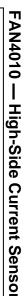


Is Now Part of


ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

December 2014

FAN4010 High-Side Current Sensor

Features at +5 V

FAIRCHILD

- Low Cost, Accurate, High-Side Current Sensing
- Output Voltage Scaling
- Up to 2.5 V Sense Voltage
- 2 V to 6 V Supply Range
- 2 µA Typical Offset Current
- 3.5 µA Quiescent Current
- -0.2% Accuracy
- 6-Lead MicroPak[™] MLP Package

Applications Battery Chargers

- Battery Chargers
- Smart Battery Packs
- DC Motor Control
- Over-Current Monitor
- Power Management
- Programmable Current Source

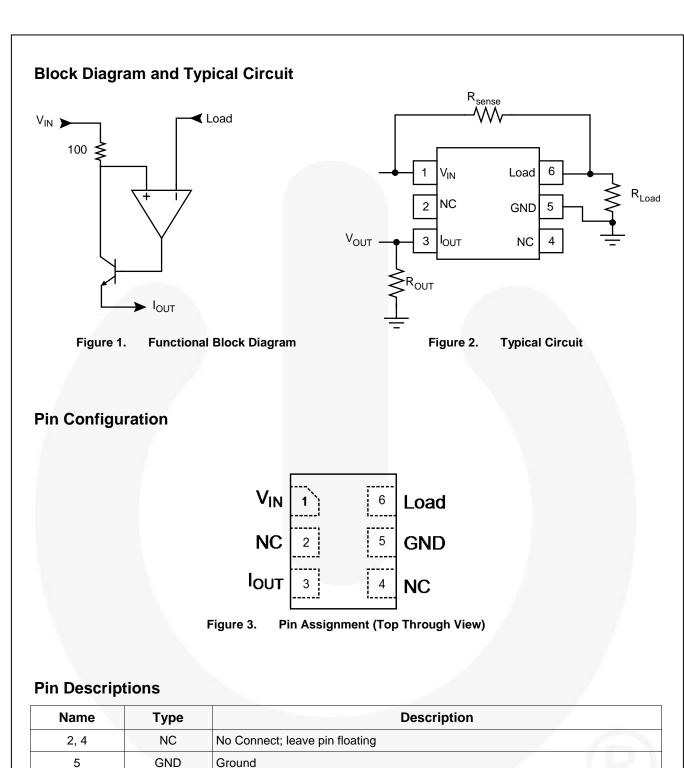
Description

The FAN4010 is a high-side current sense amplifier designed for battery-powered systems. Using the FAN4010 for high-side power-line monitoring does not interfere with the battery charger's ground path. The FAN4010 is designed for portable PCs, cellular phones, and other portable systems where battery / DC power-line monitoring is critical.

To provide a high level of flexibility, the FAN4010 functions with an external sense resistor to set the range of load current to be monitored. It has a current output that can be converted to a ground-referred voltage with a single resistor, accommodating a wide range of battery voltages and currents. The FAN4010 features allow it to be used for gas gauging as well as uni-directional or bi-directional current monitoring.

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FAN4010IL6X	-40°C to +85°C	PX	6-Lead, Molded Leadless Package (MLP)	Tape &
FAN4010IL6X_F113 ⁽¹⁾ -40 C to +85 C		FA	o-Leau, Molueu Leauless Package (MLP)	Reel
Notes:				


Notes:

1. Legacy product number; please order FAN4010IL6X for new designs.

- 2. All packages are lead free per JEDEC: J-STD-020B standard.
- 3. Moisture sensitivity level for all parts is MSL-1.

MicroPak[™] is a trademark of Fairchild Semiconductor Corporation.

lout

 V_{IN}

Load

3

1

6

Output Current, proportional to VIN-VLOAD

Input Voltage, Supply Voltage

Connection to load or battery

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Тур.	Max.	Unit
Vs	Supply Voltage		0		6.3	V
V _{IN}	Input Voltage Range		0		6.3	V
TJ	Junction Temperature				+150	°C
T _{STG}	Storage Temperature Range		-65		+150	°C
TL	Reflow Temperature, Soldering				+260	°C
Θ_{JA}	Package Thermal Resistance ⁽⁴⁾			456		°C/W
	Electrostatic Discharge Protection	Human Body Model, JESD22-A114			5000	- V
		Charged Device Model, JESD22-C101			1000	

Note:

4. Package thermal resistance (Θ_{JA}), JEDEC standard, multi-layer test boards, still air.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

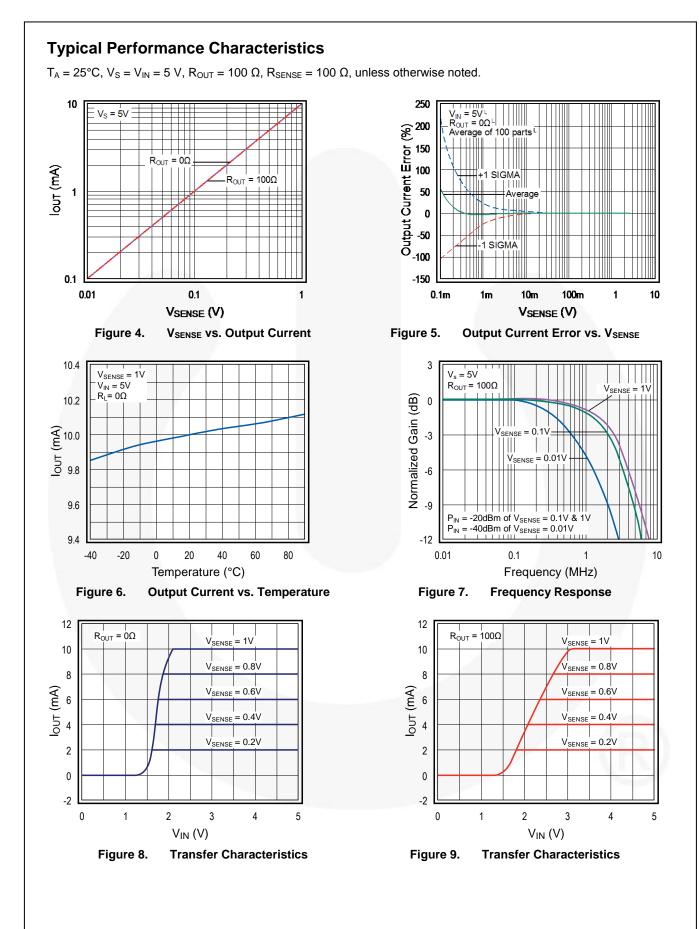
Symbol	Parameter	Min.	Max.	Unit
T _A	Operating Temperature Range	-40	+85	°C
Vs	Supply Voltage Range	2	6	V
V _{IN}	Input Voltage	2	6	V
V _{SENSE}	Sensor Voltage Range, $V_{SENSE}=V_{IN}-V_{LOAD}$, $R_{OUT}=0 \Omega$		2.5	V

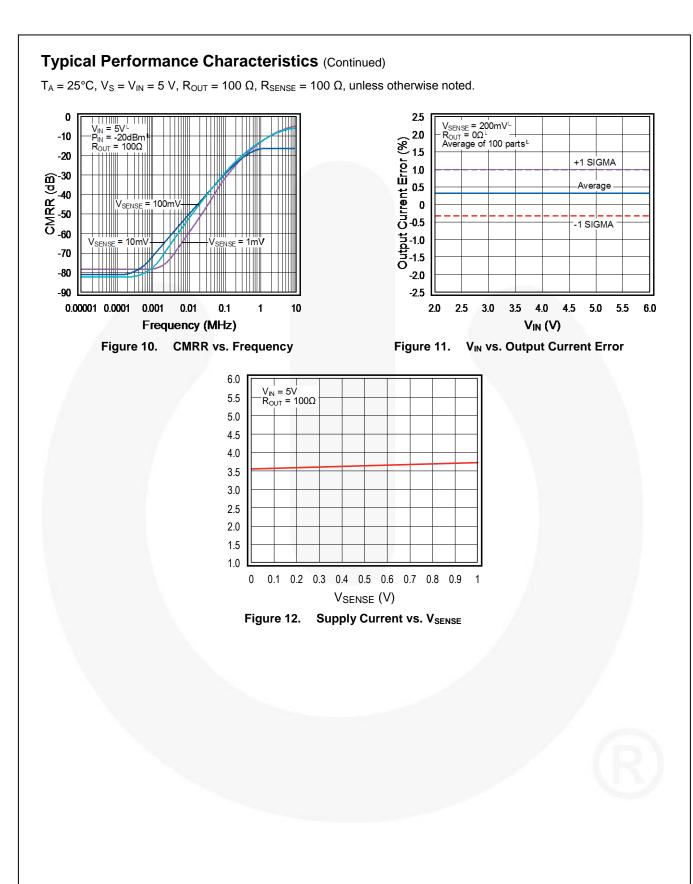
Electrical Characteristics at +5 V

T_{A} = 25°C, V_{S} = V_{IN} = 5 V, R_{OUT} = 100 $\Omega,$ R_{SENSE} = 100 $\Omega,$ unless otherwise noted.	
---	--

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Frequenc	y Domain Response					
B _{WSS}	Small Signal Bandwidth	P _{IN} =-40 dBm ⁽⁵⁾ , V _{SENSE} =10 mV		600		kHz
B _{WLS}	Large Signal Bandwidth	P _{IN} =-20 dBm ^{(6),} V _{SENSE} =100 mV		2		MHz
V _{IN}	Input Voltage Range	V _{IN} =V _S	2		6	V
	Output Current ^(7,8)	V _{SENSE} =0 mV	0	1	9	μA mA
I _{оит}		V _{SENSE} =10 mV	90	100	110	
		V _{SENSE} =100 mV	0.975	1.000	1.025	
		V _{SENSE} =200 mV	1.95	2.00	2.05	
		V _{SENSE} =1 V	9.7	10.0	10.3	
Is	Supply Current ⁽⁷⁾	V _{SENSE} =0 V, GND Pin Current		3.5	5.0	μA
ISENSE	Load Pin Input Current			2		nA
A _{CY}	Accuracy	R _{SENSE} =100 Ω , R _{SENSE} =200 mV ⁽⁷⁾	-2.5	-0.2	2.5	%
Gm	Transconductance	I _{OUT} /V _{SENSE}		10000		μA/V

Notes:


5.

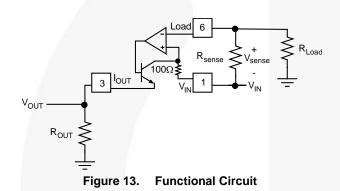

6.

7.

-40 dBm = 6.3 mVpp into 50 Ω . -20 dBm = 63 mVpp into 50 Ω . 100% tested at 25°C. Includes input offset voltage contribution. 8.

FAN4010 — High-Side Current Sensor

Application Information

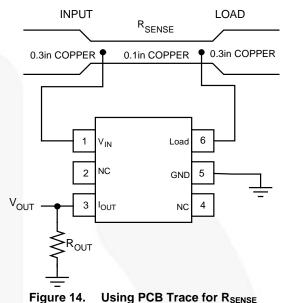

Detailed Description

The FAN4010 measures the voltage drop (V_{SENSE}) across an external sense resistor in the high-voltage side of the circuit. V_{SENSE} is converted to a linear current via an internal operational amplifier and precision 100 Ω resistor. The value of this current is V_{SENSE}/100 Ω (internal). Output current flows from the I_{OUT} pin to an external resistor R_{OUT} to generate an output voltage proportional to the current flowing to the load.

Use the following equations to scale a load current to an output voltage:

 $V_{\text{SENSE}} = I_{\text{LOAD}} \bullet R_{\text{SENSE}} \tag{1}$

$$V_{OUT} = 0.01 \times V_{SENSE} \times R_{OUT}$$
(2)

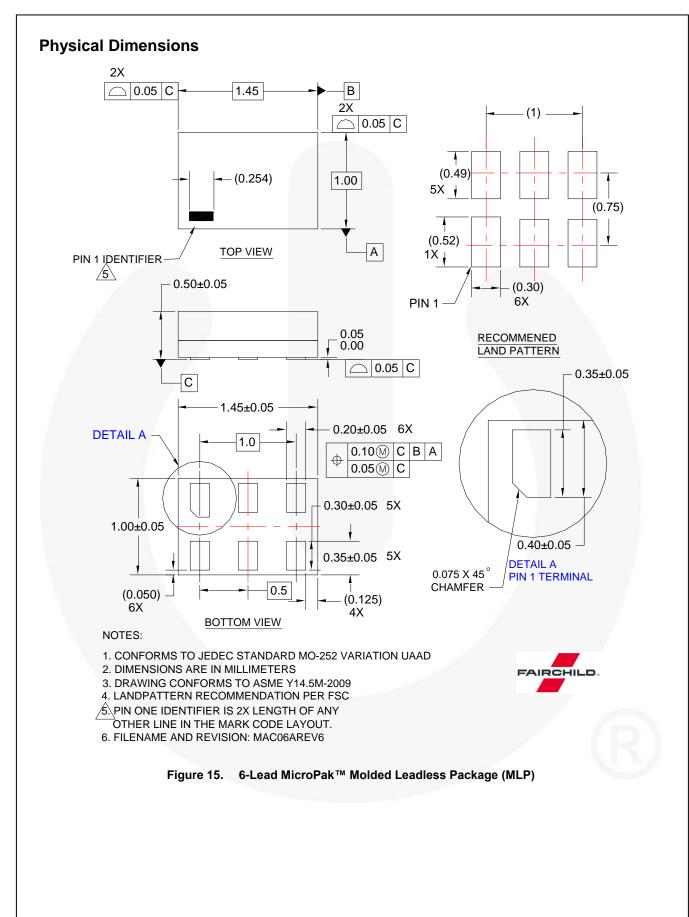

Selecting R_{SENSE}

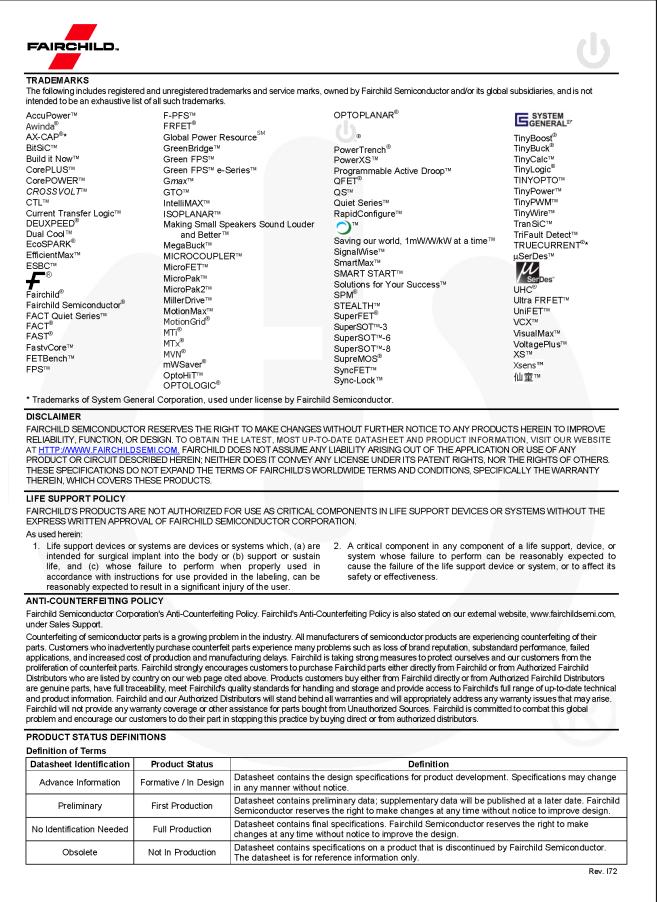
Selection of R_{SENSE} is a balance between desired accuracy and allowable voltage loss. Although the FAN4010 is optimized for high accuracy with low V_{SENSE} values, a larger R_{SENSE} value provides additional accuracy. However, larger values of R_{SENSE} create a larger voltage drop, reducing the effective voltage available to the load. This can be troublesome in low-voltage applications. Because of this, the maximum expected load current and allowable load voltage should be well understood. Although higher values of V_{SENSE} can be used, R_{SENSE} should be chosen to satisfy the following condition:

$$10 \text{mV} < V_{\text{SENSE}} < 200 \text{mV} \tag{3}$$

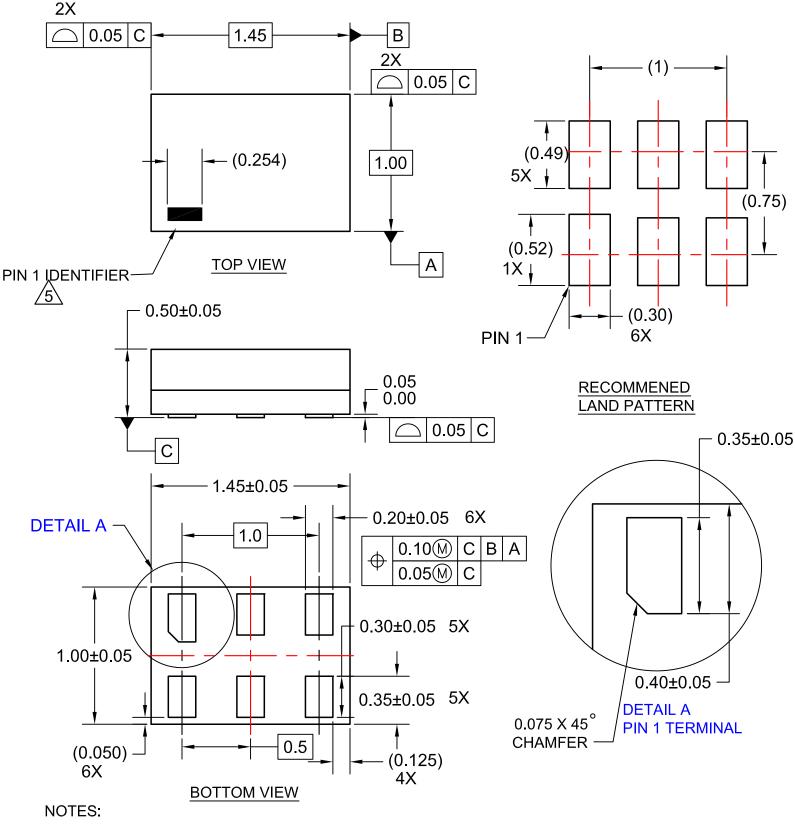
For low-cost applications where accuracy is not as important, a portion of the printed circuit board (PCB) trace can be used as an R_{SENSE} resistor. Figure 14 shows an example of this configuration. The resistivity of a 0.1-inch wide trace of two-ounce copper is about 30 m Ω /ft. Unfortunately, the resistance temperature coefficient is relatively large (approximately 0.4%/°C), so systems with a wide temperature range may need to compensate for this effect. Additionally, self heating due to load currents introduces a nonlinearity error. Care

must be taken not to exceed the maximum power dissipation of the copper trace.


Selecting ROUT


R_{OUT} can be chosen to obtain the output voltage range required for the particular downstream application. For example, if the output of the FAN4010 is intended to drive an analog-to-digital convertor (ADC), R_{OUT} should be chosen such that the expected full-scale output current produces an input voltage that matches the input range of the ADC. For instance, if expected loading current ranges from 0 to 1 A, an R_{SENSE} resistor of 1 Ω produces an output current that ranges from 0 to 10 mA. If the input voltage range of the ADC is 0 to 2 V, an R_{OUT} value of 200 Ω should be used. The input voltage and full-scale output current (I_{OUT_FS}) needs to be taken into account when setting up the output range. To ensure sufficient operating headroom, choose:

Output current accuracy for the recommended V_{SENSE} between 10 mV and 200 mV are typically better than 1%. As a result, the absolute output voltage accuracy is dependent on the precision of the output resistor.


Make sure the input impedance of the circuit connected to V_{OUT} is much higher than R_{OUT} to ensure accurate V_{OUT} values.

Since the FAN4010 provides a trans-impedance function, it is suitable for applications involving current rather than voltage sensing.

9

- 1. CONFORMS TO JEDEC STANDARD MO-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-2009
- 4. LANDPATTERN RECOMMENDATION PER FSC
- 5. PIN ONE IDENTIFIER IS 2X LENGTH OF ANY
- OTHER LINE IN THE MARK CODE LAYOUT.
- 6. FILENAME AND REVISION: MAC06AREV6

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC