

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

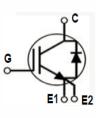
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FGH75T65SHDTL4 650 V, 75 A Field Stop Trench IGBT

Features

- Maximum Junction Temperature: T_J =175^oC
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)}$ =1.6 V(Typ.) @ I_C = 75 A
- 100% of the Parts Tested for I_{LM}(1)
- High Input Impedance
- Fast Switching
- Tighten Parameter Distribution
- Pb Free and RoHS Compliant
- Do Not Recommend for Reflow and Full PKG Dipping


General Description

Using novel field stop IGBT technology, Fairchild's new series of field stop 3rd generation IGBTs offer the optimum performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction and switching losses are essential.

Applications

• Solar Inverter, UPS, Welder, Telecom, ESS, PFC

E1: Kelvin Emitter E2: Power Emitter

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Description		FGH75T65SHDTL4	Unit
V _{CES}	Collector to Emitter Voltage		650	V
V _{GES}	Gate to Emitter Voltage		± 20	V
	Transient Gate to Emitter Voltage		± 30	V
la	Collector Current	@ T _C = 25 ^o C	150	А
I ^C	Collector Current	@ T _C = 100°C	75	А
I _{LM (1)}	Pulsed Collector Current @ $T_{C} = 25^{\circ}C$		300	А
I _{CM (2)}	Pulsed Collector Current		300	А
I _F	Diode Forward Current	@ T _C = 25°C	125	А
'F	Diode Forward Current	@ T _C = 100°C	75	А
I _{FM (2)}	Pulsed Diode Maximum Forward Curren	300	А	
P _D	Maximum Power Dissipation	@ T _C = 25°C	455	W
' D	Maximum Power Dissipation	@ T _C = 100°C	227	W
TJ	Operating Junction Temperature		-55 to +175	°C
T _{stg}	Storage Temperature Range		-55 to +175	°C
Τ _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes:

1. V_{CC} = 400 V, V_{GE} = 15 V, I_C = 300 A, R_G = 73 $\Omega,$ Inductive Load

2. Repetitive rating: Pulse width limited by max. junction temperature

November 2015

Т
G
I
H75T65SHDTL
2
6
U
ŝ
· 吉·
2
2
4
- 650 V, 75 <i>F</i>
S
0
,<
<i>I</i> , 75
S
⋗
Fiel
<u> </u>
Ť
<u>o</u>
Š
ö
σ
-
G
Ë
<u>c</u>
5
A Field Stop Trench IGB
Ď
Ĩ
-

Thermal Characteristics

Symbol	Parameter	FGH75T65SHDTL4	Unit	
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case, Max.	0.33	°C/W	
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case, Max.	0.65	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	40	°C/W	

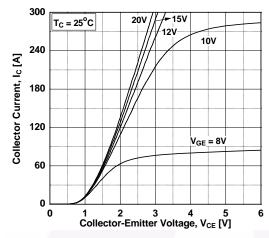
Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGH75T65SHDTL4	FGH75T65SHDTL4	TO-247 A04	Tube	-	-	30

Electrical Characteristics of the IGBT $T_{C} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 1 \text{ mA}$	650	-	-	V
ΔBV _{CES} / ΔT _J	Temperature Coefficient of Breakdown Voltage	$I_{\rm C}$ = 1 mA, Reference to 25°C	-	0.65	-	V/ºC
ICES	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	I _C = 75 mA, V _{CE} = V _{GE}	4.0	5.5	7.5	V
		I _C = 75 A, V _{GE} = 15 V	-	1.6	2.1	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_{C} = 75 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{C} = 175^{\circ}\text{C}$	-	2.28	-	V
Dynamic C	characteristics					
C _{ies}	Input Capacitance		-	3710	-	pF
C _{oes}	Output Capacitance	V _{CE} = 30 V _, V _{GE} = 0 V, f = 1MHz	-	183	-	pF
C _{res}	Reverse Transfer Capacitance		-	43	-	pF
Switching	Characteristics				•	
t _{d(on)}	Turn-On Delay Time		-	55	-	ns
t _r	Rise Time	-	-	50	-	ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400 V, I _C = 75 A,	-	189	-	ns
t _f	Fall Time	R _G = 15 Ω, V _{GE} = 15 V,	-	39	-	ns
Eon	Turn-On Switching Loss	Inductive Load, $T_C = 25^{\circ}C$	-	1.06	-	mJ
E _{off}	Turn-Off Switching Loss		-	1.56	-	mJ
E _{ts}	Total Switching Loss		-	2.62	-	mJ
t _{d(on)}	Turn-On Delay Time		-	48	-	ns
t _r	Rise Time		-	56	-	ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400 V, I _C = 75 A,	-	205	-	ns
t _f	Fall Time	$R_{G} = 15 \Omega$, $V_{GE} = 15 V$,	-	40	-	ns
•r		Inductive Load, T _C = 175 ^o C	-	2.34	-	mJ
	Turn-On Switching Loss			-		
E _{on}	Turn-On Switching Loss Turn-Off Switching Loss		-	1.81	-	mJ

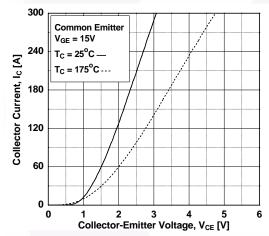
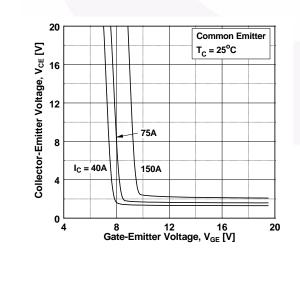
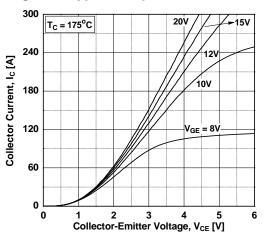
Electrical Characteristics of the IGBT (Continued)

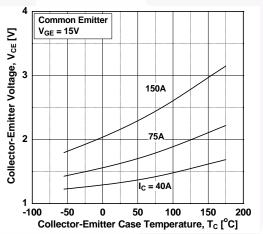

Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Unit
Qg	Total Gate Charge	V _{CE} = 400 V, I _C = 75 A, V _{GE} = 15 V	-	126	-	nC
Q _{ge}	Gate to Emitter Charge		-	24.1	-	nC
Q _{gc}	Gate to Collector Charge		-	47.6	-	nC

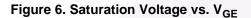
Electrical Characteristics of the Diode $T_{C} = 25^{\circ}C$ unless otherwise noted

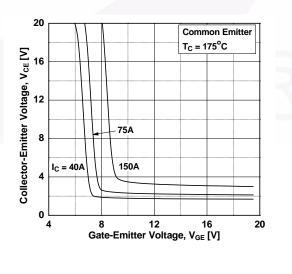
Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Unit
V _{FM}	Diode Forward Voltage	I _F = 75 A	$T_{C} = 25^{\circ}C$	-	1.8	2.1	V
* FM	blodo i olivara voltago	1F - 70 A	T _C = 175 ^o C	-	1.7	-	
E _{rec}	Reverse Recovery Energy		T _C = 175 ^o C	-	160	-	uJ
t	Diode Reverse Recovery Time	I _F = 75 A, dI _F /dt = 200 A/μs	$T_C = 25^{\circ}C$	-	76	-	ns
t _{rr} Diode Reveise Recovery fille	$r_F = 75 R$, $dr_F/dt = 200 R/\mu S$	T _C = 175 ^o C	-	270	-		
Q _{rr}	Diode Reverse Recovery Charge		$T_C = 25^{\circ}C$		206	-	nC
Su	Diodo Novoloo Novoloj enalgo		T _C = 175 ^o C	-	2199	-	

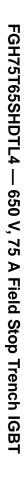
Typical Performance Characteristics

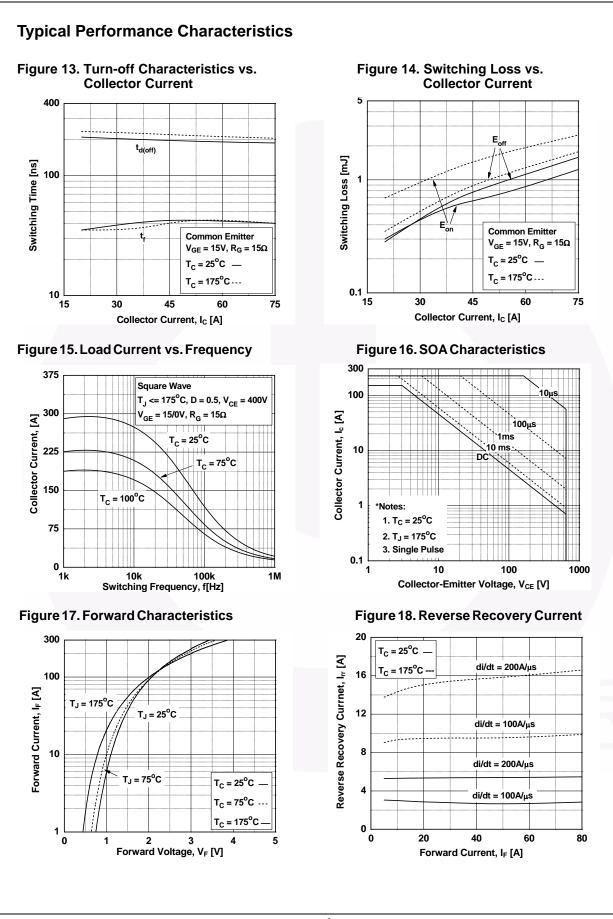




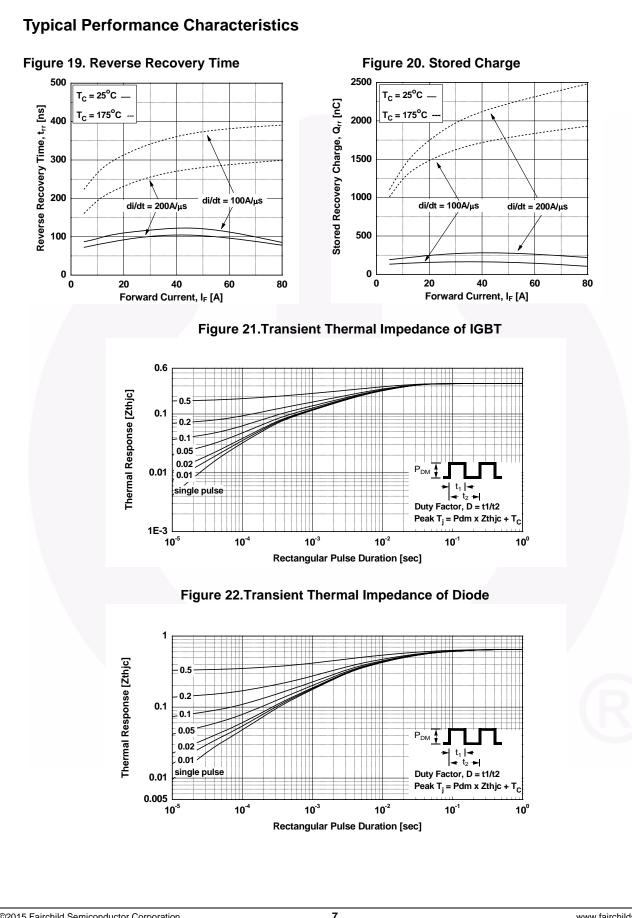

Figure 5. Saturation Voltage vs. V_{GE}

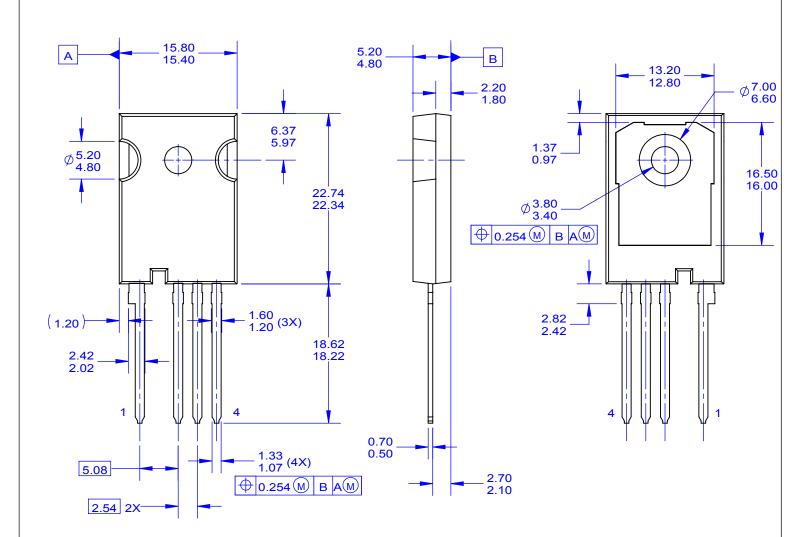



Figure 2. Typical Output Characteristics






Typical Performance Characteristics Figure 8. Gate charge Characteristics **Figure 7. Capacitance Characteristics** 10000 15 Common Emitter T_C = 25^oC Gate-Emitter Voltage, V_{GE} [V] 8 0 6 71 Cies 300V Capacitance [pF] 1000 $V_{CC} = 200V$ 400V Cof 100 Cres **Common Emitter** V_{GE} = 0V, f = 1MHz T_C = 25^oC 10 0 10 30 25 50 75 100 125 150 0 1 Collector-Emitter Voltage, VCE [V] Gate Charge, Q_g [nC] Figure 9. Turn-on Characteristics vs. Figure 10. Turn-off Characteristics vs. **Gate Resistance** Gate Resistance 1000 400 Common Emitter V_{CC} = 400V, V_{GE} = 15V I_C = 75A t_{d(off)} $T_{C} = 25^{\circ}C$ — Switching Time [ns] Switching Time [ns] T_C = 175^oC ... t 100 100 Common Emitter $V_{CC} = 400V, V_{GE} = 15V$ I_C = 75A $T_{C} = 25^{\circ}C$ -T_C = 175°C 10 └-10 30 40 50 20 30 10 30 40 50 20 Gate Resistance, $R_G [\Omega]$ Gate Resistance, $R_G [\Omega]$ Figure 11. Switching Loss vs. Figure 12. Turn-on Characteristics vs. **Gate Resistance Collector Current** 100 5 t_{d(on)} Switching Time [ns] Switching Loss [mJ] E_{on} **Common Emitter** 1 $V_{CC} = 400V, V_{GE} = 15V$ Common Emitter I_C = 75A $V_{GE} = 15V, R_G = 15\Omega$ $T_{c} = 25^{\circ}C$ — T_c = 25°C ____ 10 T_C = 175°C ... = 175°C T_c 0.4 └-10 8 15 30 45 60 75 20 30 40 50 Collector Current, I_C [A] Gate Resistance, R_G [Ω]


©2015 Fairchild Semiconductor Corporation FGH75T65SHDTL4 Rev. 1.2

5

©2015 Fairchild Semiconductor Corporation FGH75T65SHDTL4 Rev. 1.2

NOTES:

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
- FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5-2009.
- F. DRAWING FILENAME;MKT-TO247A04_REV02.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC