EMB1412 MOSFET Gate Driver

1 Features

- Compound CMOS and Bipolar Outputs Reduce Output Current Variation
- 7 A Sink/3 A Source Current
- Fast Propagation Times (25 ns Typical)
- Fast Rise and Fall Times ($14 \mathrm{~ns} / 12 \mathrm{~ns}$ Rise/Fall with 2 nF Load)
- Inverting and Non-Inverting Inputs Provide Either Configuration with a Single Device
- Supply Rail Under-Voltage Lockout Protection
- Dedicated Input Ground (IN_REF) for Split Supply or Single Supply Operation
- Thermally Enhanced 8-Pin VSSOP Package
- Output Swings from V_{CC} to V_{EE} Which can be Negative Relative to Input Ground

2 Applications

- Li-lon Battery Management Systems
- Hybrid and Electric Vehicles
- Grid Storage
- 48 V Systems Supply
- UPS

3 Description

The EMB1412 MOSFET gate driver provides high peak gate drive current in 8 -lead exposed-pad VSSOP package, with improved power dissipation required for high frequency operation. The compound output driver stage includes MOS and bipolar transistors operating in parallel that together sink more than 7-A peak from capacitive loads. Combining the unique characteristics of MOS and bipolar devices reduces drive current variation with voltage and temperature. Under-voltage lockout protection is provided to prevent damage to the MOSFET due to insufficient gate turn-on voltage. The EMB1412 provides both inverting and non-inverting inputs to satisfy requirements for inverting and non-inverting gate drive with a single device type.

Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE	BODY SIZE (NOM)
EMB1412	HVSSOP (8)	$3.00 \mathrm{~mm} \times 3.00 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History. 2
5 Pin Configuration and Functions 3
6 Specifications 4
6.1 Absolute Maximum Ratings 4
6.2 Handling Ratings 4
6.3 Recommended Operating Conditions 4
6.4 Thermal Information 4
6.5 Electrical Characteristics. 4
7 Detailed Description 7
7.1 Overview 7
8 Layout 8
8.1 Layout Guidelines 8
8.2 Thermal Performance 8
9 Device and Documentation Support 9
9.1 Trademarks 9
9.2 Electrostatic Discharge Caution 9
9.3 Glossary 9
10 Mechanical, Packaging, and Orderable Information 9
4 Revision History
Changes from Revision A (May 2013) to Revision B Page

- Added Handling Ratings Table 4
- Changed layout of National Data Sheet to TI format. 8

5 Pin Configuration and Functions

Pin Functions

PIN	NAME	DESCRIPTION	APPLICATION INFORMATION
1	IN_REF	Ground reference for control inputs	Connect to power ground (VEE) for standard positive only output voltage swing. Connect to system logic ground when VEE is connected to a negative gate drive supply.
2	INB	Inverting input pin	TTL compatible thresholds. Connect to IN_REF when not used.
3	VEE	Power ground for driver outputs	Connect to either power ground or a negative gate drive supply for positive or negative voltage swing.
4	IN	Non-inverting input pin	TTL compatible thresholds. Pull up to VCC when not used.
5,8	N/C	Not internally connected	Locally decouple to VEE. The decoupling capacitor should be located close to the chip.
6	VCC	Positive Supply voltage input	Capable of sourcing 3 A and sinking 7 A. Voltage swing of this output is from VEE to VCC.
7	OUT	Gate drive output	Internally bonded to the die substrate. Connect to VEE ground pin for low thermal impedance.
--	Exposed Pad	Exposed Pad, underside of package	

6 Specifications

6.1 Absolute Maximum Ratings ${ }^{(1)}$

	MIN	MAX	UNIT
$\mathrm{V}_{\text {CC }}$ to $\mathrm{V}_{\text {EE }}$	-0.3	15	V
$\mathrm{V}_{\text {CC }}$ to IN_REF	-0.3	15	V
IN/INB to IN_REF	-0.3	15	V
IN_REF to $\mathrm{V}_{\text {EE }}$	-0.3	5	V
Maximum junction temperature		150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Handling Ratings

		MIN	MAX	UNIT
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-55	150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{(\text {(ESD })}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins $^{(1)}$	kV	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM
Operating Junction Temperature	-40	MAX
UNIT		

6.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		EMB1412	UNIT
		VSSOP (DGN)	
		8 PINS	
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	$60^{(2)}$	
$\mathrm{R}_{\text {өJCbot }}$	Junction-to-case (bottom) thermal resistance	4.7	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The primary goal of the thermal management is to maintain the integrated circuit (IC) junction temperature (T_{J}) below a specified limit to ensure reliable long term operation. The maximum T_{J} of IC components should be estimated in worst case operating conditions. The junction temperature can be calculated based on the power dissipated on the IC and the junction to ambient thermal resistance $R_{\theta J A}$ for the IC package in the application board and environment. The $R_{\theta J A}$ is not a given constant for the package and depends on the PCB design and the operating environment.

6.5 Electrical Characteristics

$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$, INB $=\mathrm{IN} _$REF $=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$, No Load on output, unless otherwise specified.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY						
$V_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$ Operating Range	$\mathrm{V}_{\mathrm{CC}}-\mathrm{IN}$ _REF and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	3.5		14	V
UVLO	V_{CC} Under-voltage Lockout (rising)	V_{CC} - IN_REF	2.4	3.0	3.5	V
$\mathrm{V}_{\mathrm{CCH}}$	$\mathrm{V}_{\text {CC }}$ Under-voltage Hysteresis			230		mV
I_{CC}	$\mathrm{V}_{\text {CC }}$ Supply Current			1.0	2.0	mA
CONTROL INPUTS						
V_{IH}	Logic High		2.3			V
$\mathrm{V}_{\text {IL }}$	Logic Low				0.8	V
$\mathrm{V}_{\text {th }}$	High Threshold		1.3	1.75	2.3	V
$V_{\text {thL }}$	Low Threshold		0.8	1.35	2.0	V
HYS	Input Hysteresis			400		mV

EMB1412
www.ti.com

Electrical Characteristics (continued)

$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{INB}=\mathrm{IN} _$REF $=\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$, No Load on output, unless otherwise specified.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{I}_{\text {IL }}$	Input Current Low	$\mathrm{IN}=\mathrm{INB}=0 \mathrm{~V}$	-1	0.1	1	$\mu \mathrm{A}$
IIH	Input Current High	$\mathrm{IN}=\mathrm{INB}=\mathrm{V}_{\mathrm{CC}}$	-1	0.1	1	$\mu \mathrm{A}$
OUTPUT DRIVER						
R_{OH}	Output Resistance High	$\mathrm{I}_{\text {OUT }}=-10 \mathrm{~mA}^{(1)}$		30	50	Ω
R_{OL}	Output Resistance Low	IOUT $=10 \mathrm{~mA}^{(1)}$		1.4	2.5	Ω
$\mathrm{I}_{\text {SOURCE }}$	Peak Source Current	OUT $=\mathrm{V}_{\mathrm{CC}} / 2,200 \mathrm{~ns} \mathrm{pulsed} \mathrm{current}$		3		A
$\mathrm{I}_{\text {SINK }}$	Peak Sink Current	OUT $=\mathrm{V}_{\mathrm{CC}} / 2,200 \mathrm{~ns}$ pulsed current		7		A
SWITCHING CHARACTERISTICS						
td1	Propagation Delay Time Low to High, IN/ INB rising (IN to OUT)	$\mathrm{C}_{\text {LOAD }}=2 \mathrm{nF}$		25	40	ns
td2	Propagation Delay Time High to Low, IN / INB falling (IN to OUT)	$\mathrm{C}_{\text {LOAD }}=2 \mathrm{nF}$		25	40	ns
tr	Rise time	$\mathrm{C}_{\text {LOAD }}=2 \mathrm{nF}$		14		ns
tf	Fall time	$\mathrm{C}_{\text {LOAD }}=2 \mathrm{nF}$		12		ns
LATCHUP PROTECTION						
	AEC-Q100, METHOD 004	$\mathrm{T}_{J}=150^{\circ} \mathrm{C}$		500		mA
THERMAL RESISTANCE						
$\mathrm{R}_{\text {өJA }}$	Junction to Ambient, 0 LFPM Air Flow	VSSOP Package		60		${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC }}$	Junction to Case	VSSOP Package		4.7		${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) The output resistance specification applies to the MOS device only. The total output current capability is the sum of the MOS and Bipolar devices.

Figure 1. (A) Inverting

Figure 2. (B) Non-Inverting

7 Detailed Description

7.1 Overview

The EMB1412 is a high speed, high peak current (7 A) single channel MOSFET driver. The high peak output current of the EMB1412 will switch power MOSFETs on and off with short rise and fall times, thereby reducing switching losses considerably. The EMB1412 includes both inverting and non-inverting inputs that give the user flexibility to drive the MOSFET with either active low or active high logic signals. The driver output stage consists of a compound structure with MOS and bipolar transistor operating in parallel to optimize current capability over a wide output voltage and operating temperature range. The bipolar device provides high peak current at the critical Miller plateau region of the MOSFET V_{GS}, while the MOS device provides rail-to-rail output swing. The totem pole output drives the MOSFET gate between the gate drive supply voltage V_{CC} and the power ground potential at the VEE pin.
The control inputs of the driver are high impedance CMOS buffers with TTL compatible threshold voltages. The negative supply of the input buffer is connected to the input ground pin IN_REF. An internal level shifting circuit connects the logic input buffers to the totem pole output drivers. The level shift circuit and separate input/output ground pins provide the option of single supply or split supply configurations. When driving the MOSFET gates from a single positive supply, the IN_REF and V_{EE} pins are both connected to the power ground.
The isolated input and output stage grounds provide the capability to drive the MOSFET to a negative V_{GS} voltage for a more robust and reliable off state. In split supply configuration, the IN_REF pin is connected to the ground of the controller which drives the EMB1412 inputs. The VEE pin is connected to a negative bias supply that can range from the IN_REF potential to as low as 14 V below the V_{CC} gate drive supply. For reliable operation, the maximum voltage difference between V_{CC} and IN_REF or between V_{CC} and V_{EE} is 14 V .
The minimum recommended operating voltage between V_{CC} and IN_REF is 3.5 V. An Under-Voltage Lock Out (UVLO) circuit is included in the EMB1412 which senses the voltage difference between V_{CC} and the input ground pin, IN_REF. When the V_{CC} to IN_REF voltage difference falls below 2.8 V the driver is disabled and the output pin is held in the low state. The driver will resume normal operation when the V_{CC} to IN_REF differential voltage exceeds 3 V .

8 Layout

8.1 Layout Guidelines

Attention must be given to board layout when using EMB1412. Some important considerations include:

1. A Low ESR/ESL capacitor must be connected close to the IC and between the VCC and VEE pins to support high peak currents being drawn from V_{CC} during turn-on of the MOSFET.
2. Proper grounding is crucial. The driver needs a very low impedance path for current return to ground avoiding inductive loops. Two paths for returning current to ground are a) between EMB1412 IN_REF pin and the ground of the circuit that controls the driver inputs and b) between EMB1412 VEE pin and the source of the power MOSFET being driven. Both paths should be as short as possible to reduce inductance and be as wide as possible to reduce resistance. These ground paths should be distinctly separate to avoid coupling between the high current output paths and the logic signals that drive the EMB1412. With rise and fall times in the range of 10 to 30 nsec , care is required to minimize the lengths of current carrying conductors to reduce their inductance and EMI from the high di/dt transients generated when driving large capacitive loads.
3. If either channel is not being used, the respective input pin (IN or INB) should be connected to either V_{EE} or $V_{C C}$ to avoid spurious output signals.

8.2 Thermal Performance

The primary goal of the thermal management is to maintain the integrated circuit (IC) junction temperature (T_{J}) below a specified limit to ensure reliable long term operation. The maximum T_{J} of IC components should be estimated in worst case operating conditions. The junction temperature can be calculated based on the power dissipated on the IC and the junction to ambient thermal resistance $\mathrm{R}_{\theta \mathrm{\theta A}}$ for the IC package in the application board and environment. The $\mathrm{R}_{\theta \mathrm{\theta J}}$ is not a given constant for the package and depends on the PCB design and the operating environment.

9 Device and Documentation Support

9.1 Trademarks

All trademarks are the property of their respective owners.

9.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.

9.3 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
EMB1412MY/NOPB	ACTIVE	MSOP- PowerPAD	DGN	8	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	-40 to 125	SA3B	Samples
EMB1412MYE/NOPB	ACTIVE	MSOP- PowerPAD	DGN	8	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-260C-UNLIM	-40 to 125	SA3B	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

[^0]
TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
EMB1412MY/NOPB	MSOP- Power PAD	DGN	8	1000	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
EMB1412MYE/NOPB	MSOP- Power PAD	DGN	8	250	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
EMB1412MY/NOPB	MSOP-PowerPAD	DGN	8	1000	210.0	185.0	35.0
EMB1412MYE/NOPB	MSOP-PowerPAD	DGN	8	250	210.0	185.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
OMAP Applications Processors
Wireless Connectivity

Applications

Automotive and Transportation
Communications and Telecom
Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial
Medical
Security
Space, Avionics and Defense
Video and Imaging

TI E2E Community
www.ti.com/automotive
www.ti.com/communications
www.ti.com/computers
www.ti.com/consumer-apps
www.ti.com/energy
www.ti.com/industrial
www.ti.com/medical
www.ti.com/security
www.ti.com/space-avionics-defense
www.ti.com/video
e2e.ti.com
www.ti.com/wirelessconnectivity

[^0]: In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

