

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FAIRCHILD

SEMICONDUCTOR TM

GTLP16612 18-Bit TTL/GTLP Universal Bus Transceiver

General Description

The GTLP16612 is an 18-bit universal bus transceiver which provides TTL to GTLP signal level translation. The device is designed to provide a high speed interface between cards operating at TTL logic levels and a backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control which minimizes signal settling times. GTLP is a Fairchild Semiconductor derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is Process, Voltage, and Temperature (PVT) compensated. Its function is similar to BTL or GTL but with different driver output levels and receiver threshold. GTLP output low voltage is typically less than 0.5V, the output high is 1.5V and the receiver threshold is 1.0V.

Features

Bidirectional interface between GTLP and TTL logic levels

March 1995

Revised March 2001

- Designed with an edge rate control circuit to reduce output noise on GTLP port
- V_{REF} pin provides external supply reference voltage for receiver threshold adjustability
- Special PVT compensation circuitry to provide consistent performance over variations of process, supply voltage and temperature
- TTL compatible Driver and Control inputs
- Designed using Fairchild advanced CMOS technology
 Bushold data inputs on A port to eliminate the need for
- external pull-up resistors for unused inputs
- Power up/down and power off high impedance for live insertion
- 5V tolerant inputs and outputs on LVTTL port
- Open drain on GTLP to support wired-or connection
- Flow-through pinout optimizes PCB layout
- D-type flip-flop, latch and transparent data paths
- A Port outputs source/sink -32 mA/+32 mA

Ordering Code:

Order Number	Package Number	Package Description
GTLP16612MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
GTLP16612MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Device also available in	Tape and Reel. Specify by	y appending suffix letter "X" to the ordering code.

GTLP16612

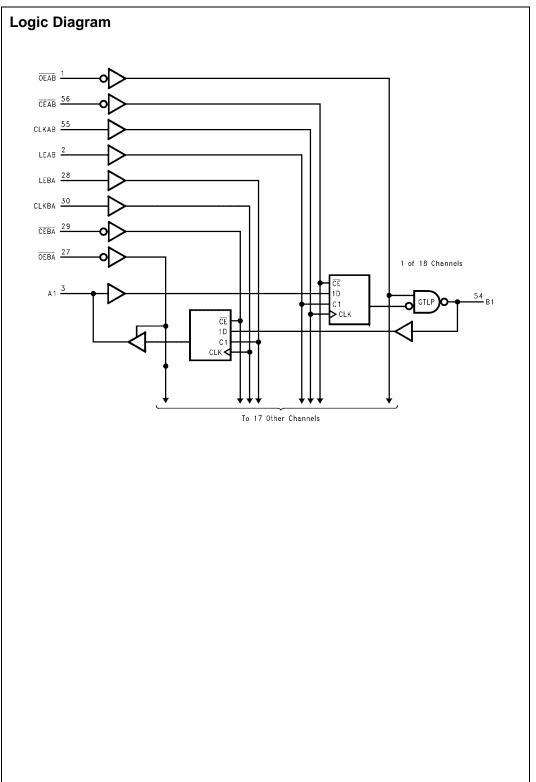
Pin Descriptions						
Pin Names	Description					
OEAB	A-to-B Output Enable (Active LOW)					
OEBA	B-to-A Output Enable (Active LOW)					
CEAB	A-to-B Clock Enable (Active LOW)					
CEBA	B-to-A Clock Enable (Active LOW)					
LEAB	A-to-B Latch Enable (Transparent HIGH)					
LEBA	B-to-A Latch Enable (Transparent HIGH)					
CLKAB	A-to-B Clock Pulse					
CLKBA	B-to-A Clock Pulse					
V _{REF}	GTLP Input Reference Voltage					
A1–A18	A-to-B TTL Data Inputs or					
	B-to-A 3-STATE Outputs					
B1–B18	B-to-A GTLP Data Inputs or					
	A-to-B Open Drain Outputs					

Connection Diagram						
OEAB — LEAB —	2 5	6 – CEAB 5 – CLKAB				
A1 — GND — A2 —	4 5	4 — B1 3 — GND 2 — B2				
A3 — V _{CC} (3.3V) — A4 —	7 5	51 - B3 0 - V _{CCQ} (5.0V) 9 - B4				
A5 — A6 —	9 4 10 4	8 — B5 7 — B6				
GND _Q * — 47 — 48 —	12 4	6 — GND .5 — B7 4 — B8				
A9	15 4	3 - 89 2 - 810 41 - 811				
A 12	18 3	0 - B12 9 - GND 18 - B13				
A14 — A15 —	20 3	6 - B15				
V _{CC} (3.3V) — A16 — A17 —	23 3	5 - V _{REF} 4 - B16 3 - B17				
GND	25 3 26 3	2 — GND 51 — B18				
LEBA		0 — CLKBA 19 — CEBA				

Functional Description

The GTLP16612 combines a universal transceiver function with a TTL to GTLP translation. The A Port and control pins operate at LVTTL or 5V TTL levels while the B Port operates at GTLP levels. The transceiver logic includes D-type latches and D-type flip-flops to allow data flow in transparent, latched and clock mode.

The functional operation is described in the truth table below.


Truth Table

(Note 1)

	Inputs					Mode
CEAB	OEAB	LEAB	CLKAB	Α	В	
х	Н	Х	Х	Х	Z	Latched
L	L	L	н	х	B ₀ (Note 2)	storage
L	L	L	L	х	B ₀ (Note 3)	of A data
Х	L	Н	Х	L	L	Transparent
х	L	н	х	н	Н	
L	L	L	Ŷ	L	L	Clocked storage
L	L	L	Ŷ	Н	н	of A data
Н	L	L	х	Х	B ₀ (Note 3)	Clock inhibit

Note 1: A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, CLKBA, and CEBA.

Note 2: Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW. Note 3: Output level before the indicated steady-state input conditions were established.

GTLP16612

www.fairchildsemi.com

Absolute Maximum Ratings(Note 4)

Supply Voltage (V _{CC} , V _{CCQ})	-0.5V to +7.0V
DC Input Voltage (VI)	-0.5V to +7.0V
DC Output Voltage (V _O)	
Outputs 3-STATE	-0.5V to +7.0V
Outputs Active (Note 5)	–0.5V to V_{CC} + 0.5V
DC Output Sink Current into	
A Port I _{OL}	64 mA
DC Output Source Current from	
A Port I _{OH}	-64 mA
DC Output Sink Current	
into B Port in the LOW State, I_{OL}	80 mA
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
V _O > V _{CC}	+50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
ESD Performance	>2000V

Recommended Operating Conditions (Note 6)

Supply Voltage V _{CC}	
V _{CC}	3.15V to 3.45V
V _{CCQ}	4.75V to 5.25V
Bus Termination Voltage (V _{TT})	1.35V to 1.65V
Input Voltage (V _I)	
on A Port and Control Pins	0.0V to 5.5V
HIGH Level Output Current (I _{OH})	
A Port	–32 mA
LOW Level Output Current (I _{OL})	
A Port	+32 mA
B Port	+34 mA
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$

Note 4: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristic tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: I_O Absolute Maximum Rating must be observed.

Note 6: Unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

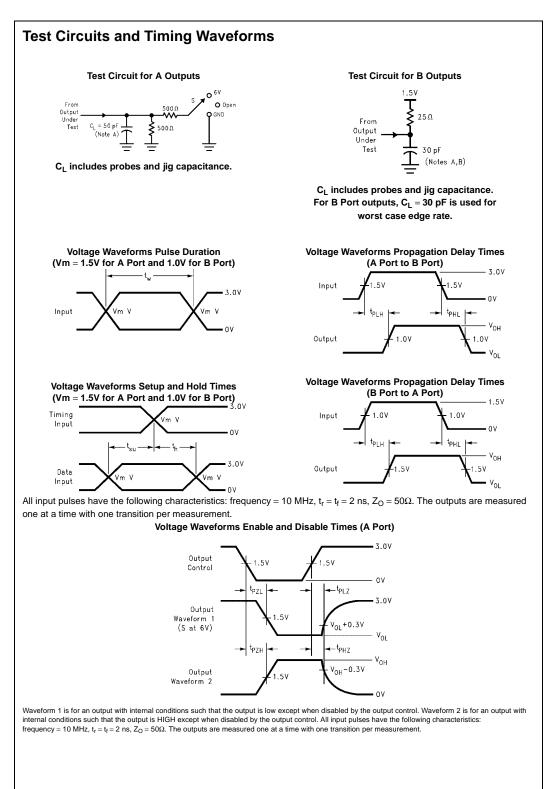
Over Recommended Operating Free-Air Temperature Range, $V_{REF} = 1.0V$ (Unless Otherwise Noted).

Symbol		Test Conditions		Min	Typ (Note 7)	Мах	Units
VIH	B Port			V _{REF} +0.1		V _{TT}	V
	Others			2.0			V
VIL	B Port			0.0		V _{REF} -0.1	v
	Others					0.8	v
V _{REF}					1.0		V
V _{IK}		$V_{CC} = 3.15V,$ $V_{CCQ} = 4.75V$	I _I = -18 mA			-1.2	V
V _{OH}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 8)	I _{OH} = -100 μA	V _{CC} - 0.2			
		$V_{CC} = 3.15V$	I _{OH} = -8 mA	2.4			V
		$V_{CCQ} = 4.75V$	I _{OH} = -32 mA	2.0			İ
V _{OL}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 8)	I _{OL} = 100 μA			0.2	
		$V_{CC} = 3.15V$	I _{OL} = 32 mA			0.5	V
		$V_{CCQ} = 4.75V$					
	B Port	$V_{CC} = 3.15 V V_{CCQ} = 4.75 V$	I _{OL} = 34 mA			0.65	V
I _I	Control Pins	V_{CC} , $V_{CCQ} = 0$ or Max	$V_I = 5.5V \text{ or } 0V$			±10	μA
	A Port	$V_{CC} = 3.45V$	$V_{I} = 5.5V$			20	
		$V_{CCQ} = 5.25V$	$V_I = V_{CC}$			1	μA
			$V_I = 0$			-30	Î
	B Port	$V_{CC} = 3.45V$	$V_I = V_{CCQ}$			5	μA
		$V_{CCQ} = 5.25V$	$V_I = 0$			-5	μΑ
I _{OFF}	A Port	$V_{CC} = V_{CCQ} = 0$	V_{I} or $V_{O} = 0$ to 4.5V			100	μA
I _{I(hold)}	A Port	V _{CC} = 3.15V,	$V_{I} = 0.8V$	75			
		$V_{CCQ} = 4.75V$	$V_{I} = 2.0V$	-20			μA
I _{OZH}	A Port	V _{CC} = 3.45V,	$V_0 = 3.45V$			1	μA
	B Port	$V_{CCQ} = 5.25V$	$V_{O} = 1.5V$			5	μΑ
I _{OZL}	A Port	V _{CC} = 3.45V,	$V_0 = 0$			-20	
	B Port	V _{CCQ} = 5.25V	V _O = 0.65V			-10	μA

	Symbol		Test Conditions	Min	Typ (Note 7)	Мах	Units
Iccq	A or B	V _{CC} = 3.45V,	Outputs HIGH		30	40	
(V _{CCQ})	Ports	V _{CCQ} = 5.25V,	Outputs LOW		30	40	mA
		$I_{O} = 0,$					mA
		$V_I = V_{CCQ} \text{ or } GND$	Outputs Disabled		30	40	
cc V _{CC})	A or B	$V_{CC} = 3.45V,$	Outputs HIGH		0	1	
V _{CC})	Ports	$V_{CCQ} = 5.25V,$	Outputs LOW		0	1	mA
		$I_{O} = 0,$					11.0 (
		$V_{I} = V_{CCQ} \text{ or } GND$	Outputs Disabled		0	1	
VI _{CC}	A Port and	$V_{CC} = 3.45V,$	One Input at 2.7V		0	1	
Note 9)	Control Pins	$V_{CCQ} = 5.25V,$					mA
		A or Control Inputs at					
		V _{CC} or GND					
CIN	Control Pins		$V_I = V_{CCQ} \text{ or } 0$		8		
C _{I/O}	A Port		$V_I = V_{CCQ} \text{ or } 0$		9		pF
C _{I/O}	B Port	e at V _{CC} = 3.3V, V _{CCQ} = 5.0V,	$V_I = V_{CCQ} \text{ or } 0$		6		
AC C	Operating	Requirement	It that is at the specified TTL voltage level rath		GND.		
AC C	Operating	Requirement	t that is at the specified TTL voltage level rath S erating free-air temperature, V _{REF} = 1.0V	(unless other	GND.	x	Unit
AC C	Dperating	Requirement is of supply voltage and ope Symbo	t that is at the specified TTL voltage level rath S erating free-air temperature, V _{REF} = 1.0V	ner than V _{CC} or	GND. wise noted). n Ma	ax	Unit MHz
Over rect	Dperating	Requirement s of supply voltage and oper Symbo m Clock Frequency	t that is at the specified TTL voltage level rath S erating free-air temperature, V _{REF} = 1.0V	(unless other Mi	GND. wise noted). n Ma	ax	
AC C Over rect	Dperating ommended range Maximu	Requirement s of supply voltage and oper Symbo m Clock Frequency	t that is at the specified TTL voltage level rath S erating free-air temperature, V _{REF} = 1.0V I	(unless other Mi 15	GND. wise noted). n Ma 0 0	ax	
AC C Over rect	Dperating ommended range Maximu	Requirement is of supply voltage and opr Symbo m Clock Frequency uration	t that is at the specified TTL voltage level rath S erating free-air temperature, V _{REF} = 1.0V I LEAB or LEBA HIGH	(unless othern 15 3.	GND. wise noted). n Ma 0 2	ax	MHz
AC C Over rect	Dperating commended range Maximu Pulse D	Requirement is of supply voltage and opr Symbo m Clock Frequency uration	t that is at the specified TTL voltage level rath S erating free-air temperature, V _{REF} = 1.0V I LEAB or LEBA HIGH CLKAB or CLKBA HIGH or LOW	(unless otherw (unless otherw 15 3.0 3.1	GND. wise noted). n Ma 0 2 5 	ax	MHz
AC C Over rect	Dperating commended range Maximu Pulse D	Requirement is of supply voltage and opr Symbo m Clock Frequency uration	tt that is at the specified TTL voltage level rath S erating free-air temperature, V _{REF} = 1.0V I LEAB or LEBA HIGH CLKAB or CLKBA HIGH or LOW A before CLKAB↑	(unless othern 15 3.0 0.1	GND. wise noted). n Ma 0 2 5 1 	ax	MHz
AC C	Dperating commended range Maximu Pulse D	Requirement is of supply voltage and opr Symbo m Clock Frequency uration	t that is at the specified TTL voltage level rath S arating free-air temperature, V _{REF} = 1.0V I LEAB or LEBA HIGH CLKAB or CLKBA HIGH or LOW A before CLKAB↑ B before CLKBA↑	(unless othern (unless othern 15 3.(3.: 0.3 3.:	GND. wise noted). n Ma 0 2 5 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4		MHz
AC C Over rect	Dperating commended range Maximu Pulse D	Requirement is of supply voltage and opr Symbo m Clock Frequency uration	t that is at the specified TTL voltage level rath S erating free-air temperature, V _{REF} = 1.0V I LEAB or LEBA HIGH CLKAB or CLKBA HIGH or LOW A before CLKBA↑ B before CLKBA↑ A before LEAB↓	(unless othen (unless othen 15 3.0 3.1 3.1 3.1 3.1 1.1	GND. wise noted). n Ma 0 2 2 5 1 3 7 4 4 4 4 4 4 4 4 4 4 4 4 4		MHz
AC C Over rect	Dperating commended range Maximu Pulse D	Requirement is of supply voltage and opr Symbo m Clock Frequency uration	t that is at the specified TTL voltage level rath S erating free-air temperature, V _{REF} = 1.0V I LEAB or LEBA HIGH CLKAB or CLKBA HIGH or LOW A before CLKBA↑ B before CLKBA↑ A before LEAB↓ B before LEBA↓	(unless other (unless other 15 3.(3.2 0.1 3.2 1.2 3.2 0.3 3.2 0.3 1.2 3.2 0.4 3.2 0.4 3.2 0.4 3.2 0.4 3.2 0.4 3.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0	GND. wise noted). n Ma 0 2 5 5 1 3 7 4		MHz
AC C Over reco	Dperating commended range Maximu Pulse D	I Requirement so of supply voltage and opr Symbo m Clock Frequency uration	t that is at the specified TTL voltage level rath S erating free-air temperature, V _{REF} = 1.0V LEAB or LEBA HIGH CLKAB or CLKBA HIGH or LOW A before CLKAB↑ B before CLKAB↑ B before LEBA↓ CEAB before CLKAB↑	(unless othern (unless othern 15 3.(3.) 0.1 3. 1.1 3. 3. 0.1	GND. wise noted). n Ma 0 2 2 5 1 3 7 4 0 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1		MHz
AC C Over reco	Dperating ommended range Maximu Pulse D Setup Tr	I Requirement so of supply voltage and opr Symbo m Clock Frequency uration	t that is at the specified TTL voltage level rath S arating free-air temperature, V _{REF} = 1.0V LEAB or LEBA HIGH CLKAB or CLKBA HIGH or LOW A before CLKBA↑ B before CLKBA↑ A before LEAB↓ B before LEBA↓ CEAB before CLKAB↑ CEBA before CLKBA↑	(unless othen (unless othen 15 3.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 1	GND. wise noted). n Ma 0 2 2 5 1 3 7 4 0 5 1 3 7 4 0 5 1 3 7 4 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1	3X	MHz
AC C Over reco	Dperating ommended range Maximu Pulse D Setup Tr	I Requirement so of supply voltage and opr Symbo m Clock Frequency uration	A before CLKBA↑ A before LEBA↓ CEAB before CLKAB↑ A after CLKAB↑	(unless othern (unless othern 15 3.(3.: 0.: 3.: 1.: 3.: 0.: 1.: 3.: 1.: 3.: 1.: 3.: 1.: 3.: 1.: 3.: 1.: 3.: 1.: 1.: 3.: 1.: 1.: 1.: 1.: 1.: 1.: 1.: 1.: 1.: 1	GND. wise noted).		MHz ns ns
AC C Over reco MAX W	Dperating ommended range Maximu Pulse D Setup Tr	I Requirement so of supply voltage and opr Symbo m Clock Frequency uration	I I LEAB or LEBA HIGH CLKAB or CLKBA HIGH or LOW A before CLKAB↑ B before CLKBA↑ A before LEAB↓ CEAB before CLKAB↑ CEAB before CLKAB↑ B before LEAB↓ CEAB before CLKAB↑ A after CLKAB↑ B after CLKBA↑	(unless other (unless other 15 3.(3.) 0.) 3. 1.; 3. 0. 1.; 3. 0. 1.; 3. 0. 0. 1.; 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	GND. wise noted). Mathematical sector of the sector of th		MHz
AC C Over rect	Dperating ommended range Maximu Pulse D Setup Tr	I Requirement so of supply voltage and opr Symbo m Clock Frequency uration	A before LEBA↓ CEAB before CLKAB↑ A before LEBA↓ CEAB before CLKAB↑ A before LEBA↓ CEAB before CLKAB↑ A before LEBA↓ CEBA before CLKAB↑ A before LEBA↓ CEBA before CLKAB↑ A after CLKBA↑ A after LEAB↓	(unless othern (unless othern 15 3.(3.3) 0.(3.3) 1.1,1 3.3) 0.(1.1,1 1.1,1 0.(0.1) 0.1 0.1 0.1	GND. wise noted). Mathematical sector of the sector of th		MHz ns ns

GTLP16612

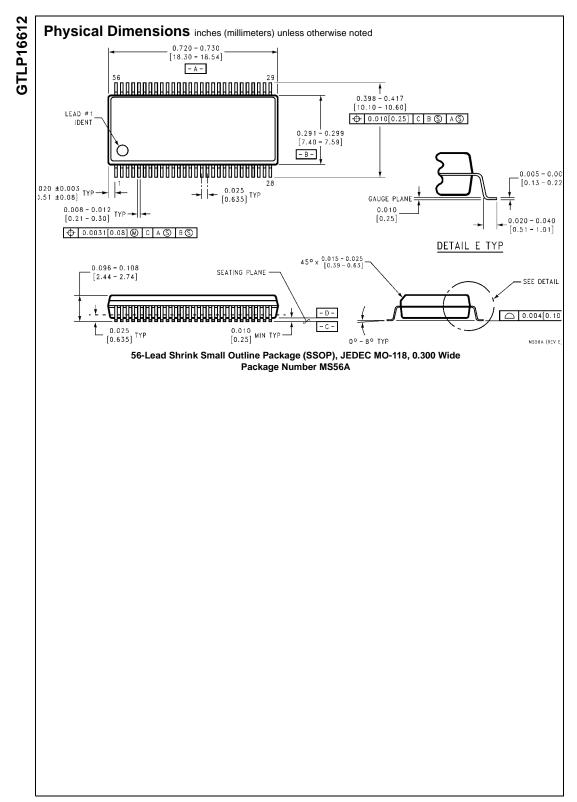
www.fairchildsemi.com


5

AC Electrical Characteristics

Over recommended range of supply voltage and operating free-air temperature, $V_{REF} = 1.0V$ (unless otherwise noted). $C_1 = 30 \text{ pF}$ for B Port and $C_1 = 50 \text{ pF}$ for A Port.

Symbol	From	То	Min	Тур	Max	Unit	
	(Input)	(Output)		(Note 10)			
t _{PLH}	А	В	1.0	4.3	6.5	20	
t _{PHL}			1.0	5.0	8.2	ns	
t _{PLH}	LEAB	В	1.8	4.5	6.7	ns	
t _{PHL}			1.5	5.3	8.6	115	
t _{PLH}	CLKAB	В	1.8	4.6	6.7	ns	
t _{PHL}			1.5	5.4	8.7	115	
t _{PLH}	OEAB	В	1.6	4.4	6.2	20	
t _{PHL}			1.3	6.1	9.8	ns	
t _{RISE}	Transition time, B ou	tputs (20% to 80%)		2.6		ns	
t _{FALL}	Transition time, B ou	tputs (20% to 80%)		2.6			
t _{PLH}	В	А	2.0	5.6	8.2	ns	
t _{PHL}			1.4	5.0	7.2	113	
t _{PLH}	LEBA	А	2.1	4.2	6.3	ns	
t _{PHL}			1.9	3.3	5.0	115	
t _{PLH}	CLKBA	А	2.3	4.4	6.8	ns	
t _{PHL}			2.2	3.5	5.2	115	
t _{PZH} , t _{PZL}	OEBA	А	1.5	5.0	6.2	ns	
t _{PHZ} , t _{PLZ}			1.9	3.9	7.9	115	


Note 10: All typical values are at V_{CC} = 3.3V, V_{CCQ} = 5.0V, and T_A = 25^{\circ}C.

www.fairchildsemi.com

7

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC