.38 V to -1.4 V, MAX from -1.16 V to -1.1 V, and added TYP value of -1.25 V 	3
 Changed LVECL/HSTL DC spec for V_{BB} (V_{EE} = -3 to -3.8 V) from 3 rows to 1 row and added TYP value. 	4
 Changed LVECL/HSTL DC spec for V_{BB} (V_{EE} = -2.375 to -2.75 V); MIN value from V_{CC} -1.38 V to V_{CC} -1.4 V; MAX from V_{CC} -1.16 V to V_{CC} -1.1 V; and added TYP value of V_{CC} -1.25 V 	
Changes from Revision C (January 2011) to Revision D	Page
Changed V _{CM} spec from V _{EE} +1 to V _{EE} +0.975	3
Changed V _{IC} spec from 1 to 0.975	

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
CDCLVP110MVFR	ACTIVE	LQFP	VF	32	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCLVP110	Samples
CDCLVP110MVFRG4	ACTIVE	LQFP	VF	32	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCLVP110	Samples
CDCLVP110VF	ACTIVE	LQFP	VF	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCLVP110	Samples
CDCLVP110VFG4	ACTIVE	LQFP	VF	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCLVP110	Samples
CDCLVP110VFR	ACTIVE	LQFP	VF	32	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCLVP110	Samples
CDCLVP110VFRG4	ACTIVE	LQFP	VF	32	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCLVP110	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

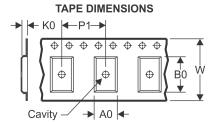
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

PACKAGE OPTION ADDENDUM

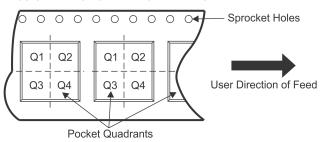
11-Apr-2013


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 4-Aug-2017


TAPE AND REEL INFORMATION

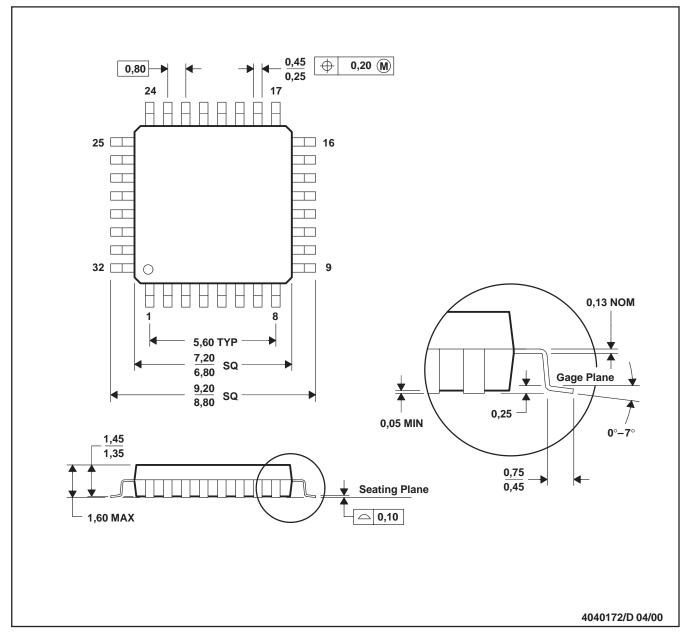
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCLVP110MVFR	LQFP	VF	32	1000	330.0	16.4	9.6	9.6	1.9	12.0	16.0	Q1
CDCLVP110VFR	LQFP	VF	32	1000	330.0	16.4	9.6	9.6	1.9	12.0	16.0	Q2

www.ti.com 4-Aug-2017



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
CDCLVP110MVFR	LQFP	VF	32	1000	367.0	367.0	38.0	
CDCLVP110VFR	LQFP	VF	32	1000	367.0	367.0	38.0	

VF (S-PQFP-G32)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.