

DS90LV804 4-Channel 800 Mbps LVDS Buffer/Repeater

Check for Samples: DS90LV804

FEATURES

- 800 Mbps Data Rate per Channel
- Low Output Skew and Jitter
- LVDS/CML/LVPECL Compatible Input, LVDS Output
- On-Chip 100Ω Input and Output Termination
- 12 kV ESD Protection on LVDS Outputs
- Single 3.3V Supply
- Very Low Power Consumption
- Industrial -40 to +85°C Temperature Range
- Small WQFN Package Footprint

DESCRIPTION

The DS90LV804 is a four channel 800 Mbps LVDS buffer/repeater. In many large systems, signals are distributed across cables and signal integrity is highly dependent on the data rate, cable type, length, and the termination scheme.

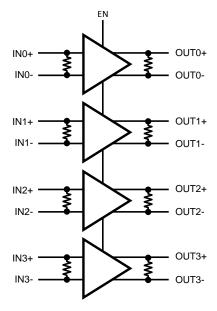
In order to maximize signal integrity, the DS90LV804 features both an internal input and output (source) termination to eliminate these extra components from the board, and to also place the terminations as close as possible to receiver inputs and driver output. This is especially significant when driving longer cables.

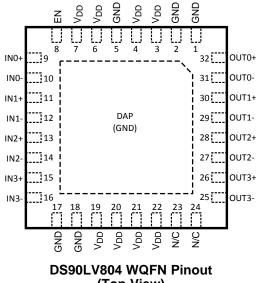
The DS90LV804, available in the WQFN (Leadless Leadframe Package) package, minimizes the footprint, and improves system performance.

An output enable pin is provided, which allows the user to place the LVDS outputs and internal biasing generators in a TRI-STATE[®], low power mode.

The differential inputs interface to LVDS, and Bus LVDS signals such as those on Tl's 10-, 16-, and 18-bit Bus LVDS SerDes, as well as CML and LVPECL. The differential inputs are internally terminated with a 100Ω resistor to improve performance and minimize board space. This function is especially useful for boosting signals over lossy cables or point-to-point backplane configurations.

Block and Connection Diagrams




Figure 1. DS90LV804 Block Diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TRI-STATE is a registered trademark of National Semiconductor Corporation.

All other trademarks are the property of their respective owners.

(Top View)

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings(1)

-0.3V to +4.0V
$-0.3V$ to $(V_{DD}+0.3V)$
-0.3V to (V _{DD} +0.3V)
-0.3V to (V _{DD} +0.3V)
+90 mA
+150°C
−65°C to +150°C
260°C
4.16W
29.5°C/W
3.5°C/W
33.3mW/°C
12 kV
250V
1000V
8 kV
250V
1000V

⁽¹⁾ Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. TI does not recommend operation of products outside of recommended operation conditions.

 V_{ID} max < 2.4V

Recommended Operating Conditions

Supply Voltage (V _{CC})		3.15V to 3.45V
Input Voltage (V _I) ⁽¹⁾	0V to V _{DD}	
Output Voltage (V _O)	0V to V _{DD}	
Operating Temperature (T _A)	Industrial	-40°C to +85°C

⁽¹⁾ $V_{ID} \max < 2.4V$

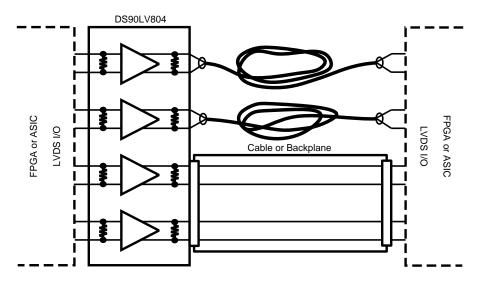
Electrical Characteristics

Over recommended operating supply and temperature ranges unless other specified

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Units
LVTTL D	C SPECIFICATIONS (EN)					
V _{IH}	High Level Input Voltage		2.0		V_{DD}	V
V _{IL}	Low Level Input Voltage		GND		0.8	V
I _{IH}	High Level Input Current	$V_{IN} = V_{DD} = V_{DDMAX}$	-10		+10	μΑ
I _{IL}	Low Level Input Current	$V_{IN} = V_{SS}, V_{DD} = V_{DDMAX}$	-10		+10	μΑ
C _{IN1}	Input Capacitance	Any Digital Input Pin to V _{SS}		3.5		pF
V _{CL}	Input Clamp Voltage	I _{CL} = −18 mA	-1.5	-0.8		V
LVDS IN	PUT DC SPECIFICATIONS (INn±)					
V_{TH}	Differential Input High Threshold (2)	$V_{CM} = 0.8V \text{ to } 3.4V,$ $V_{DD} = 3.45V$		0	100	mV
V_{TL}	Differential Input Low Threshold ⁽²⁾	$V_{CM} = 0.8V \text{ to } 3.4V,$ $V_{DD} = 3.45V$	-100	0		mV
V _{ID}	Differential Input Voltage	$V_{CM} = 0.8V \text{ to } 3.4V, V_{DD} = 3.45V$	100		2400	mV
V_{CMR}	Common Mode Voltage Range	$V_{ID} = 150 \text{ mV}, V_{DD} = 3.45 \text{V}$	0.05		3.40	V
C _{IN2}	Input Capacitance	IN+ or IN- to V _{SS}		3.5		pF
I _{IN}	Input Current	$V_{IN} = 3.45V$, $V_{DD} = V_{DDMAX}$	-10		+10	μΑ
	Input Current	$V_{IN} = 0V, V_{DD} = V_{DDMAX}$	-10		+10	μΑ
LVDS O	JTPUT DC SPECIFICATIONS (OUTn	(±)				
V_{OD}	Differential Output Voltage ⁽²⁾		250	500	600	mV
ΔV_{OD}	Change in V _{OD} between Complementary States	$R_{\rm L} = 100\Omega$ external resistor between OUT+ and	-35		35	mV
Vos	Offset Voltage ⁽³⁾	OŪT-	1.05	1.18	1.475	V
ΔV_{OS}	Change in V _{OS} between Complementary States		-35		35	mV
los	Output Short Circuit Current	OUT+ or OUT- Short to GND		-60	-90	mA
C _{OUT2}	Output Capacitance	OUT+ or OUT- to GND when TRI-STATE		5.5		pF
SUPPLY	CURRENT (Static)					
I _{CC}	Total Supply Current	All inputs and outputs enabled and active, terminated with external differential load of 100Ω between OUT+ and OUT		117	140	mA
I _{CCZ}	TRI-STATE Supply Current	EN = 0V		2.7	6	mA

Product Folder Links: DS90LV804

Typical parameters are measured at V_{DD} = 3.3V, T_A = 25°C. They are for reference purposes, and are not production-tested. Differential output voltage V_{OD} is defined as ABS(OUT+-OUT-). Differential input voltage V_{ID} is defined as ABS(IN+-IN-). Output offset voltage V_{OS} is defined as the average of the LVDS single-ended output voltages at logic high and logic low states.


Electrical Characteristics (continued)

Over recommended operating supply and temperature ranges unless other specified.

Symbol	Parameter	Conditions	Min	Typ ⁽¹⁾	Max	Units
SWITCHII	NG CHARACTERISTICS—LVDS OU	JTPUTS				
t _{LHT}	Differential Low to High Transition Time	Use an alternating 1 and 0 pattern at 200 Mbps,		210	300	ps
t _{HLT}	Differential High to Low Transition Time	measure between 20% and 80% of V _{OD} ⁽⁴⁾		210	300	ps
t _{PLHD}	Differential Low to High Propagation Delay	Use an alternating 1 and 0 pattern at 200 Mbps,		2.0	3.2	ns
t _{PHLD}	Differential High to Low Propagation Delay	measure at 50% V _{OD} between input to output.		2.0	3.2	ns
t _{SKD1}	Pulse Skew	t _{PLHD} -t _{PHLD} (4)		25	80	ps
t _{SKCC}	Output Channel to Channel Skew	Difference in propagation delay (t _{PLHD} or t _{PHLD}) among all output channels ⁽⁴⁾		50	125	ps
t _{SKP}	Part to Part Skew	Common edge, parts at same temp and V _{CC} ⁽⁴⁾			1.1	ns
t _{JIT}		RJ - Alternating 1 and 0 at 400 MHz ⁽⁶⁾		1.1	1.5	psrms
	Jitter ⁽⁵⁾	DJ - K28.5 Pattern, 800 Mbps ⁽⁷⁾		15	35	psp-p
		TJ - PRBS 2 ²³ -1 Pattern, 800 Mbps ⁽⁸⁾		30	55	psp-p
t _{ON}	LVDS Output Enable Time	Time from EN to OUT± change from TRI-STATE to active.			300	ns
t _{OFF}	LVDS Output Disable Time	Time from EN to OUT± change from active to TRI-STATE.			12	ns

- Not production tested. Ensured by statistical analysis on a sample basis at the time of characterization.
- (5)Jitter is not production tested, but ensured through characterization on a sample basis.
- Random Jitter, or RJ, is measured RMS with a histogram including 1500 histogram window hits. The input voltage = V_{ID} = 500mV, 50% duty cycle at 400 MHz, $t_r = t_f = 50ps$ (20% to 80%).
- Deterministic Jitter, or DJ, is measured to a histogram mean with a sample size of 350 hits. The input voltage = $V_{ID} = 500 \text{mV}$, K28.5 pattern at 800 Mbps, $t_r = t_f = 50 \text{ps}$ (20% to 80%). The K28.5 pattern is repeating bit streams of (0011111010 1100000101). Total Jitter, or TJ, is measured peak to peak with a histogram including 3500 window hits. Stimulus and fixture Jitter has been subtracted. The input voltage = $V_{ID} = 500 \text{mV}$, 2^{23} -1 PRBS pattern at 800 Mbps, $t_r = t_f = 50 \text{ps}$ (20% to 80%).

Typical Application

APPLICATION INFORMATION

INTERNAL TERMINATIONS

The DS90LV804 has integrated termination resistors on both the input and outputs. The inputs have a 100Ω resistor across the differential pair, placing the receiver termination as close as possible to the input stage of the device. The LVDS outputs also contain an integrated 100Ω ohm termination resistor, this resistor is used to reduce the effects of Near End Crosstalk (NEXT) and does not take the place of the 100 ohm termination at the inputs to the receiving device. The integrated terminations improve signal integrity and decrease the external component count resulting in space savings.

OUTPUT CHARACTERISTICS

The output characteristics of the DS90LV804 have been optimized for point-to-point backplane and cable applications, and are not intended for multipoint or multidrop signaling.

TRI-STATE MODE

The EN input activates a hardware TRI-STATE mode. When the TRI-STATE mode is active (EN=L), all input and output buffers and internal bias circuitry are powered off and disabled. Outputs are tri-stated in TRI-STATE mode. When exiting TRI-STATE mode, there is a delay associated with turning on bandgap references and input/output buffer circuits as indicated in the LVDS Output Switching Characteristics

INPUT FAILSAFE BIASING

External pull up and pull down resistors may be used to provide enough of an offset to enable an input failsafe under open-circuit conditions. This configuration ties the positive LVDS input pin to V_{DD} thru a pull up resistor and the negative LVDS input pin is tied to GND by a pull down resistor. The pull up and pull down resistors should be in the $5k\Omega$ to $15k\Omega$ range to minimize loading and waveform distortion to the driver. The common-mode bias point ideally should be set to approximately 1.2V (less than 1.75V) to be compatible with the internal circuitry. Please refer to application note AN-1194 "Failsafe Biasing of LVDS Interfaces" for more information.

INPUT INTERFACING

The DS90LV804 accepts differential signals and allow simple AC or DC coupling. With a wide common mode range, the DS90LV804 can be DC-coupled with all common differential drivers (that is, LVPECL, LVDS, CML). Figure 2, Figure 3, and Figure 4 illustrate typical DC-coupled interface to common differential drivers. Note that the DS90LV804 inputs are internally terminated with a 100Ω resistor.

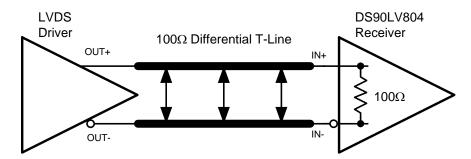


Figure 2. Typical LVDS Driver DC-Coupled Interface to DS90LV804 Input

Product Folder Links: DS90LV804

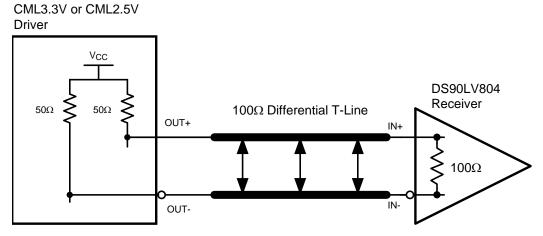


Figure 3. Typical CML Driver DC-Coupled Interface to DS90LV804 Input

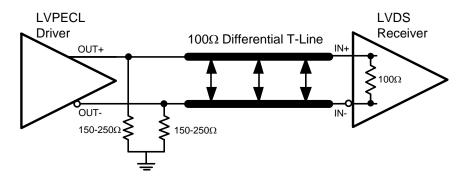


Figure 4. Typical LVPECL Driver DC-Coupled Interface to DS90LV804 Input

OUTPUT INTERFACING

The DS90LV804 outputs signals that are compliant to the LVDS standard. Their outputs can be DC-coupled to most common differential receivers. Figure 5 illustrates typical DC-coupled interface to common differential receivers and assumes that the receivers have high impedance inputs. While most differential receivers have a common mode input range that can accommodate LVDS compliant signals, it is recommended to check respective receiver's data sheet prior to implementing the suggested interface implementation.

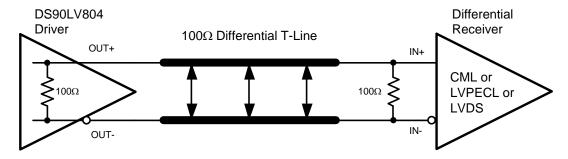
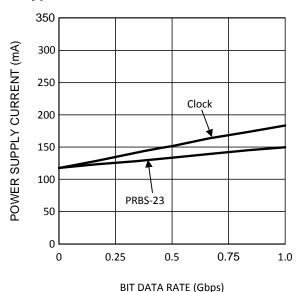


Figure 5. Typical DS90LV804 Output DC-Coupled Interface to an LVDS, CML or LVPECL Receiver

PIN DESCRIPTIONS


Pin	WQFN Pin	I/O, Type	Description
Name	Number	"o, type	Bosonphon
DIFFEREN	ITIAL INPUTS		
IN0+ IN0-	9 10	I, LVDS	Channel 0 inverting and non-inverting differential inputs.
IN1+ IN1-	11 12	I, LVDS	Channel 1 inverting and non-inverting differential inputs.
IN2+ IN2-	13 14	I, LVDS	Channel 2 inverting and non-inverting differential inputs.
IN3+ IN3-	15 16	I, LVDS	Channel 3 inverting and non-inverting differential inputs.
DIFFEREN	ITIAL OUTPUTS	1	
OUT0+ OUT0-	32 31	O, LVDS	Channel 0 inverting and non-inverting differential outputs (1)
OUT1+ OUT1-	30 29	O, LVDS	Channel 1 inverting and non-inverting differential outputs (1)
OUT2+ OUT2-	28 27	O, LVDS	Channel 2 inverting and non-inverting differential outputs (1)
OUT3+ 26 O, I			
DIGITAL C	CONTROL INTERFACE	1	
EN	8	I, LVTTL	Enable pin. When EN is LOW, the driver is disabled and the LVDS outputs are in TRI-STATE. When EN is HIGH, the driver is enabled. LVCMOS/LVTTL level input.
POWER		1	
V_{DD}	3, 4, 6, 7, 19, 20, 21, 22	I, Power	V _{DD} = 3.3V, ±5%
GND	1, 2, 5, 17, 18 ⁽²⁾	I, Power	Ground reference for LVDS and CMOS circuitry. For the WQFN package, the DAP is used as the primary GND connection to the device. The DAP is the exposed metal contact at the bottom of the WQFN-32 package. It should be connected to the ground plane with at least 4 vias for optimal AC and thermal performance. The pin numbers listed should also be tied to ground for proper biasing.
N/C	23, 24		No Connect

The LVDS outputs do not support a multidrop (BLVDS) environment. The LVDS output characteristics of the DS90LV804 device have been optimized for point-to-point backplane and cable applications.
Note that for the WQFN package the GND is connected thru the DAP on the back side of the WQFN package in addition to grounding

actual pins on the package as listed.

Typical Performance Characteristics

A. Dynamic power supply current was measured while running a clock or PRBS 2^{23} -1 pattern with all 4 channels active. $V_{CC} = 3.3V$, $T_A = +25^{\circ}C$, $V_{ID} = 0.5V$, $V_{CM} = 1.2V$

Figure 6. Power Supply Current vs Bit Data Rate

PACKAGING INFORMATION

The Leadless Leadframe Package (WQFN) is a leadframe based chip scale package (CSP) that may enhance chip speed, reduce thermal impedance, and reduce the printed circuit board area required for mounting. The small size and very low profile make this package ideal for high density PCBs used in small-scale electronic applications such as cellular phones, pagers, and handheld PDAs. The WQFN package is offered in the no Pullback configuration. In the no Pullback configuration the standard solder pads extend and terminate at the edge of the package. This feature offers a visible solder fillet after board mounting.

The WQFN has the following advantages:

- · Low thermal resistance
- Reduced electrical parasitics
- Improved board space efficiency
- · Reduced package height
- Reduced package mass

For more details about WQFN packaging technology, refer to applications note AN-1187, "Leadless Leadframe Package".

www.ti.com

REVISION HISTORY

CI	hanges from Revision K (April 2013) to Revision L	Page
•	Changed layout of National Data Sheet to TI format	8

Product Folder Links: DS90LV804

PACKAGE OPTION ADDENDUM

8-Oct-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
DS90LV804TSQ	NRND	WQFN	RTV	32	1000	TBD	Call TI	Call TI	-40 to 85	804TSQ	
DS90LV804TSQ/NOPB	ACTIVE	WQFN	RTV	32	1000	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	804TSQ	Samples
DS90LV804TSQX/NOPB	ACTIVE	WQFN	RTV	32	4500	Green (RoHS & no Sb/Br)	CU SN	Level-3-260C-168 HR	-40 to 85	804TSQ	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

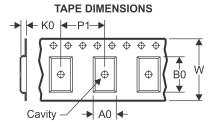
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

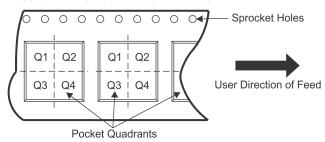
8-Oct-2015

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

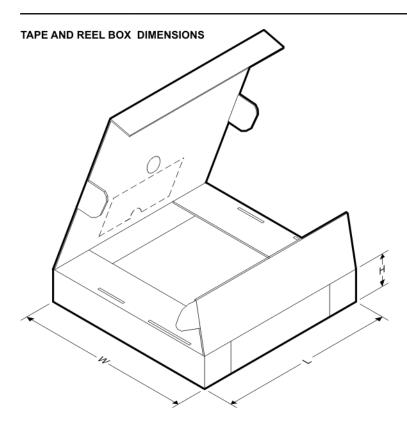
PACKAGE MATERIALS INFORMATION

www.ti.com 24-May-2017


TAPE AND REEL INFORMATION

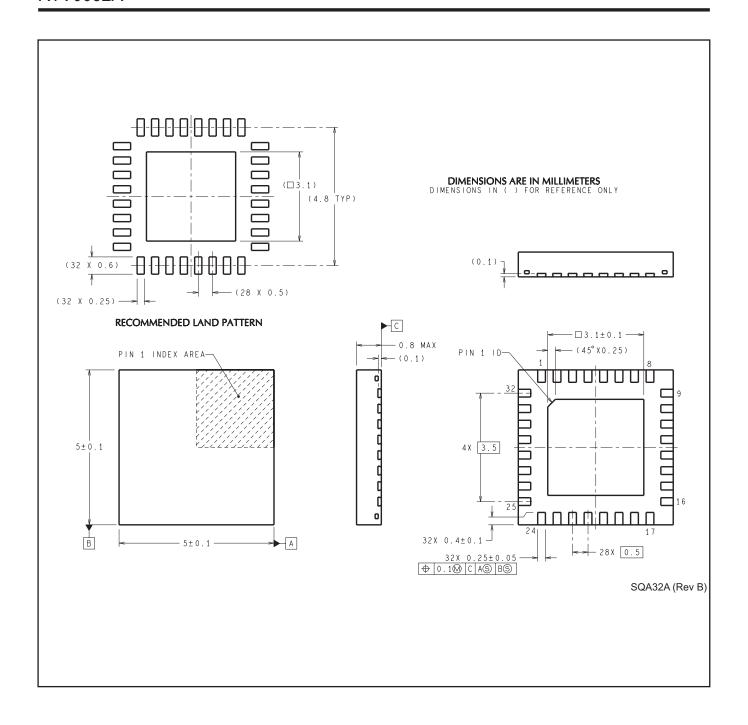
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DS90LV804TSQ	WQFN	RTV	32	1000	178.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1
DS90LV804TSQ/NOPB	WQFN	RTV	32	1000	178.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1
DS90LV804TSQX/NOPB	WQFN	RTV	32	4500	330.0	12.4	5.3	5.3	1.3	8.0	12.0	Q1


PACKAGE MATERIALS INFORMATION

www.ti.com 24-May-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DS90LV804TSQ	WQFN	RTV	32	1000	210.0	185.0	35.0
DS90LV804TSQ/NOPB	WQFN	RTV	32	1000	210.0	185.0	35.0
DS90LV804TSQX/NOPB	WQFN	RTV	32	4500	367.0	367.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.