

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
FAIRCHILD

FDSS2407

N－Channel Dual MOSFET

62V，3．3A，132m Ω

Features

－ $62 \mathrm{~V}, 132 \mathrm{~m} \Omega$ ， 5 V Logic Level Gate Dual MOSFET in SO－8
－5V Logic Level feedback signal of the drain to source voltage．Multiple devices can be wired＂OR＇d＂to a single monitoring circuit input．
－Gate Drive Disable Input．Multiple devices controllable by a single disable transistor．

■ Qualified to AEC Q101

Applications

－Automotive Injector Driver
－Solenoid Driver

General Description

This dual N－Channel MOSFET provides added functions as compared to a conventional Power MOSFET．These are： 1. A drain to source voltage feedback signal and 2．A gate drive disable control function that previously required external discrete circuitry．Including these functions within the MOSFET saves printed circuit board space．The drain to source voltage feedback function provides a 5 V level output whenever the drain to source voltage is above 62 V ．This can monitor the time an inductive load takes to dissipate its stored energy．Multiple feedback signals can be wired ＂OR＇d＂together to a single input of the monitoring circuit． The gate disable function allows the device to be turned off independent of the drive signal on the gate．This function permits a second control circuit the ability to deactivate the load if necessary．It can also be wired＂OR＇d＂allowing multiple devices to be controlled by a single open collector／ drain control transistor．

MOSFET Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
$\mathrm{V}_{\text {DSS }}$	Drain to Source Voltage	62	V
v_{GS}	Gate to Source Voltage	± 20	V
I_{D}	Drain Current Continuous ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\theta \mathrm{JA}}=55^{\circ} \mathrm{C} / \mathrm{W}\right)$	3.3	A
	Continuous ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{R}_{\theta \mathrm{JA}}=55^{\circ} \mathrm{C} / \mathrm{W}\right)$	3.0	A
	Pulsed	Figure 4	A
$\mathrm{E}_{\text {AS }}$	Single Pulse Avalanche Energy (Note 1)	140	mJ
P_{D}	Power dissipation	2.27	W
	Derate above $25^{\circ} \mathrm{C}$	18	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	Operating and Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

$\mathrm{R}_{\theta \mathrm{JA}}$	Pad Area $=0.50 \mathrm{in}^{2}\left(323 \mathrm{~mm}^{2}\right)($ Note 2)	55	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JA}}$	Pad Area $=0.027 \mathrm{in}^{2}\left(17.4 \mathrm{~mm}^{2}\right)($ Note 3)	180	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta \mathrm{JA}}$	Pad Area $=0.006 \mathrm{in}^{2}\left(3.87 \mathrm{~mm}^{2}\right)($ Note 4)	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
2407	FDSS2407	SO-8	330 mm	12 mm	2500

Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units

Off Characteristics

B ${ }_{\text {VDSs }}$	Drain to Source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	62	-	-	V
		$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1	
$\mathrm{I}_{\text {DSS }}$	Zero Gate Voltage Drain Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \end{aligned}$	-	-	250	$\mu \mathrm{A}$
IGSS	Gate to Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$	-	-	± 100	nA

On Characteristics

$\mathrm{V}_{\mathrm{GS} \text { (TH) }}$	Gate to Source Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	1	-	3	V
${ }^{\text {r DS(ON) }}$	Drain to Source On Resistance	$\mathrm{I}_{\mathrm{D}}=3.3 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	-	0.099	0.110	Ω
		$\mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}$	-	0.115	0.132	

Dynamic Characteristics

$\mathrm{C}_{\text {ISS }}$	Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=75 \mathrm{kHz} \end{aligned}$		-	300		pF
$\mathrm{C}_{\text {OSS }}$	Output Capacitance			-	140	-	pF
$\mathrm{C}_{\text {RSS }}$	Reverse Transfer Capacitance				16	-	pF
R_{G}	Gate Resistance				8500	-	Ω
$\mathrm{Q}_{\mathrm{g}(\text { TOT) }}$	Total Gate Charge at 5V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$ to 5 V			3.3	4.3	nC
$\mathrm{Q}_{\mathrm{g}(\mathrm{TH})}$	Threshold Gate Charge	$\begin{aligned} & J V_{D D}=30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{D}}=3.3 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{g}}=1.0 \mathrm{~mA} \end{aligned}$		-	0.4	0.5	nC
Q_{gs}	Gate to Source Gate Charge				1.2	-	nC
$\mathrm{Q}_{\mathrm{gs} 2}$	Gate Charge Threshold to Plateau			-	0.8	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	2.0	-	nC

Switching Characteristics ($\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$)

t_{ON}	Turn-On Time	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.3 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{GS}}=47 \Omega \end{aligned}$	-	-	2700	ns
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-On Delay Time		-	630	-	ns
t_{r}	Rise Time		-	1200	-	ns
$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	Turn-Off Delay Time		-	8700	-	ns
t_{f}	Fall Time		-	3500	-	ns
tofF	Turn-Off Time		-	-	18500	ns

Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	$\mathrm{I}_{\mathrm{SD}}=3.3 \mathrm{~A}$	-	-	1.25	V
		$\mathrm{I}_{\mathrm{SD}}=1.7 \mathrm{~A}$	-	-	1.0	V
t_{rr}	Reverse Recovery Time	$\mathrm{I}_{\mathrm{SD}}=3.3 \mathrm{~A}, \mathrm{dl} / \mathrm{dD}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	45	ns
Q_{RR}	Reverse Recovered Charge	$\mathrm{I}_{\mathrm{SD}}=3.3 \mathrm{~A}, \mathrm{dISD} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	-	60	nC

Drain Feedback Characteristics

$\mathrm{V}_{\mathrm{FBK}(\text { Low })}$	Feedback to Source Voltage	$\mathrm{V}_{\mathrm{DS}}=35 \mathrm{~V}, \mathrm{R}_{\mathrm{FBK} \text {-SOURCE }}=51 \mathrm{~K} \Omega$	-	1	1.5	V
$\mathrm{~V}_{\mathrm{FBK}(\text { High })}$	Feedback to Source Voltage	$\mathrm{V}_{\mathrm{DS}}=62 \mathrm{~V}, \mathrm{R}_{\text {FBK-SOURCE }}=51 \mathrm{~K} \Omega$	3.5	4.4	-	V

Gate Drive Disable Characteristics

$\mathrm{V}_{\mathrm{DIS} \text { (High) }}$	Gate Drive Disable Input Voltage, Gate Enabled	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	3	-	-	V
$\mathrm{V}_{\text {DIS(Low) }}$	Gate Drive Disable Input Voltage, Gate Disabled	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}} \leq 250 \mu \mathrm{~A}$, $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	-	-	0.4	V

Notes:

1. Starting $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{L}=42 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=2.6 \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=62 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$
2. $55^{\circ} \mathrm{C} / \mathrm{W}$ measured using FR-4 board with $0.50 \mathrm{in}^{2}\left(323 \mathrm{~mm}^{2}\right)$ copper pad at 1 second
3. $180^{\circ} \mathrm{C} / \mathrm{W}$ measured using FR-4 board with $0.027 \mathrm{in}^{2}\left(17.4 \mathrm{~mm}^{2}\right)$ copper pad at 1000 seconds.
4. $200^{\circ} \mathrm{C} / \mathrm{W}$ measured using FR-4 board with $0.006 \mathrm{in}^{2}\left(3.87 \mathrm{~mm}^{2}\right)$ copper pad at 1000 seconds.

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

Typical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 1．Normalized Power Dissipation vs Ambient Temperature

Figure 2．Maximum Continuous Drain Current vs Ambient Temperature

Figure 3．Normalized Maximum Transient Thermal Impedance

Figure 4．Peak Current Capability

Typical Characteristics（Continued） $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 5．Forward Bias Safe Operating Area

Figure 7．Transfer Characteristics

Figure 9．Drain to Source On Resistance vs Gate Voltage and Drain Current

NOTE：Refer to Fairchild Application Notes AN7514 and AN7515 Figure 6．Unclamped Inductive Switching Capability

Figure 8．Saturation Characteristics

Figure 10．Normalized Drain to Source On Resistance vs Junction Temperature

Typical Characteristics (Continued) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

Figure 13. Feedback Voltage vs Drain to Source Voltage

Figure 15. Drain to Source On Resistance vs Gate Disable Voltage

Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

Figure 14. Capacitance vs Drain to Source Voltage

Figure 16. Gate to Source Voltage vs Gate Disable Voltage

Typical Characteristics（Continued） $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Figure 17．Gate Charge Waveforms for Constant Gate Currents
Test Circuits and Waveforms

Figure 18．Unclamped Energy Test Circuit

Figure 20．Gate Charge Test Circuit

Figure 19．Unclamped Energy Waveforms

Figure 21．Gate Charge Waveforms

Figure 22. Switching Time Test Circuit

Figure 23. Switching Time Waveforms

Figure 24. Gate to Source Voltage vs Gate Disable Voltage

Thermal Resistance vs．Mounting Pad Area

The maximum rated junction temperature， T_{JM} ，and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation， P_{DM} ，in an application．Therefore the application＇s ambient temperature， $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$ ，and thermal resistance $\mathrm{R}_{\theta \mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ must be reviewed to ensure that T_{JM} is never exceeded． Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part．

$$
\begin{equation*}
P_{D M}=\frac{\left(T_{J M}-T_{A}\right)}{R_{\theta J A}} \tag{EQ.1}
\end{equation*}
$$

In using surface mount devices such as the SO8 package， the environment in which it is applied will have a significant influence on the part＇s current and maximum power dissipation ratings．Precise determination of $P_{D M}$ is complex and influenced by many factors：

1．Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board．
2．The number of copper layers and the thickness of the board．
3．The use of external heat sinks．
4．The use of thermal vias．
5．Air flow and board orientation．
6．For non steady state applications，the pulse width，the duty cycle and the transient thermal response of the part， the board and the environment they are in．
Fairchild provides thermal information to assist the designer＇s preliminary application evaluation．Figure 25 defines the $R_{\theta J A}$ for the device as a function of the top copper（component side）area．This is for a horizontally positioned FR－4 board with $10 z$ copper after 1000 seconds of steady state power with no air flow．This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation．Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized
maximum transient thermal impedance curve．
Thermal resistances corresponding to other copper areas can be obtained from Figure 25 or by calculation using Equation 2．The area，in square inches is the top copper area including the gate and source pads．

$$
\begin{equation*}
R_{\theta J A}=79.9+\frac{15}{0.14+\text { Area }} \tag{EQ.2}
\end{equation*}
$$

The transient thermal impedance $\left(\mathrm{Z}_{\theta \mathrm{JA}}\right)$ is also effected by varied top copper board area．Figure 26 shows the effect of copper pad area on single pulse transient thermal impedance．Each trace represents a copper pad area in square inches corresponding to the descending list in the graph．Spice and SABER thermal models are provided for each of the listed pad areas．

Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100 ms ．For pulse widths less than 100 ms the transient thermal impedance is determined by the die and package． Therefore，CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models．A listing of the model component values is available in Table 1.

Figure 25．Thermal Resistance vs Mounting Pad Area

Figure 26．Thermal Impedance vs Mounting Pad Area

PSPICE Electrical Model

．SUBCKT FDSS2407 213101102 ；rev July 2004
Ca 128 1e－10
Cb $15144 \mathrm{e}-10$
Cin 68 2．8e－10
Dbody 75 DbodyMOD
Dbreak 511 DbreakMOD
Dplcap 105 DplcapMOD
CGATE 920 5e－9
DDISABLE 20101 DDISABLEMOD
DFBK1 104103 DFBK1MOD
DFBK2 7104 DFBK2MOD
DFBK3 104102 DFBK3MOD
RFBK1 5103 RFBK1MOD 13e3
RFBK2 1047 RFBK2MOD 2.15 e 3
Ebreak 117171867.4
Eds 148581
Egs 138681
Esg 610681
Evthres 6211981
Evtemp 20618221
It 8171
Lgate 19 1．8e－9
Ldrain 25 1．0e－9
Lsource 37 0．6e－9
RLgate 1918
RLdrain 2510
RLsource 376
Mmed 16688 MmedMOD
Mstro 16688 MstroMOD
Mweak 162188 MweakMOD
Rbreak 1718 RbreakMOD 1
Rdrain 5016 RdrainMOD 3．5e－2
Rgate 920 RgateMOD 8．63e3
RSLC1 551 RSLCMOD 1e－6
RSLC2 550 1e3
Rsource 87 RsourceMOD 5．3e－2
Rvthres 228 RvthresMOD 1
Rvtemp 1819 RvtempMOD 1
S1a 612138 S1AMOD
S1b 1312138 S1BMOD
S2a 6151413 S2AMOD
S2b 13151413 S2BMOD
Vbat 2219 DC 1
ESLC 5150 VALUE $=\left\{(\mathrm{V}(5,51) / \operatorname{ABS}(\mathrm{V}(5,51)))^{*}(\operatorname{PWR}(\mathrm{~V}(5,51) /(1 \mathrm{e}-6 * 20), 3.5))\right\}$
．MODEL DbodyMOD D $(\mathrm{IS}=1.1 \mathrm{E}-12 \mathrm{~N}=1.05 \mathrm{IKF}=4 \mathrm{e}-1 \quad \mathrm{RS}=4.2 \mathrm{e}-2$ TRS $1=3 \mathrm{e}-4$ TRS2＝1．3e－6
＋CJO＝3．3e－10 TT＝3e－8 $\mathrm{M}=0.38, \mathrm{XTI}=3.5$ ）
．MODEL DbreakMOD D（RS＝1 TRS1＝1e－3 TRS2＝－9e－6）
．MODEL DplcapMOD D（CJO＝1．97e－10 IS $=1 \mathrm{e}-30 \mathrm{~N}=10 \mathrm{M}=0.84$ ）
．MODEL DDISABLEMOD D（RS＝30 IS＝1e－15 BV＝4．7 TBV1＝－3e－4 TBV2＝－3e－6 XTI＝0）
．MODEL DFBK1MOD D（IS＝1e－15 BV＝23．8 IKF＝2 TBV1＝－6e－4 TBV2＝6e－6）
．MODEL DFBK2MOD D（RS＝1 IS＝1e－30 BV＝5．6 N＝3．3 NBV＝1）
．MODEL DFBK3MOD D（RS＝1 IS＝1e－15 BV＝4．2 NBV＝2．5）
．MODEL MmedMOD NMOS（VTO＝1．7 KP＝1．08 IS＝1e－30 N＝10 TOX＝1 L＝1u W＝1u RG＝8．56e3）
．MODEL MstroMOD NMOS（VTO＝2 KP＝14 IS＝1e－30 N＝10 TOX＝1 L＝1u W＝1u）
．MODEL MweakMOD NMOS（VTO＝1．5 kp＝0．04 IS＝1e－30 N＝10 TOX＝1 L＝1u W＝1u RG＝8．56e4 RS＝0．1）
．MODEL RbreakMOD RES（TC1＝1．05e－3 TC2＝－9e－7）
．MODEL RdrainMOD RES（TC1＝9e－3 TC2＝2．7e－5）
．MODEL RSLCMOD RES（TC1＝2e－3 TC2＝6e－6）
．MODEL RsourceMOD RES（TC1＝3e－3 TC2＝1e－6）
．MODEL RvthresMOD RES（TC1＝－1．1e－3 TC2＝－3．3e－6）
．MODEL RvtempMOD RES（TC1＝－1．6e－3 TC2＝1e－7）
．MODEL RFBK1MOD RES（TC1＝－1．4e－3 TC2＝1e－6）
．MODEL RFBK2MOD RES（TC1＝－1．4e－3 TC2＝1e－6）
．MODEL RgateMOD RES（TC1＝－1．4e－3 TC2＝1e－5）
．MODEL S1AMOD VSWITCH（RON＝1e－5 ROFF＝0．1 VON＝－4．0 VOFF＝－3．0）
．MODEL S1BMOD VSWITCH（RON＝1e－5 ROFF＝0．1 VON＝－3．0 VOFF＝－4．0）
．MODEL S2AMOD VSWITCH（RON＝1e－5 ROFF＝0．1 VON＝－1．0 VOFF＝－0．5）
．MODEL S2BMOD VSWITCH（RON＝1e－5 ROFF＝0．1 VON＝－0．5 VOFF＝－1．0）
．ENDS

[^1]
SABER Electrical Model

REV July 2004
template FDSS2407 n2,n1,n3,n101,n102
electrical n2, n1, n3, n101, n102
\{
var i iscl
dp..model dbodymod $=(i s l=1.1 \mathrm{e}-12, \mathrm{nl}=1.05, \mathrm{ikf}=4 \mathrm{e}-1, \mathrm{rs}=4.2 \mathrm{e}-2, \operatorname{trs} 1=3 \mathrm{e}-4, \mathrm{trs} 2=1.3 \mathrm{e}-6, \mathrm{cjo}=3.3 \mathrm{e}-10, \mathrm{tt}=3 \mathrm{e}-8, \mathrm{~m}=0.38, \mathrm{xti}=3.5)$ dp..model dbreakmod $=(r s=1$, trs $1=1 e-3$, trs2 $=-9 e-6)$
dp..model ddisablemod $=(r s=30$, isl= $1 e-15, b v=4.7, t b v 1=-3 e-4, t b v 2=-3 e-6, x t i=0)$
dp.. model dfbk1mod $=($ isl $=1 \mathrm{e}-15, \mathrm{bv}=23.8, \mathrm{ikf}=2, \mathrm{tbv} 1=-6 \mathrm{e}-4, \mathrm{tbv} 2=6 \mathrm{e}-6)$
dp..model dfbk2mod $=(r s=1$, isl=1e-30,bv=5.6,nl=3.3,nbv=1)
dp..model dfbk3mod $=(r s=1$, isl=1e-15, bv=4.2,nbv=2.5)
dp..model dplcapmod $=(\operatorname{cjo}=1.97 \mathrm{e}-10$, is $l=10 \mathrm{e}-30, \mathrm{nl}=10, \mathrm{~m}=0.84)$
m..model mmedmod $=\left(\right.$ type $=_\mathrm{n}, \mathrm{vto}=1.7, \mathrm{kp}=1.08$, is $=1 \mathrm{e}-30$, tox $\left.=1\right)$
$\mathrm{m} .$. model $\mathrm{mstrongmod}=\left(\right.$ type $=_\mathrm{n}, \mathrm{vto}=2, \mathrm{kp}=14$, is $=1 \mathrm{e}-30$, tox $\left.=1\right)$
m..model mweakmod $=\left(\right.$ type $=_\mathrm{n}, \mathrm{vto}=1.5, \mathrm{kp}=0.04$, is $=1 \mathrm{e}-30$, tox $\left.=1, \mathrm{rs}=0.1\right)$
m.mmed n16 n6 n8 n8 = model=mmedmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
m.mstrong n16 n6 n8 n8 = model=mstrongmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
m.mweak n16 n21 n8 n8 = model=mweakmod, $\mathrm{l}=1 \mathrm{u}, \mathrm{w}=1 \mathrm{u}$
sw_vcsp..model s1amod $=($ ron $=1 \mathrm{e}-5$, roff $=0.1$, von $=-4.0$, voff $=-3.0)$
sw_vcsp..model s1bmod $=($ ron=1e-5,roff=0.1,von=-3.0,voff=-4.0)
sw_vcsp..model s2amod $=($ ron $=1 \mathrm{e}-5$, roff $=0.1$, von $=-1.0$, voff $=-0.5)$
sw_vcsp..model s2bmod $=(r o n=1 e-5, r o f f=0.1$, von $=-0.5$, voff $=-1.0)$
c.ca $\mathrm{n} 12 \mathrm{n} 8=1 \mathrm{e}-10$
c.cb n15 n14 $=4 \mathrm{e}-10$
c. $\operatorname{cin} \mathrm{n} 6 \mathrm{n} 8=2.8 \mathrm{e}-10$
c.cgate n9 n20 $=5 \mathrm{e}-9$
dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod dp.ddisable n20 n101 = model=ddisablemod dp.dfbk1 n104 n103 = model=dfbk1mod dp.dfbk2 n7 n104 = model=dfbk2mod dp.dfbk3 n104 n102 = model=dfbk3mod spe.ebreak n11 n7 n17 n18 $=67.4$ spe.eds n14 n8 n5 n8 = 1 spe.egs $n 13 \mathrm{n} 8 \mathrm{n} 6 \mathrm{n} 8=1$ spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1
i.it n8 n17 = 1
I.Igate $\mathrm{n} 1 \mathrm{n} 9=1.8 \mathrm{e}-9$
I.Idrain n2 n5 = 1.0e-9 I.Isource n3 n7 $=0.6 \mathrm{e}-9$ res.rlgate $\mathrm{n} 1 \mathrm{n} 9=18$ res.rldrain n2 n5 $=10$ res. rlsource $\mathrm{n} 3 \mathrm{n} 7=6$ res.rbreak n17 n18 = 1, tc1=1.05e-3,tc2=-9e-7 res.rdrain n50 n16 $=3.5 \mathrm{e}-2, \mathrm{tc} 1=9 \mathrm{e}-3, \mathrm{tc} 2=2.7 \mathrm{e}-5$ res.rgate $\mathrm{n} 9 \mathrm{n} 20=8.63 \mathrm{e} 3, \mathrm{tc} 1=-1.4 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-5$ res.rfbk1 n5 n103 $=13 \mathrm{e} 3$, tc $1=-1.4 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-6$ res.rfbk2 $\mathrm{n} 104 \mathrm{n} 7=2.15 \mathrm{e} 3, \mathrm{tc} 1=-1.4 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-6$ res.rslc1 n5 n51 = 1e-6,tc1=2e-3,tc2=6e-6 res.rslc2 n5 n50 = 1e3

res.rsource $\mathrm{n} 8 \mathrm{n} 7=5.3 \mathrm{e}-2, \mathrm{tc} 1=3 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-6$
res.rvthres n22 n8 $=1$, tc $1=-1.1 \mathrm{e}-3, \mathrm{tc} 2=-3.3 \mathrm{e}-6$
res.rvtemp n18 n19 $=1$, tc $1=-1.6 \mathrm{e}-3, \mathrm{tc} 2=1 \mathrm{e}-7$
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations \{
i (n51->n50) +=iscl
iscl: $v(n 51, n 50)=\left((v(n 5, n 51) /(1 e-9+a b s(v(n 5, n 51))))^{*}\left(\left(a b s\left(v(n 5, n 51)^{*} 1 e 6 / 20\right)\right)^{\star *} 3.5\right)\right)$
\}
\}

SPICE Thermal Model

REV July 2004
FDSS2407T
Copper Area $=0.5$ in 2
CTHERM1 Junction c2 1.2e-4
CTHERM2 c2 c3 2e-3
CTHERM3 c3 c4 2e-2
CTHERM4 c4 c5 3.0e-2
CTHERM5 c5 c6 4e-2
CTHERM6 c6 c7 7e-2
CTHERM7 c7 c8 2e-1
CTHERM8 c8 Ambient 2.8

RTHERM1 Junction c2 1.4
RTHERM2 c2 c3 2.0
RTHERM3 c3 c4 2.8
RTHERM4 c4 c5 9.0
RTHERM5 c5 c6 18.0
RTHERM6 c6 c7 26.0
RTHERM7 c7 c8 28.0
RTHERM8 c8 Ambient 29.0

SABER Thermal Model

Copper Area $=0.5$ in 2
template thermal_model th tl thermal_c th, tl
\{
ctherm.ctherm1 th $\mathrm{c} 2=1.2 \mathrm{e}-4$
ctherm.ctherm2 c2 c3 $=2 \mathrm{e}-3$
ctherm.ctherm3 c3 c4 $=2 \mathrm{e}-2$
ctherm.ctherm4 c4 c5 $=3.0 \mathrm{e}-2$
ctherm.ctherm 5 c5 c6 $=4 \mathrm{e}-2$
ctherm.ctherm6 c6 c7 $=7 \mathrm{e}-2$
ctherm.ctherm7 c7 c8 $=2 \mathrm{e}-1$
ctherm. ctherm8 c8 tl =2.8
rtherm. rtherm1 th $\mathrm{c} 2=1.4$
rtherm.rtherm2 c2 c3 $=2.0$
rtherm. rtherm3 c3 c4 $=2.8$
rtherm.rtherm4 c4 c5 $=9.0$
rtherm. rtherm5 c5 c6 $=18.0$
rtherm. rth erm6 c6 c7 $=26.0$
rtherm. rtherm7 c7 c8 =28.0
rtherm.rtherm8 $\mathrm{c} 8 \mathrm{tl}=29.0$
\}

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {™ }}$	FACT Quiet Series ${ }^{\text {TM }}$	ImpliedDisconnect ${ }^{\text {TM }}$	POP' ${ }^{\text {² }}$	Stealth ${ }^{\text {TM }}$
ActiveArray ${ }^{\text {TM }}$	$\mathrm{FAST}^{\text {® }}$	IntelliMAX ${ }^{\text {™ }}$	Power247 ${ }^{\text {т }}$	SuperFET ${ }^{\text {TM }}$
Bottomless ${ }^{\text {™ }}$	FASTr ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	PowerEdge ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3
CoolFET ${ }^{\text {TM }}$	FPS ${ }^{\text {TM }}$	LittleFET ${ }^{\text {тM }}$	PowerSaver ${ }^{\text {TM }}$	SuperSOTTM-6
CROSSVOLT ${ }^{\text {m }}$	FRFET ${ }^{\text {TM }}$	MICROCOUPLER ${ }^{\text {TM }}$	PowerTrench ${ }^{\circledR}$	SuperSOTTM-8
DOME ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	MicroFET ${ }^{\text {M }}$	QFET ${ }^{\text {® }}$	SyncFET ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {т }}$	GTO ${ }^{\text {™ }}$	MicroPak ${ }^{\text {TM }}$	QS ${ }^{\text {™ }}$	TinyLogic ${ }^{\text {® }}$
$\mathrm{E}^{2} \mathrm{CMOS}{ }^{\text {™ }}$	$\mathrm{HiSeC}^{\text {² }}$	MICROWIRE ${ }^{\text {™ }}$	QT Optoelectronics ${ }^{\text {TM }}$	TINYOPTOTM
EnSigna ${ }^{\text {™ }}$	$\mathrm{I}^{2} \mathrm{C}^{\text {™ }}$	MSX ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TruTranslation ${ }^{\text {TM }}$
FACT ${ }^{\text {™ }}$	$i-L 0^{\text {TM }}$	MSXPro ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
		OCX ${ }^{\text {™ }}$	RapidConnect ${ }^{\text {TM }}$	UltraFET ${ }^{\text {® }}$
Across the board. Around the world. ${ }^{\text {TM }}$		OCXPro ${ }^{\text {™ }}$	μ SerDes ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
The Power Franchise ${ }^{\circledR}$		OPTOLOGIC ${ }^{\circledR}$	SILENT SWITCHER ${ }^{\circledR}$	VCX ${ }^{\text {™ }}$
Programmable Active Droop ${ }^{\text {TM }}$		OPTOPLANAR ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	
		PACMAN ${ }^{\text {TM }}$	SPM ${ }^{\text {™ }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

[^1]: Note：For further discussion of the PSPICE model，consult A New PSPICE Sub－Circuit for the Power MOSFET Featuring Global Temperature Options；IEEE Power Electronics Specialist Conference Records，1991，written by William J．Hepp and C．Frank Wheatley．

