

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

December 2014

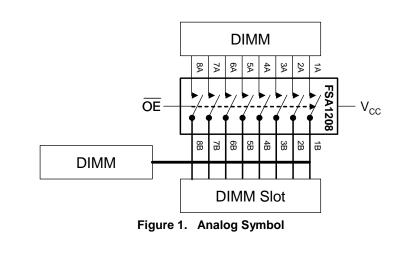
FSA1208 Low-Power, Eight-Port, High-Speed Isolation Switch

Features

- Low On Capacitance: 6 pF Typical
- Low On Resistance: 15 Ω Typical
- Low Power Consumption: 1 A Maximum
- 10 µA Maximum I_{CCT} over an Expanded Voltage Range (V_{IN}=2.3 V, V_{CC}=4.3 V)
- Wide -3 dB Bandwidth: > 400 MHz
- Packaged in Space-Saving 20-Lead MLP (2.5 x 4.5 mm)
- 7.5 kV ESD Rating; >16 kV Power/GND ESD Rating
- Low C_{OFF} Capacitance: 2.5 pF Typical

Applications

DIMM DDR Memory


Ordering Information

Description

The FSA1208 is a low-power, eight-port, high-speed switch. This part is configured as a single-pole, single-throw switch and is optimized for isolating a high-speed source, such as a DDR memory bus. The FSA1208 features an extremely low on capacitance (C_{ON}) of 6 pF Superior channel-to-channel crosstalk minimizes interference.

The FSA1208 contains special circuitry on the A & B pins that allows the device to withstand an over-voltage condition. This device is also designed to minimize current consumption even when the control voltage applied to the /OE pin is lower than the supply voltage (V_{CC}). Applications include port isolation and switching in DDR memory modules, portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Part Number	Top Mark	Operating Temperature Range	Package
FSA1208BQX	F1208	-40 to +85°C	20-Lead, Quad, Molded Leadless Package (MLP), 2.5 x 4.5 mm

Pin Configurations B6 B1 B2 В3 Β4 B5 B7 B8 19 18 17 16 15 14 13 12 NC /OE 20 11 GND VCC 1 10 A6 A7 A1 A2 A5 A8 A3 A4 2 3 8 9 4 5 6 7

Figure 2. Pin Assignments for MLP (Top Through View)

Pin Definitions

Pin #	Name	Description
20	/OE	Switch Enable
2-9	A1-A8	A Side of Bus
12-19	B8-B1 B Side of Bus	
11	NC	No Connection
1	VCC Power	
10	GND	Ground

Truth Table

/OE	Function
HIGH	Disconnect
LOW	A1-A8=B1-B8

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit	
V _{CC}	Supply Voltage		-0.50	+5.25	V
V _{CNTRL}	DC Input Voltage (/OE) ⁽¹⁾		-0.50	Vcc	V
V _{SW}	DC Switch I/O Voltage ⁽¹⁾		-0.50	5.25	V
I _{IK}	DC Input Diode Current	-50		mA	
I _{OUT}	DC Output Current		50	mA	
T _{STG}	Storage Temperature		-65	+150	°C
		All Pins		7.5	
ESD	Human Body Model, JEDEC: JESD22-A114	I/O to GND		8	kV
230		Power to GND		16	r.v
	Charged Device Model, JEDEC: JESD22-C1		2		

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	2.3	4.3	V
V _{CNTRL} ⁽²⁾	Control Input Voltage (S, /OE)	0	V _{CC}	V
Vsw	Switch I/O Voltage	-0.5	Vcc	V
T _A	Operating Temperature	-40	+85	°C

Note:

2. The control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions		T _A =- 40°C to +85°C			Units	
Symbol	Falametei	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units	
V _{IK}	Clamp Diode Voltage	I _{IN} =-18 mA	2.5			-1.2	V	
VIH	Input Voltage High		2.3 to 3.6	1.3			V	
VIH	Input Voltage High		4.3	1.7			V	
VIL	Input Voltage Low		2.3 to 3.6			0.5	V	
VIL			4.3			0.7	V	
I _{IN}	Control Input Leakage	$V_{SW}=0$ to V_{CC}	4.3	-1		1	μA	
I _{OZ}	Off State Leakage	$0 \le A, B \le 3.6 V$	4.3	-2		2	μA	
P	Switch On Resistance ⁽³⁾	V _{SW} =0 V, I _{ON} =-10 mA Figure 3	2.5		7		Ω	
R _{on}	Switch On Resistance	$V_{\text{SW}}\text{=}1.8$ V, $I_{\text{ON}}\text{=}\text{-}10$ mA Figure 3	2.5		15		Ω	
Icc	Quiescent Supply Current	$V_{IN}=0$ or V_{CC} , $I_{OUT}=0$	4.3			1	μA	
I _{CCT}	Increase in I_{CC} Current Per Control Voltage and V_{CC}	V _{IN} =1.8 V	2.7			10	μΑ	

Note:

3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (A or B ports).

AC Electrical Characteristics

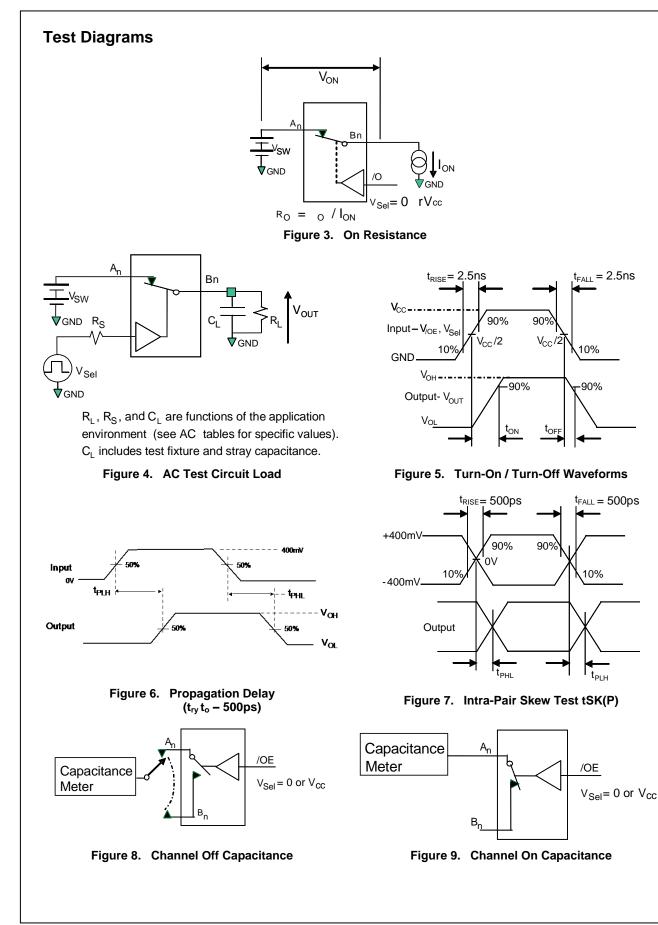
All typical values are for V_{CC}=2.5 V at 25°C unless otherwise specified.

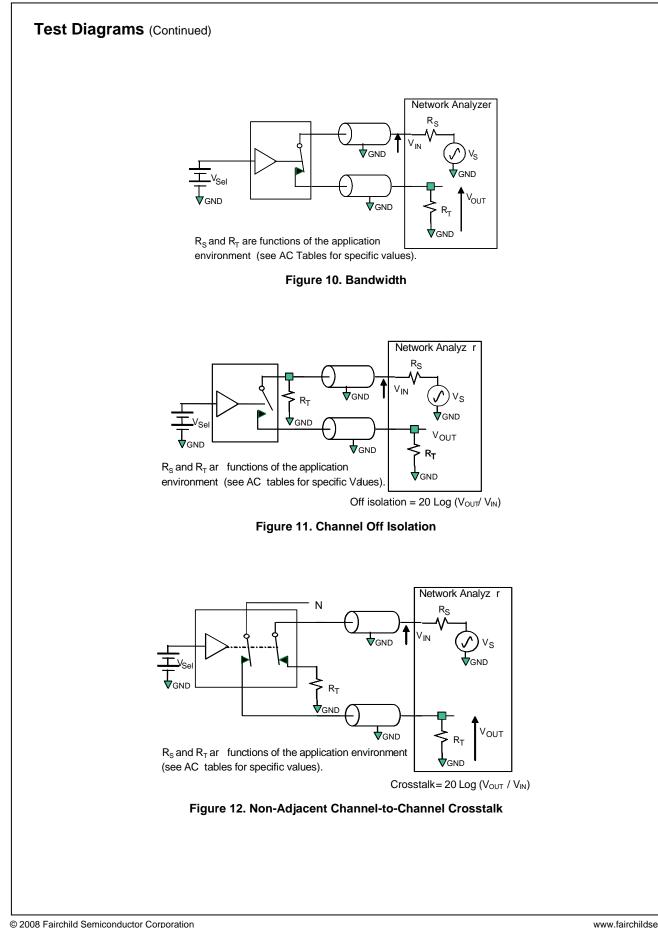
Symbol	Parameter	Conditions		T _A =- 40°C to +85°C			Unito
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units
t _{on}	Turn-On Time, /OE to Output	R_L =50 Ω, C_L =5 pF V _{SW} =1.8 V Figure 4, Figure 5	2.3 to 3.6		15	34	ns
t _{uff}	Turn-Off Time, /OE to Output	$R_L=50 \Omega$, $C_L=5 pF$ $V_{SW}=1.8 V$ Figure 4, Figure 5	2.3 to 3.6		12	25	ns
t _{ad}	Propagation Delay ⁽⁴⁾	R _L =50 Ω, C _L =5 pF Figure 4, Figure 6	3.3		0.35		ns
O _{IRR}	Off Isolation	R _L =50 Ω, f=400 MHz Figure 11	2.3 to 3.6		-40		dB
Xtalk	Non-Adjacent Channel Crosstalk	R _L =50 Ω, f=100 MHz Figure 12	2.3 to 3.6		-40		dB
BW -3dB	-3dB Bandwidth	R _L =50 Ω, C _L =0 pF Figure 10	2.3 to 3.6		1000		MHz
DVV	-3dB Bandwidth	R _L =50 Ω, C _L =5 pF Figure 10	2.3 10 3.0		750		MHz

Note:

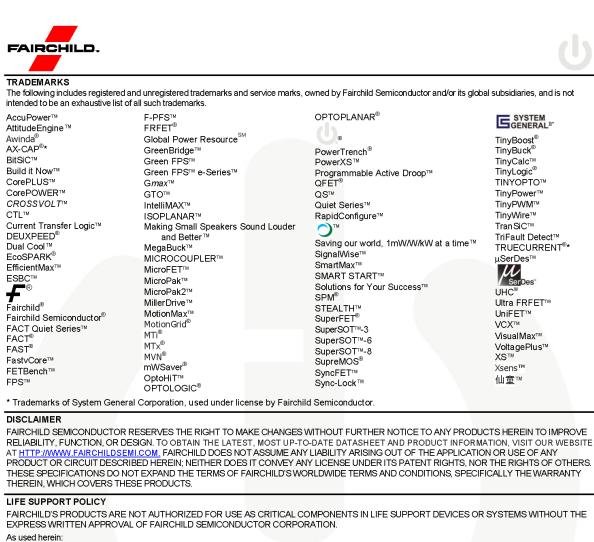
4. Guaranteed by characterization.

High-Speed-Related AC Electrical Characteristics


Symbol	Parameter	Conditions		T _A =- 40°C to +85°C			Units
Symbol	Falameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units
t _{SK(O)}	Channel-to-Channel Skew ⁽⁵⁾	C _L =5 pF	3.3		40	80	ps
t _{SK(P)}	Skew of Opposite Transitions of the Same Output ⁽⁵⁾	C∟=5 pF	3.3		15	40	ps
t _{SK(PKG)}	Package-to-Package Skew ⁽⁵⁾	C∟=5 pF	3.3		60	100	ps


Note:

5. Guaranteed by characterization.


Capacitance

Symbol	Deremeter	Conditions	T _A =- 40°C to +85°C			Units
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C _{IN}	Control Pin Input Capacitance	V _{CC} =0.2 V, f=1 MHz		2.0		
C _{ON}	D+/D- On Capacitance	V _{CC} =2.5 V, /OE=0 V, f=1 MHz Figure 9		6.0		pF
C_{OFF}	D1n, D2n Off Capacitance	V _{CC} and /OE=2.5 V, f=1 MHz Figure 8		2.5		

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild staking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized formation.

PRODUCT STATUS DEFINITIONS

Definition of Terms		
Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 173

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC