

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

December 2004

FDSS2407 N-Channel Dual MOSFET

FAIRCHILD

SEMICONDUCTOR®

FDSS2407 N-Channel Dual MOSFET 62V, 3.3A, 132mΩ

Features

- 62V, 132mΩ, 5V Logic Level Gate Dual MOSFET in SO-8
- 5V Logic Level feedback signal of the drain to source voltage. Multiple devices can be wired "OR'd" to a single monitoring circuit input.
- Gate Drive Disable Input. Multiple devices controllable by a single disable transistor.
- Qualified to AEC Q101

Applications

- Automotive Injector Driver
- Solenoid Driver

General Description

This dual N-Channel MOSFET provides added functions as compared to a conventional Power MOSFET. These are: 1. A drain to source voltage feedback signal and 2. A gate drive disable control function that previously required external discrete circuitry. Including these functions within the MOSFET saves printed circuit board space. The drain to source voltage feedback function provides a 5V level output whenever the drain to source voltage is above 62V. This can monitor the time an inductive load takes to dissipate its stored energy. Multiple feedback signals can be wired "OR'd" together to a single input of the monitoring circuit. The gate disable function allows the device to be turned off independent of the drive signal on the gate. This function permits a second control circuit the ability to deactivate the load if necessary. It can also be wired "OR'd" allowing multiple devices to be controlled by a single open collector / drain control transistor.

Symbo	bl	Parameter			Ratings		Units		
DSS	Drain to S	Drain to Source Voltage			62			V	
'GS	Gate to S	Gate to Source Voltage			±20			V	
	Drain Cu	rrent							
	Continuo	Continuous ($T_A = 25^{\circ}C$, $V_{GS} = 10V$, $R_{\theta JA} = 55^{\circ}C/W$)				3.3		Α	
D	Continuo	Continuous (T _A = 25°C, V _{GS} = 5V, R _{θJA} = 55°C/W)				3.0		Α	
	Pulsed				Figure 4			Α	
AS	Single Pu	Single Pulse Avalanche Energy (Note 1)			140			mJ	
D	Power dis				2.27			W	
	Derate above 25°C				18			mW/º	
Γ _J , T _{STG}	Operating	g and Storage Temperatur	e		-	-55 to 150)	°C	
herm	al Chara	cteristics							
R _{0JA}	Pad Area	Pad Area = 0.50 in ² (323 mm ²) (Note 2)			55			°C/W	
R _{0JA}		= 0.027 in ² (17.4 mm ²) (N			180			°C/W	
R _{0JA}		= 0.006 in ² (3.87 mm ²) (N			200			°C/W	
	e Marking	Device	Package	Reel Size	Tape Width		Quantity		
	2407	2407 FDSS2407		SO-8 330 mm		12 mm		2500	
	-	acteristics T _A = 25°				1	1	1	
Symbol		Parameter		se noted onditions	Min	Тур	Max	Unit	
Symbol Off Cha	racteristic	Parameter S	Test C	onditions	Min	Тур	Max		
Symbol Off Cha	racteristic	Parameter	Test C	onditions = 0V	Min 62	Тур	-	Unit:	
Symbol Off Cha ^B VDSS	racteristic Drain to Sou	Parameter S rce Breakdown Voltage	Test C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$	= 0V S=0V			1	V	
Symbol Off Cha ³ vdss	racteristic Drain to Sou	Parameter S	Test C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$ $V_{DS} = 15V, V_{GS}$	= 0V S=0V	62		-		
Symbol Off Cha ³ vdss	practeristic Drain to Sou Zero Gate Vo	Parameter S rce Breakdown Voltage	Test C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$	= 0V S=0V	62		- 1	V	
Symbol Off Cha ³ VDSS DSS GSS	practeristic Drain to Sou Zero Gate Vo Gate to Sour	Parameter S rce Breakdown Voltage Dltage Drain Current ce Leakage Current	ID = 5mA, VGS VDS = 15V, VG VDS = 15V, VG TA=150°C	= 0V S=0V	62 - -		- 1 250	V µA	
Symbol Off Cha B _{VDSS} IDSS IGSS On Cha	Drain to Sou Zero Gate Vo Gate to Sour	Parameter S rce Breakdown Voltage Dltage Drain Current ce Leakage Current S	VDS 15V, VGS VDS 15V, VG VDS 15V, VG VDS 15V, VG VAS 150°C VGS ±20V	= 0V s=0V s=0V s=0V,	62 - - -	-	- 1 250 ±100	V μA nA	
Symbol Off Cha B _{VDSS} IDSS IGSS On Cha	Tracteristic Drain to Sou Zero Gate Vo Gate to Sour Gate to Sour Gate to Sour	Parameter S rce Breakdown Voltage oltage Drain Current ce Leakage Current S ce Threshold Voltage	VDS 150 V CB VGS ±20 V VGS = VDS, ID	= 0V s=0V s=0V s=0V, = 250μA	62 - -	- - - -	- 1 250 ±100	V µA	
Symbol Off Cha B _{VDSS} IDSS IDSS IGSS On Cha VGS(TH)	Tracteristic Drain to Sou Zero Gate Vo Gate to Sour Gate to Sour Gate to Sour	Parameter S rce Breakdown Voltage Dltage Drain Current ce Leakage Current S	Test C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$ $V_{DS} = 15V, V_{GS}$ $T_A = 150^{\circ}C$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS}, I_D$ $I_D = 3.3A, V_{GS}$	= 0V <u>s</u> =0V <u>s</u> =0V, = 250μA = 10V	62 - - 1	- - - - 0.099	- 1 250 ±100 3 0.110	V μA nA	
Symbol Dff Cha BvDss loss loss Gss Dn Cha V _{GS(TH)}	Tracteristic Drain to Sou Zero Gate Vo Gate to Sour Gate to Sour Gate to Sour Drain to Sou	Parameter S rce Breakdown Voltage bltage Drain Current ce Leakage Current S ce Threshold Voltage rce On Resistance	VDS 150 V CB VGS ±20 V VGS = VDS, ID	= 0V <u>s</u> =0V <u>s</u> =0V, = 250μA = 10V	62 - - 1	- - - -	- 1 250 ±100	V µA nA V	
Symbol Off Cha B _{VDSS} I _{DSS} I _{GSS} On Cha V _{GS(TH)} I ^r DS(ON) Dynami	racteristic Drain to Sou Zero Gate Vo Gate to Sour racteristic Gate to Sour Drain to Sou	Parameter S rce Breakdown Voltage oltage Drain Current ce Leakage Current S ce Threshold Voltage rce On Resistance eristics	Test C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$ $V_{DS} = 15V, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = 20V$ $V_{GS} = V_{DS}, I_D$ $I_D = 3.3A, V_{GS}$ $I_D = 3.0A, V_{GS}$	$= 0V$ $= 0V$ $S=0V$ $= 0V$ $= 250\mu A$ $= 10V$ $= 5V$	62 - - 1	- - - - 0.099	- 1 250 ±100 3 0.110	V μA nA V	
Symbol Off Cha ByDSS DSS GSS On Cha VGS(TH) ÓDS(ON) Dynami	racteristic Drain to Sou Zero Gate Vo Gate to Sour racteristic Gate to Sour Drain to Sou ic Characte	Parameter S rce Breakdown Voltage oltage Drain Current ce Leakage Current S ce Threshold Voltage rce On Resistance eristics tance	Test C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$ $V_{DS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = 20V$ $V_{GS} = V_{DS}, I_D$ $I_D = 3.3A, V_{GS}$ $I_D = 3.0A, V_{GS}$ $V_{DS} = 15V, V_{GS}$	$= 0V$ $= 0V$ $S=0V$ $= 0V$ $= 250\mu A$ $= 10V$ $= 5V$	62 - - 1 -	- - - 0.099 0.115	- 1 250 ±100 3 0.110 0.132	V μA nA	
Symbol Off Cha 3vdss dss dss On Cha (GS(TH) (DS(ON) Dynami Cliss Coss	racteristic Drain to Sou Zero Gate Vo Gate to Sour racteristic Gate to Sour Drain to Sou ic Characte Input Capaci Output Capa	Parameter S rce Breakdown Voltage oltage Drain Current ce Leakage Current S ce Threshold Voltage rce On Resistance eristics tance citance	Test C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$ $V_{DS} = 15V, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = 20V$ $V_{GS} = V_{DS}, I_D$ $I_D = 3.3A, V_{GS}$ $I_D = 3.0A, V_{GS}$	$= 0V$ $= 0V$ $S=0V$ $= 0V$ $= 250\mu A$ $= 10V$ $= 5V$	62 - - - - - -	- - - 0.099 0.115	- 1 250 ±100 3 0.110 0.132 -	V μA nA V Ω	
Symbol Off Cha BVDSS DSS GSS On Cha GS(TH) DS(ON) Dynami Cliss Coss Crss	racteristic Drain to Sou Zero Gate Vo Gate to Sour racteristic Gate to Sour Drain to Sou ic Characte Input Capaci Output Capa	Parameter S rce Breakdown Voltage bltage Drain Current ce Leakage Current S ce Threshold Voltage rce On Resistance eristics tance citance nsfer Capacitance	Test C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$ $V_{DS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = 20V$ $V_{GS} = V_{DS}, I_D$ $I_D = 3.3A, V_{GS}$ $I_D = 3.0A, V_{GS}$ $V_{DS} = 15V, V_{GS}$	$= 0V$ $= 0V$ $S=0V$ $= 0V$ $= 250\mu A$ $= 10V$ $= 5V$	62 - - - - - - - -	- - - 0.099 0.115 300 140	- 1 250 ±100 3 0.110 0.132 - -	V μA nA V Ω	
Symbol Off Cha 3vDss bss dss Dss Gss Dn Cha VGS(TH) Ds(ON) Dynami Clss Coss Crss Crss Crss Crss	racteristic Drain to Sou Zero Gate Vo Gate to Sour aracteristic Gate to Sour Drain to Sou ic Characte Input Capaci Output Capa Reverse Trai Gate Resista	Parameter S rce Breakdown Voltage bltage Drain Current ce Leakage Current S ce Threshold Voltage rce On Resistance eristics tance citance nsfer Capacitance ince	Vest C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$ $V_{DS} = 15V, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = V_{DS}, I_D$ $I_D = 3.3A, V_{GS}$ $I_D = 3.0A, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $I_D = 3.0A, V_{GS}$	enditions $= 0V$ $S=0V$ $S=0V,$ $= 250\mu A$ $= 10V$ $= 5V$ $S=0V,$	62 - - - - - - - - - -	- - - 0.099 0.115 300 140 16	- 1 250 ±100 3 0.110 0.132 - - -	V μA nA V Ω pF pF	
Symbol Off Cha 3vDSS DSS GSS On Cha (GS(TH) DS(ON) Dynami Cliss Coss Crss Crss Crss Crss Crss Crss Cr	racteristic Drain to Sou Zero Gate Vo Gate to Sour racteristic Gate to Sour Drain to Sou Drain to Sou ic Characte Input Capaci Output Capa Reverse Trai Gate Resista Total Gate C	Parameter S rce Breakdown Voltage oltage Drain Current ce Leakage Current S ce Threshold Voltage rce On Resistance eristics tance citance nsfer Capacitance harge at 5V	Test C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$ $V_{DS} = 15V, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = V_{DS}, I_D$ $I_D = 3.3A, V_{GS}$ $I_D = 3.0A, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $V_{GS} = 0V \text{ to } 5V$	$= 0V$ $= 0V$ $S = 0V$ $S = 0V$ $= 250\mu A$ $= 10V$ $= 5V$	62 - - - - - - - - - - -	- - - 0.099 0.115 300 140 16 8500	- 1 250 ±100 3 0.110 0.132 - - - -	V μA nA V Ω pF pF Ω	
Symbol Off Cha 3vDSS BSS DSS GSS On Cha /GS(TH) DS(ON) Oynami Ciss Coss Ciss Coss Ciss Coss Ciss Coss Ciss Ci	racteristic Drain to Sou Zero Gate Vo Gate to Sour racteristic Gate to Sour Drain to Sou ic Characte Input Capaci Output Capa Reverse Trai Gate Resista Total Gate C Threshold Gat	Parameter S rce Breakdown Voltage oltage Drain Current ce Leakage Current S ce Threshold Voltage rce On Resistance eristics tance citance nsfer Capacitance harge at 5V ate Charge	Vest C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$ $V_{DS} = 15V, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = V_{DS}, I_D$ $I_D = 3.3A, V_{GS}$ $I_D = 3.0A, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $I_D = 3.0A, V_{GS}$	onditions = $0V$ $S = 0V$ $V = 5V$ $V = 0$ $S = 0V$ $S = 0V$ $V = 0$ $V = 0$ $V = 0$ $V = 0$	62 - - - - - - - - - - - - -	- - - 0.099 0.115 300 140 16 8500 3.3	- 1 250 ±100 3 0.110 0.132 - - - 4.3	V μA nA V Ω PF pF Ω nC	
Symbol Off Cha BVDSS DSS GSS On Cha GS(TH) DS(ON) Dynami Cliss Coss Crss	racteristic Drain to Sou Zero Gate Vo Gate to Sour racteristic Gate to Sour Drain to Sou ic Characte Input Capaci Output Capaci Output Capa Reverse Trai Gate Resista Total Gate C Threshold Ga Gate to Sour	Parameter S rce Breakdown Voltage oltage Drain Current ce Leakage Current S ce Threshold Voltage rce On Resistance eristics tance citance nsfer Capacitance harge at 5V	Test C $I_D = 5mA, V_{GS}$ $V_{DS} = 15V, V_G$ $V_{DS} = 15V, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $V_{GS} = 15V, V_{GS}$ $V_{GS} = V_{DS}, I_D$ $I_D = 3.3A, V_{GS}$ $I_D = 3.0A, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $V_{DS} = 15V, V_{GS}$ $V_{GS} = 0V \text{ to } 5V$	$= 0V$ $= 0V$ $S = 0V$ $S = 0V$ $= 250\mu A$ $= 10V$ $= 5V$	62 - - - - - - - - - - - - - - - - -	- - - 0.099 0.115 300 140 16 8500 3.3 0.4	- 1 250 ±100 3 0.110 0.132 - - - 4.3	V μA nA V Ω PF pF Ω nC nC	

Switchi	ng Characteristics (V _{GS} = 10V)					
t _{ON}	Turn-On Time		-	-	2700	ns
t _{d(ON)}	Turn-On Delay Time] [-	630	-	ns
t _r	Rise Time	$V_{DD} = 30V, I_D = 3.3A$ $V_{GS} = 10V, R_{GS} = 47\Omega$	-	1200	-	ns
t _{d(OFF)}	Turn-Off Delay Time		-	8700	-	ns
t _f	Fall Time		-	3500	-	ns
t _{OFF}	Turn-Off Time		-	-	18500	ns
Drain-Se	ource Diode Characteristics					
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 3.3A	-	-	1.25	V
▼SD		I _{SD} = 1.7A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	$I_{SD}=3.3A,dI_{SD}/dt=100A/\mu s$	-	-	45	ns
Q _{RR}	Reverse Recovered Charge	I_{SD} = 3.3A, dISD/dt = 100A/µs	-	-	60	nC
Drain Fe	eedback Characteristics					
	Feedback to Source Voltage	$V_{DS} = 35V, R_{FBK-SOURCE} = 51K\Omega$	-	1	1.5	V
V _{FBK(High)}	Feedback to Source Voltage	$V_{DS} = 62V, R_{FBK-SOURCE} = 51K\Omega$	3.5	4.4	-	V
Gate Dri	ive Disable Characteristics					
V _{DIS(High)}	Gate Drive Disable Input Voltage, Gate Enabled	$V_{GS} = 5V, I_D = 3.0A, T_J = 25^{\circ}C$	3	-	-	V
V _{DIS(Low)}	Gate Drive Disable Input Voltage, Gate Disabled	$\label{eq:VGS} \begin{split} V_{GS} &= V_{DS} = 10V, \ I_D \leq 250 \mu A, \\ T_J &= 150^o C \end{split}$	-	-	0.4	V

Notes:

1. Starting T_J = 25°C, L = 42mH, I_{AS} = 2.6A, V_{DD} = 62V, V_{GS} = 10V. 2. 55°C/W measured using FR-4 board with 0.50 in² (323 mm²) copper pad at 1 second. 3. 180°C/W measured using FR-4 board with 0.027 in² (17.4 mm²) copper pad at 1000 seconds. 4. 200°C/W measured using FR-4 board with 0.006 in² (3.87 mm²) copper pad at 1000 seconds.

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

FDSS2407 N-Channel Dual MOSFET

160

20

5

FDSS2407 Rev. A

Thermal Resistance vs. Mounting Pad Area

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
(EQ. 1)

In using surface mount devices such as the SO8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 25 defines the $R_{\theta,JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized

maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 25 or by calculation using Equation 2. The area, in square inches is the top copper area including the gate and source pads.

$$R_{\theta JA} = 79.9 + \frac{15}{0.14 + Area}$$
 (EQ. 2)

The transient thermal impedance $(Z_{\theta,JA})$ is also effected by varied top copper board area. Figure 26 shows the effect of copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. Spice and SABER thermal models are provided for each of the listed pad areas.

Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100ms. For pulse widths less than 100ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM5 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1.

SABER Electrical Model

П

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	ImpliedDisconnect [™]	POP™	Stealth™
ActiveArray™	FAST [®]	IntelliMAX™	Power247™	SuperFET™
Bottomless™	FASTr™	ISOPLANAR™	PowerEdge™	SuperSOT™-3
CoolFET™	FPS™	LittleFET™	PowerSaver™	SuperSOT™-6
CROSSVOLT™	FRFET™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-8
DOME™	GlobalOptoisolator™	MicroFET™	QFET [®]	SyncFET™
EcoSPARK™	GTO™	MicroPak™	QS™	TinyLogic [®]
E ² CMOS™	HiSeC™	MICROWIRE™	QT Optoelectronics [™]	TINYOPTO™
EnSigna™	I ² C™	MSX™	Quiet Series™	TruTranslation™
FACT™	i-Lo™	MSXPro™	RapidConfigure™	UHC™
		OCX™	RapidConnect™	UltraFET [®]
Across the board.	Around the world.™	OCXPro™	µSerDes™	UniFET™
The Power Franch	nise [®]	OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
Programmable Ac	ctive Droop™	OPTOPLANAR™	SMART START™	
		PACMAN™	SPM™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor The datasheet is printed for reference information only

PRODUCT STATUS DEFINITIONS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC