

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

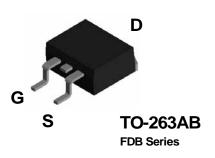
August 2007

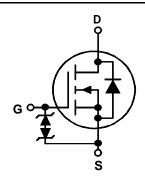
FDB8453LZ

N-Channel PowerTrench[®] MOSFET 40V, 50A, 7.0m Ω

Features

- Max $r_{DS(on)} = 7.0 \text{m}\Omega$ at $V_{GS} = 10 \text{V}$, $I_D = 17.6 \text{A}$
- Max $r_{DS(on)} = 9.0 \text{m}\Omega$ at $V_{GS} = 4.5 \text{V}$, $I_D = 14.9 \text{A}$
- HBM ESD protection level of 7.6kV typical (note 4)
- Fast Switching
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench® process that has been especially tailored to minimize the on-state resistance and switching loss. G-S zener has been added to enhance ESD voltage level.

Applications

- Inverter
- Power Supplies

MOSFET Maximum Ratings $T_C = 25$ °C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V_{DS}	Drain to Source Voltage			40	V
V_{GS}	Gate to Source Voltage			±20	V
	Drain Current -Continuous (Package limited)	T _C = 25°C		50	
	-Continuous (Silicon limited)	T _C = 25°C		74	
'D	-Continuous	T _A = 25°C	(Note 1a)	16.1	Α
	-Pulsed			100	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	253	mJ
Б	Power Dissipation	T _C = 25°C		66	14/
P_{D}	Power Dissipation	T _A = 25°C	(Note 1a)	3.1	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case		1.88	°C/W
$R_{\theta,IA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	40	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB8453LZ	FDB8453LZ	TO-263AB	330mm	24mm	800 units

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter Test Conditions		Min	Тур	Max	Units
Off Chara	acteristics					
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	40			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		36		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 32V, V_{GS} = 0V$			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±10	μΑ

On Characteristics

$V_{GS(th)}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	1.8	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C		-6.0		mV/°C
		$V_{GS} = 10V, I_D = 17.6A$		6.3	7.0	
r _{DS(on)} Static Drain to Source On Resistance	Static Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 14.9A$		7.3	9.0	mΩ
	$V_{GS} = 10V, I_D = 17.6A,$ $T_J = 125$ °C		9.9	11	11122	
9 _{FS}	Forward Transconductance	$V_{DS} = 5V, I_{D} = 17.6A$		84		S

Dynamic Characteristics

C _{iss}	Input Capacitance	$V_{DS} = 20V, V_{GS} = 0V,$ $f = 1MHz$	2665	3545	pF
C _{oss}	Output Capacitance		325	430	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112	200	295	pF
R_g	Gate Resistance	f = 1MHz	2.2		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time	.,	$V_{DD} = 20V, I_D = 17.6A,$ $V_{GS} = 10V, R_{GEN} = 6\Omega$		11	20	ns
t _r	Rise Time	$V_{DD} = 20V, I_D = 17$			6	13	ns
t _{d(off)}	Turn-Off Delay Time	v _{GS} = 10v, K _{GEN}			37	60	ns
t _f	Fall Time				5	11	ns
Q_g	Total Gate Charge	V _{GS} = 0V to 10V			47	66	nC
Q_g	Total Gate Charge	$V_{GS} = 0V \text{ to } 5V$	$V_{DD} = 20V,$ $I_{D} = 17.6A$		25	35	nC
Q_{gs}	Gate to Source Charge		1D = 17.0A		7		nC
Q_{gd}	Gate to Drain "Miller" Charge				9		nC

Drain-Source Diode Characteristics

1Vob Source to Drain Diode Forward Voltage F	Source to Drain Diode Forward Voltage	$V_{GS} = 0V, I_S = 2.6A$ (Note 2)	0.7	7 1.2	V
	$V_{GS} = 0V, I_{S} = 17.6A$ (Note 2)	0.0	3 1.3	•	
t _{rr}	Reverse Recovery Time	I _E = 17.6A, di/dt = 100A/μs	24	. 38	ns
Q _{rr}	Reverse Recovery Charge	$I_{\rm F} = 17.6$ A, $I_{\rm F} = 100$ A/ $I_{\rm F} = 17.6$ A, $I_{\rm F} = 100$ A/ $I_{\rm F} = 17.6$ A, $I_{\rm F} = 17.6$	15	27	nC

R_{0,IC} is guaranteed by design while R_{0,IA} is determined by the user's board design.

a. 40°C/W when mounted on a 1 in² pad of 2 oz copper

b. 62.5°C/W when mounted on a minimum pad.

Pulse Test: Pulse Width < 300µs, Duty cycle < 2.0%.
 Starting T_J = 25°C, L = 3mH, I_{AS} = 13A, V_{DD} = 40V, V_{GS} = 10V.
 The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

Typical Characteristics T_J = 25°C unless otherwise noted

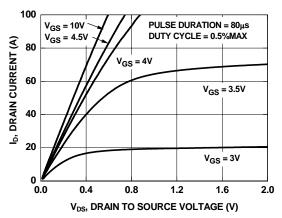


Figure 1. On-Region Characteristics

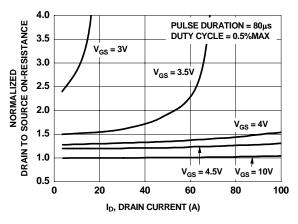


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

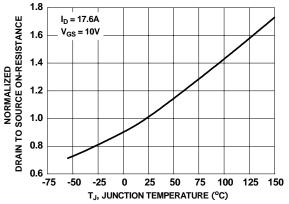


Figure 3. Normalized On-Resistance vs Junction Temperature

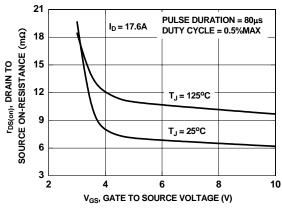


Figure 4. On-Resistance vs Gate to Source Voltage

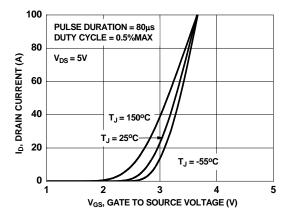


Figure 5. Transfer Characteristics

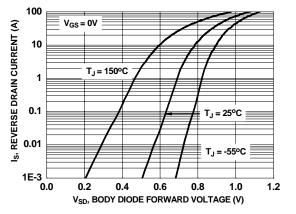


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics T_J = 25°C unless otherwise noted

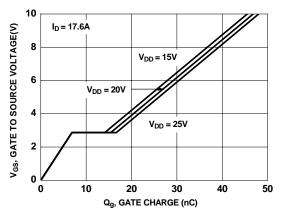


Figure 7. Gate Charge Characteristics

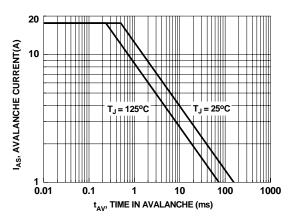


Figure 9. Unclamped Inductive Switching Capability

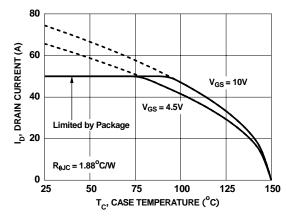


Figure 11. Maximum Continuous Drain Current vs Ambient Temperature

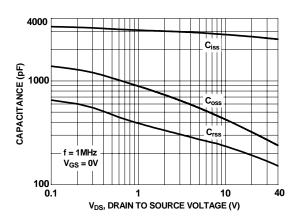


Figure 8. Capacitance vs Drain to Source Voltage

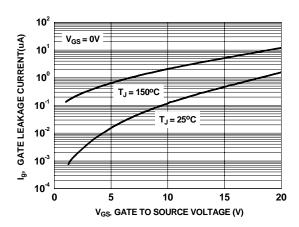


Figure 10. Gate Leakage Current vs Gate to Source Voltage

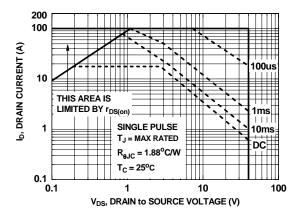


Figure 12. Forward Bias Safe Operating Area

Typical Characteristics T_J = 25°C unless otherwise noted

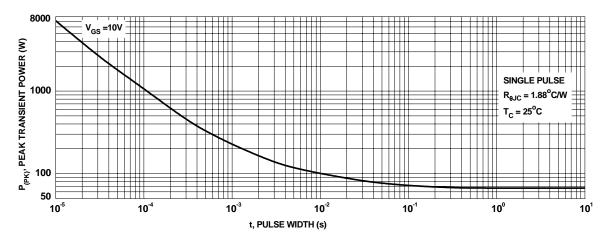


Figure 13. Single Pulse Maximum Power Dissipation

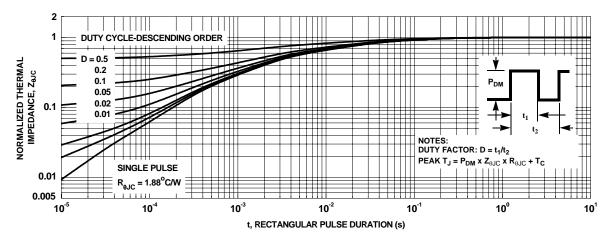


Figure 14. Transient Thermal Response Curve

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx®
Build it Now™
CorePLUS™
CROSSVOLT™
CTL™
Current Transfer Logic™
EcoSPARK®
Fairchild®

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series[™]
FACT[®]
FAST[®]
FastvCore[™]
FPS[™]
FRFET[®]
Global Power ResourceSM

Green FPSTM
Green FPSTM e-SeriesTM
GTOTM *i-Lo*TM
IntelliMAXTM
ISOPLANARTM
MegaBuckTM
MICROCOUPLERTM
MicroFETTM

MICROCOUPLES
MicroFETTM
MicroPakTM
Motion-SPMTM
OPTOLOGIC®
OPTOPLANAR®

B
PDP-SPMTM

PDP-SPM™ Power220® Power247[®]
POWEREDGE[®]
Power-SPMTM
PowerTrench[®]

QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
SMART START™

Programmable Active Droop™

SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6

SuperSOTTM-8 SvncFETTM

The Power Franchise®

TinyBoostTM
TinyBoostTM
TinyLogic[®]
TINYOPTOTM
TinyPowerTM
TinyPWMTM
TinyWireTM
µSerDesTM
UHC[®]
UniFETTM
VCXTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative or In Design		This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I30

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative