

LM92

±0.33°C Accurate, 12-Bit + Sign Temperature Sensor and Thermal Window Comparator With Two-Wire Interface

Check for Samples: LM92

FEATURES

- Window Comparison Simplifies Design of **ACPI-Compatible Temperature Monitoring and** Control
- Serial Bus Interface
- Separate Open-Drain Outputs for Interrupt and **Critical Temperature Shutdown**
- Shutdown Mode to Minimize Power Consumption
- Up to Four LM92s can be Connected to a ٠ Single Bus
- 12-Bit + Sign Output
- Operation up to 150°C

APPLICATIONS

- HVAC
- **Medical Electronics**
- **Electronic Test Equipment**
- System Thermal Management
- **Personal Computers**
- **Office Electronics**
- Automotive

KEY SPECIFICATIONS

- Supply Voltage 2.7V to 5.5V
- Supply Current operating 350 µA (typ) 625 µA • (max) shutdown 5 µA (typ)
- **Temperature Accuracy**
 - 30°C, ±0.33°C (max)
 - 10°C to 50°C, ±0.50°C (max)
 - -10°C to 85°C, ±1.0°C (max)
 - 125°C, ±1.25°C (max)
 - 25°C to 150°C, ±1.5°C (max)
- Linearity ±0.5°C (max)
- Resolution 0.0625°C

AA.

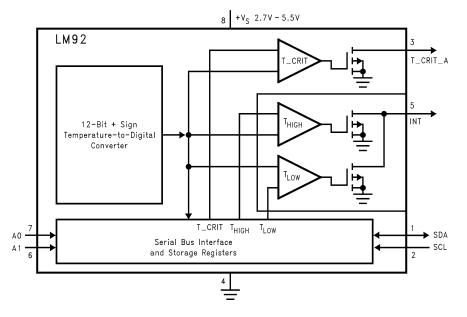
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. I²C is a trademark of dcl_owner.

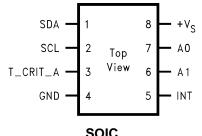
All other trademarks are the property of their respective owners.

DESCRIPTION

The LM92 is a digital temperature sensor and thermal window comparator with an I²C[™] Serial Bus interface and an accuracy of ±0.33°C. The window-comparator architecture of the LM92 eases the design of temperature control systems. The open-drain Interrupt (INT) output becomes active whenever temperature goes outside a programmable window, while a separate Critical Temperature Alarm (T_CRIT_A) output becomes active when the temperature exceeds a programmable critical limit. The INT output can operate in either a comparator or event mode, while the T_CRIT_A output operates in comparator mode only.

The host can program both the upper and lower limits of the window as well as the critical temperature limit. Programmable Hysteresis as well as a fault queue are available to minimize false tripping. Two pins (A0, A1) are available for address selection. The sensor powers up with default thresholds of 2°C T_{HYST}, 10°C T_{LOW}, 64°C T_{HIGH}, and 80°C T_CRIT.

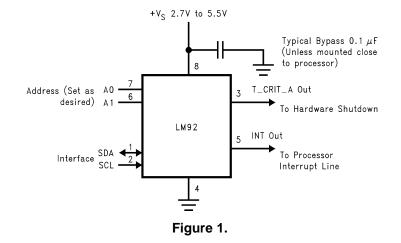

The LM92's 2.7V to 5.5V supply voltage range, Serial Bus interface, 12-bit + sign output, and full-scale range of over 128°C make it ideal for a wide range of applications. These include thermal management and applications in personal protection computers, electronic test equipment, office electronics. automotive, medical and HVAC applications.


SNIS110D-MARCH 2000-REVISED MARCH 2013

www.ti.com

Simplified Block Diagram

Connection Diagram


SOIC See Package Number D (R-PDSO-G8)

Pin Description

Label	Pin No.	Function	Typical Connection
SDA	1	Serial Bi-Directional Data Line. Open Drain Output	From Controller
SCL	2	Serial Bus Clock Input	From Controller
T_CRIT_A	3	Critical Temperature Alarm Open Drain Output	Pull Up Resistor, Controller Interrupt Line or System Hardware Shutdown
GND	4	Power Supply Ground	Ground
INT	5	Interrupt Open Drain Output	Pull Up Resistor, Controller Interrupt Line
+V _S	8	Positive Supply Voltage Input	DC Voltage from 2.7V to 5.5V
A0–A1	7,6	User-Set Address Inputs	Ground (Low, "0") or +V _S (High, "1")

Typical Application

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings (1)

Supply Voltage		-0.3 V to 6.5V
Voltage at any Pin		-0.3 V to (+V _S + 0.3V)
Input Current at any Pin		5 mA
Package Input Current ⁽²⁾		20 mA
T_CRIT_A and INT Output Sink Current	10 mA	
T_CRIT_A and INT Output Voltage		6.5V
Storage Temperature		−65°C to +125°C
ESD Susceptibility ⁽³⁾	Human Body Model	2500V
	Machine Model	250V
Soldering process must comply with Reflow Temperatu	ure Profile specifications. Refer to http://www.ti.co	m/lit/SNOA549. ⁽⁴⁾

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.

(2) When the input voltage (V_I) at any pin exceeds the power supplies (V_I < GND or V_I > +V_S) the current at that pin should be limited to 5 mA. The 20 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 5 mA to four.

(3) Human body model, 100 pF discharged through a 1.5 kΩ resistor. Machine model, 200 pF discharged directly into each pin.

(4) Reflow temperature profiles are different for lead-free and non-lead-free packages.

Operating Ratings (1) (2)

Specified Temperature Range ⁽³⁾ , T _{MIN} to T _{MAX}	−55°C to +150°C
Supply Voltage Range (+V _S)	+2.7V to +5.5V

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.

(2) LM92 θ_{JA} (thermal resistance, junction-to-ambient) when attached to a printed circuit board with 2 oz. foil is 200 °C/W.

(3) While the LM92 has a full-scale-range in excess of 128°C, prolonged operation at temperatures above 125 °C is not recommended.

SNIS110D-MARCH 2000-REVISED MARCH 2013

Electrical Characteristics Temperature-to-Digital Converter Characteristics

Unless otherwise noted, these specifications apply for $+V_S = +2.7V$ to +5.5V for LM92CIM . Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = +25^{\circ}$ C, unless otherwise noted.

Parameter	Conditions	Typical ⁽¹⁾	Limits ⁽²⁾	Unit (Limit)
Accuracy (This is a summary. For more	$T_A = +30^{\circ}C$, $+V_S = 3.3V$ to 4.0V		±0.33	
detailed information please see ⁽³⁾)	$T_A = 10^{\circ}C \text{ or } +50^{\circ}C, +V_S = 3.3V \text{ to}$ 4.0V		±0.50	
	$T_A = -10$ °C or +85°C, +V _S = 3.3V to 4.0V		±1.00	°C (max)
	$T_A = +125^{\circ}C, +V_S = 4.0V$		±1.25	
	$T_A = -25^{\circ}C$ to $150^{\circ}C$, $+V_S = 4.0V$		±1.50	
Resolution	(4)	13 0.0625		Bits °C
Linearity ⁽⁵⁾			±0.5	°C (max)
Offset Error of Transfer Function ⁽⁶⁾	$+V_{S} = 4.0V$			°C (max)
Offset Error of Transfer Function Supply	$2.7 \forall \le + \forall_S < 3.6 \forall$			°C/V (max)
Sensitivity	$3.6V \le +V_S \le 5.5V$			°C/V (max)
Temperature Conversion Time	(7)	500	1000	ms
Quiescent Current	I ² C Inactive	0.35		mA
	I ² C Active	0.35	0.625	mA (max)
	Shutdown Mode	5		μA
T HYST Default Temperature		⁽⁸⁾⁽⁹⁾ 2		°C
T LOW Default Temperature	(9)	10		°C
T HIGH Default Temperature	(9)	64		°C
T _C Default Temperature	(9)	80		°C

(1) Typical values are at $T_A = 25$ °C and represent most likely parametric norm.

(2) Limits are guaranteed to TI's AOQL (Average Outgoing Quality Level).

(3) The limits found in Table 1 supersede the limits shown in the Electrical Characteristics Table. The Accuracy specification includes errors due to linearity, offset and gain. The accuracy specification includes effects of self heating with negligible digital output loading. Pull-up resistors should be maximized (10k typical recommended), so that self heating due to digital output loading is negligible.

(4) Limits at intermediate temperatures can be calculated using a straight line interpolation as shown in Figure 2 and Figure 3.

(5) Linearity Error is defined as the worse case difference of an actual reading to that of a calculated reading derived from the straight line whose endpoints are measured at 30°C and 125°C for the range of 30°C to 125°C or whose endpoints are measured at 30°C and −25°C for the range of 30°C to −25°.

(6) Offset Error calibration should be done at 30°C. The residual error of the transfer function is then equivalent to the Accuracy Limit minus the Offset Limit. This does not take into account the power supply sensitivity of the offset error. Nor, does it take into account the error introduced by the calibration system used.

(7) This specification is provided only to indicate how often temperature data is updated. The LM92 can be read at any time without regard to conversion state (and will yield last conversion result). If a conversion is in process it will be interrupted and restarted after the end of the read.

(8) 12 bits + sign, two's complement

(9) Default values set at power up.

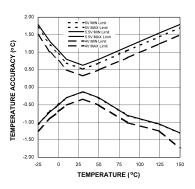
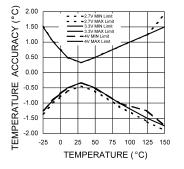



Figure 2. Accuracy vs Temperature with $+V_s = 5V$

Conditions	+V _S =2.7V	+V _S =3.3V	+V _S =4V	+V _S =5V	+V _S =5.5V	Unit
T _A = −25°C	-1.35/+1.50	-1.25/+1.50	-1.25/+1.50	-1.05/+1.70	-1.05/+1.80	°C (max)
T _A = -10°C	±1.00	-0.90/+1.00	-0.90/+1.00	-0.70/+1.20	-0.70/+1.30	°C (max)
$T_A = 0^{\circ}C$	-0.80/+0.75	-0.70/+0.75	-0.70/+0.75	-0.50/+0.95	-0.50/+1.05	°C (max)
T _A = 10°C	-0.60/+0.50	±0.50	±0.50	-0.30/+0.70	-0.30/+0.80	°C (max)
T _A = 30°C	-0.43/+0.33	±0.33	±0.33	-0.13/+0.53	-0.13/+0.63	°C (max)
T _A = 50°C	-0.60/+0.50	±0.50	±0.50	-0.30/+0.70	-0.30/+0.80	°C (max)
T _A = 85°C	-1.10/+0.85	-1.00/+0.85	-1.00/+0.85	-0.80/+1.05	-0.80/+1.15	°C (max)
T _A = 125°C	-1.60/+1.25	-1.50/+1.25	±1.25	-1.05/+1.45	-1.05/+1.55	°C (max)
T _A = 150°C	±1.90	-1.75/+1.50	±1.50	-1.30/+1.70	-1.30/+1.80	°C (max)

Table 1. Temperature Accuracy Parameter Limits

Digital DC Characteristics

Unless otherwise noted, these specifications apply for +V_S= +2.7V to +5.5V for LM92CIM . Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = +25$ °C, unless otherwise noted.

Symbol	Parameter	Conditions	Typical ⁽¹⁾	Limits ⁽²⁾	Unit (Limit)
V _{IN(1)}	SDA and SCL Logical "1" Input Voltage			+V _S × 0.7	V (min)
				+V _S +0.3	V (max)
V _{IN(0)}	SDA and SCL Logical "0" Input Voltage			-0.3	V (min)
				+V _S × 0.3	V (max)
V _{IN(HYST)}	SDA and SCL Digital Input Hysteresis		500	250	mV (min)
V _{IN(1)}	A0 and A1 Logical "1" Input Voltage			2.0	V (min)
				+V _S +0.3	V (max)
V _{IN(0)}	A0 and A1 Logical "0" Input Voltage			-0.3	V (min)
				0.7	V (max)
I _{IN(1)}	Logical "1" Input Current	$V_{IN} = + V_S$	0.005	1.0	μA (max)
I _{IN(0)}	Logical "0" Input Current	V _{IN} = 0 V	-0.005	-1.0	μA (max)
CIN	Capacitance of All Digital Inputs		20		pF
I _{OH}	High Level Output Current	$V_{OH} = + V_S$		10	μA (max)
V _{OL}	Low Level Output Voltage	I _{OL} = 3 mA		0.4	V (max)

(1) Typical values are at $T_A = 25$ °C and represent most likely parametric norm.

(2) Limits are guaranteed to TI's AOQL (Average Outgoing Quality Level).

SNIS110D-MARCH 2000-REVISED MARCH 2013

www.ti.com

Digital DC Characteristics (continued)

Unless otherwise noted, these specifications apply for $+V_S = +2.7V$ to +5.5V for LM92CIM . Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = +25$ °C, unless otherwise noted.

Symbol	Parameter	Conditions	Typical ⁽¹⁾	Limits ⁽²⁾	Unit (Limit)
	T_CRIT_A Output Saturation Voltage	l _{OUT} = 4.0 mA		0.8	V (max)
	T_CRIT_A Delay			1	Conversions (max)
t _{OF}	Output Fall Time	C _L = 400 pF		250	ns (max)
		I _O = 3 mA			

(3) For best accuracy, minimize output loading. 10k pull-ups resistors should be sufficient. Higher sink currents can affect sensor accuracy with internal heating. This can cause an error of 0.64 °C at full rated sink current and saturation voltage based on junction-to-ambient thermal resistance.

Serial Bus Digital Switching Characteristics

Unless otherwise noted, these specifications apply for $+V_S = +2.7V$ to +5.5V for LM92CIM . Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = +25$ °C, unless otherwise noted. CL (load capacitance) on output lines = 80 pF unless otherwise specified. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = +25$ °C, unless otherwise noted.

Symbol	Parameter	Conditions	Typical ⁽¹⁾	Limits ^{(2) (3)}	Unit (Limit)
t ₁	SCL (Clock) Period			2.5	µs(min)
				1	ms(max)
t 2	Data in Set-Up Time to SCL High			100	ns(min)
t ₃	Data Out Stable after SCL Low			0	ns(min)
t ₄	SDA Low Set-Up Time to SCL Low (Start Condition)			100	ns(min)
t ₅	SDA High Hold Time after SCL High (Stop Condition)			100	ns(min)
t _{TIMEOUT}	SDA and SCL Time Low for Reset of Serial Interface ⁽⁴⁾			75 300	ms (min) ms (max)

(1) Typical values are at $T_A = 25$ °C and represent most likely parametric norm.

(2) Limits are guaranteed to TI's AOQL (Average Outgoing Quality Level).

(3) Timing specifications are tested at the bus input logic levels (Vin(0)=0.3xVA for a falling edge and Vin(1)=0.7xVA for a rising edge) when the SCL and SDA edge rates are similar.

(4) Holding the SDA and/or SCL lines Low for a time interval greater than t_{TIMEOUT} will cause the LM92 to reset SCL and SDA to the IDLE state of the serial bus communication (SDA and SCL set High).

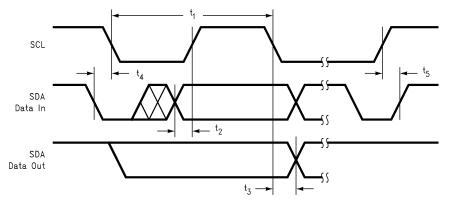


Figure 4. Serial Bus Communication

SNIS110D-MARCH 2000-REVISED MARCH 2013

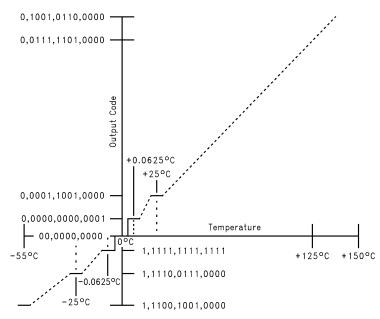


Figure 5. Temperature-to-Digital Transfer Function (Non-linear scale for clarity)

FUNCTIONAL DESCRIPTION

The LM92 temperature sensor incorporates a band-gap type temperature sensor, 13-bit ADC, and a digital comparator with user-programmable upper and lower limit values. The comparator activates either the INT line for temperatures outside the T_{LOW} and T_{HIGH} window, or the T_CRIT_A line for temperatures which exceed T_CRIT. The lines are programmable for mode and polarity.

TEMPERATURE COMPARISON

LM92 provides a window comparison against a lower (T_{LOW}) and upper (T_{HIGH}) trip point. A second upper trip point (T_CRIT) functions as a critical alarm shutdown. Figure 7 depicts the comparison function as well as the modes of operation.

Status Bits

The internal Status bits operate as follows:

"**True**": Temperature above a T_{HIGH} or T_CRIT is "true" for those respective bits. A "true" for T_{LOW} is temperature below T_{LOW} .

"False": Assuming temperature has previously crossed above T_{HIGH} or T_{CRIT} , then the temperature must drop below the points corresponding T_{HYST} ($T_{HIGH} - T_{HYST}$ or $T_{CRIT} - T_{HYST}$) in order for the condition to be false. For T_{LOW} , assuming temperature has previously crossed below T_{LOW} , a "false" occurs when temperature goes above $T_{LOW} + T_{HYST}$.

The Status bits are not affected by reads or any other actions, and always represent the state of temperature vs. setpoints.

Hardwire Outputs

The T_CRIT_A hardwire output mirrors the T_CRIT_A flag, when the flag is true, the T_CRIT_A output is asserted at all times regardless of mode. Reading the LM92 has no effect on the T_CRIT_A output, although the internal conversion is restarted.

The behavior of the INT hardwire output is as follows:

Comparator Interrupt Mode (Default): User reading part resets output until next measurement completes. If condition is still true, output is set again at end of next conversion cycle. For example, if a user never reads the part, and temperature goes below T_{LOW} then INT becomes active. It would stay that way until temperature goes above $T_{LOW} + T_{HYST}$. However if the user reads the part, the output would be reset. At the end of the next conversion cycle, if the condition is true, it is set again. If not, it remains reset.

Event Interrupt Mode: User reading part resets output until next condition "event" occurs (in other words, output is only set once for a true condition, if reset by a read, it remains reset until the next triggering threshold has been crossed). Conversely, if a user never read the part, the output would stay set indefinitely after the first event that set the output. An "event" for Event Interrupt Mode is defined as:

- 1. Transitioning upward across a setpoint, or
- 2. Transitioning downward across a setpoint's corresponding hysteresis (after having exceeded that setpoint).

For example, if a user never read the part, and temperature went below T_{LOW} then INT would become active. It would stay that way forever if a user never read the part.

However if the user read the part, the output would be reset. Even if the condition is true, it will remain reset. The temperature must cross above $T_{LOW} + T_{HYST}$ to set the output again.

In either mode, reading any register in the LM92 restarts the conversion. This allows a designer to know exactly when the LM92 begins a comparison. This prevents unnecessary Interrupts just after reprogramming setpoints. Typically, system Interrupt inputs are masked prior to reprogramming trip points. By doing a read just after resetting trip points, but prior to unmasking, unexpected Interrupts are prevented.

Avoid programming setpoints so close that their hysteresis values overlap. An example would be that with a T_{HYST} value of 2 °C then setting T_{HIGH} and T_{LOW} to within 4 °C of each other will violate this restriction. To be more specific, with T_{HYST} set to 2 °C assume T_{HIGH} set to 64 °C. If T_{LOW} is set equal to, or higher than 60 °C this restriction is violated.

LM92

www.ti.com

DEFAULT SETTINGS

The LM92 always powers up in a known state. LM92 power up default conditions are:

- 1. Comparator Interrupt Mode
- 2. T_{LOW} set to 10 °C
- 3. T_{HIGH} set to 64 °C
- 4. T_CRIT set to 80 °C
- 5. T_{HYST} set to 2 °C
- 6. INT and T_CRIT_A active low
- 7. Pointer set to "00"; Temperature Register

The LM92 registers will always reset to these default values when the power supply voltage is brought up from zero volts as the supply crosses the voltage level plotted in the following curve. The LM92 registers will reset again when the power supply drops below the voltage plotted in this curve.

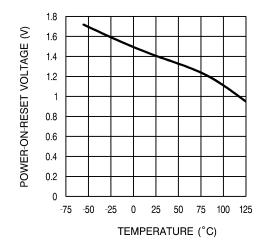
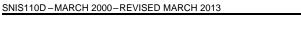
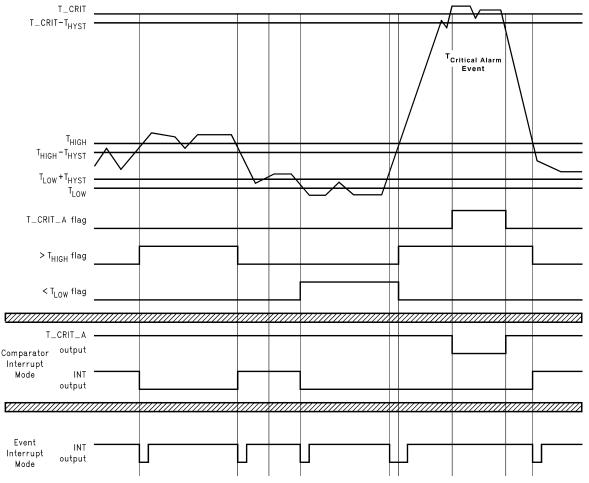


Figure 6. Average Power on Reset Voltage vs Temperature

SERIAL BUS INTERFACE


The LM92 operates as a slave on the Serial Bus, so the SCL line is an input (no clock is generated by the LM92) and the SDA line is a bi-directional serial data line. According to Serial Bus specifications, the LM92 has a 7-bit slave address. The five most significant bits of the slave address are hard wired inside the LM92 and are "10010". The two least significant bits of the address are assigned to pins A1–A0, and are set by connecting these pins to ground for a low, (0); or to $+V_S$ for a high, (1).


Therefore, the complete slave address is:

1	0	0	1	0	A1	A0
MSB						LSB

TEXAS INSTRUMENTS

www.ti.com

Note: Event Interrupt mode is drawn as if the user is reading the part. If the user doesn't read, the outputs would go low and stay that way until the LM92 is read. Comparator Interrupt Mode is drawn as if the user never reads the part. If the user does read, the outputs will go high once read instruction is executed and, if the fault condition still exists, go low at the end of the next conversion.

Figure 7. Temperature Response Diagram

TEMPERATURE DATA FORMAT

Temperature data can be read from the Temperature and Set Point registers; and written to the Set Point registers. Temperature data can be read at any time, although reading faster than the conversion time of the LM92 will prevent data from being updated. Temperature data is represented by a 13-bit, two's complement word with an LSB (Least Significant Bit) equal to 0.0625 °C:

•	•	
Digital Output		
Binary	Hex	
0 1000 0 010 0000	08 20h	
0 0111 1101 0000	07 D0h	
0 0101 0000 0000	05 00h	
0 0100 0000 0000	04 00h	
0 0001 1001 0000	01 90h	
0 0000 1010 0000	00 A0h	
0 0000 0010 0000	00 20h	
	Binary 0 1000 0 010 0000 0 0111 1101 0000 0 0101 0000 0000 0 0100 0000 0000 0 0001 1001 0000 0 0000 1010 0000	

Table 2.	Temperature	Data	Output
----------	-------------	------	--------

SNIS110D - MARCH 2000 - REVISED MARCH 2013

Temperature	Digital Out	tput
	Binary	Hex
+0.0625 °C	0 0000 0000 0001	00 01h
0 °C	00 0000 0000	00 00h
−0.0625 °C	1 1111 1111 1111	1F FFh
−25 °C	1 1110 0111 0000	1E 70h
−55 °C	1 1100 1001 0000	1C 90h

Table 2. Temperature Data Output (continued)

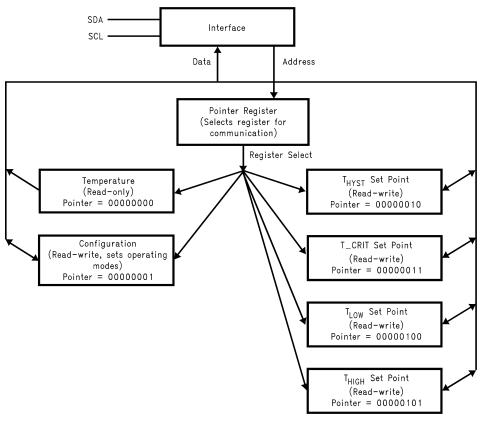
SHUTDOWN MODE

Shutdown mode is enabled by setting the shutdown bit in the Configuration register via the Serial Bus. Shutdown mode reduces power supply current to 5 µA typical. T_CRIT_A is reset if previously set. Since conversions are stopped during shutdown, T_CRIT_A and INT will not be operational. The Serial Bus interface remains active. Activity on the clock and data lines of the Serial Bus may slightly increase shutdown mode quiescent current. Registers can be read from and written to in shutdown mode. The LM92 takes milliseconds to respond to the shutdown command.

INT AND T_CRIT_A OUTPUT

The INT and T_CRIT_A outputs are open-drain outputs and do not have internal pull-ups. A "high" level will not be observed on these pins until pull-up current is provided from some external source, typically a pull-up resistor. Choice of resistor value depends on many system factors but, in general, the pull-up resistor should be as large as possible. This will minimize any errors due to internal heating of the LM92. The maximum resistance of the pull up, based on LM92 specification for High Level Output Current, to provide a 2 volt high level, is 30K ohms.

FAULT QUEUE


A fault queue of 4 faults is provided to prevent false tripping when the LM92 is used in noisy environments. The 4 faults must occur consecutively to set flags as well as INT and T_CRIT_A outputs. The fault queue is enabled by setting bit 4 of the Configuration Register high (see CONFIGURATION REGISTER).

TEXAS INSTRUMENTS

SNIS110D-MARCH 2000-REVISED MARCH 2013

www.ti.com

INTERNAL REGISTER STRUCTURE

There are four data registers in the LM92, selected by the Pointer register. At power-up the Pointer is set to "00"; the location for the Temperature Register. The Pointer register latches the last location it was set to. In Interrupt Mode, a read from the LM92 resets the INT output. Placing the device in Shutdown mode resets the INT and T_CRIT_A outputs. All registers are read and write, except the Temperature register which is read only.

A write to the LM92 will always include the address byte and the Pointer byte. A write to the Configuration register requires one data byte, while the T_{LOW} , T_{HIGH} , and T_{CRIT} registers require two data bytes.

Reading the LM92 can take place either of two ways: If the location latched in the Pointer is correct (most of the time it is expected that the Pointer will point to the Temperature register because it will be the data most frequently read from the LM92), then the read can simply consist of an address byte, followed by retrieving the corresponding number of data bytes. If the Pointer needs to be set, then an address byte, pointer byte, repeat start, and another address byte plus required number of data bytes will accomplish a read.

The first data byte is the most significant byte with most significant bit first, permitting only as much data as necessary to be read to determine the temperature condition. For instance, if the first four bits of the temperature data indicates a critical condition, the host processor could immediately take action to remedy the excessive temperature. At the end of a read, the LM92 can accept either Acknowledge or No Acknowledge from the Master (No Acknowledge is typically used as a signal for the slave that the Master has read its last byte).

An inadvertent 8-bit read from a 16-bit register, with the D7 bit low, can cause the LM92 to stop in a state where the SDA line is held low as shown in Figure 9. This can prevent any further bus communication until at least 9 additional clock cycles have occurred. Alternatively, the master can issue clock cycles until SDA goes high, at which time issuing a "Stop" condition will reset the LM92.

SNIS110D-MARCH 2000-REVISED MARCH 2013

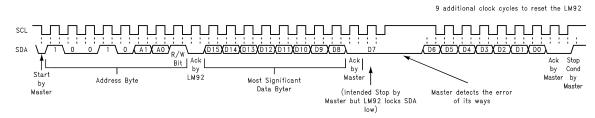


Figure 9. Inadvertent 8-Bit Read from 16-Bit Register where D7 is Zero ("0")

POINTER REGISTER

(Selects which registers will be read from or written to):

P7	P6	P5	P4	P3	P2	P1	P0	
0	0	0	0	0	Register Select			

P0-P2: Register Select:

P2	P1	P0	Register					
0	0	0	Temperature (Read only) (Power-up default)					
0	0	1	Configuration (Read/Write)					
0	1	0	T _{HYST} (Read/Write)					
0	1	1	CRIT (Read/Write)					
1	0	0	T _{LOW} (Read/Write)					
1	0	1	T _{HIGH} (Read/Write)					
1	1	1	Manufacturer's ID					

P3-P7: Must be kept zero.

TEMPERATURE REGISTER

Table 3. (Read Only):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Sign	MSB	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	CRIT	HIGH	LOW
													0,	Status Bit	s

D0–D2: Status Bits

D3–D15: Temperature Data. One LSB = 0.0625°C. Two's complement format.

CONFIGURATION REGISTER

Table 4. (Read/Write):

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	Fault Queue	INT Polarity	T_CRIT_A Polarity	INT Mode	Shutdown

D0: Shutdown - When set to 1 the LM92 goes to low power shutdown mode. Power up default of "0".

D1: Interrupt mode - 0 is Comparator Interrupt mode, 1 is Event Interrupt mode. Power up default of "0".

D2, D3: T_CRIT_A and INT Polarity - 0 is active low, 1 is active high. Outputs are open-drain. Power up default of "0"

D4: Fault Queue - When set to 1 the Fault Queue is enabled, see FAULT QUEUE. Power up default of "0".

D5–D7: These bits are used for production testing and must be kept zero for normal operation.

$T_{\text{HYST}}, \, T_{\text{LOW}}, \, T_{\text{HIGH}} \text{ AND } T_\text{CRIT}_\text{A REGISTERS}$

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Sign	MSB	Bit 10	Bit 9	Bit 8	Bit7	Bit6	Bit5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Х	Х	Х

D0–D2: Undefined

D3–D15: T_{HYST} , T_{LOW} , T_{HIGH} or T_CRIT Trip Temperature Data. Power up default is $T_{LOW} = 10^{\circ}$ C, $T_{HIGH} = 64^{\circ}$ C, $T_CRIT = 80^{\circ}$ C, $T_{HYST} = 2^{\circ}$ C.

 T_{HYST} is subtracted from T_{HIGH} , and T_{CRIT} , and added to T_{LOW} .

Avoid programming setpoints so close that their hysteresis values overlap. See TEMPERATURE COMPARISON.

Manufacturer's Identification Register

Table 6. (Read only):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

D0–D15: Manufactures ID.

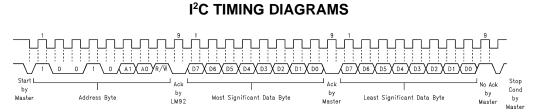


Figure 10. Typical 2-Byte Read From Preset Pointer Location Such as Temp or Comparison Registers

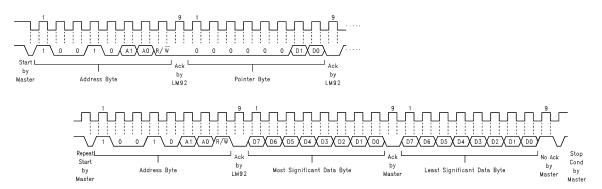


Figure 11. Typical Pointer Set Followed by Immediate Read for 2-Byte Register such as Temp or **Comparison Registers**

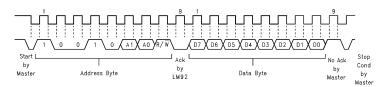


Figure 12. Typical 1-Byte Read from Configuration Register with Preset Pointer

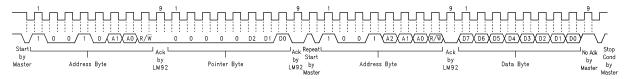
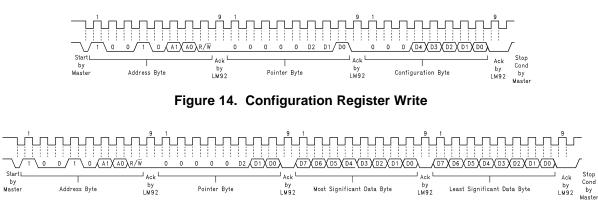



Figure 13. Typical Pointer Set Followed by Immediate Read from Configuration Register

Most Significant Data Byte

by LM92

Least Significant Data Byte

by LM92

Address Byte

by LM92

Pointer Byte

by LM92

SNIS110D-MARCH 2000-REVISED MARCH 2013

www.ti.com

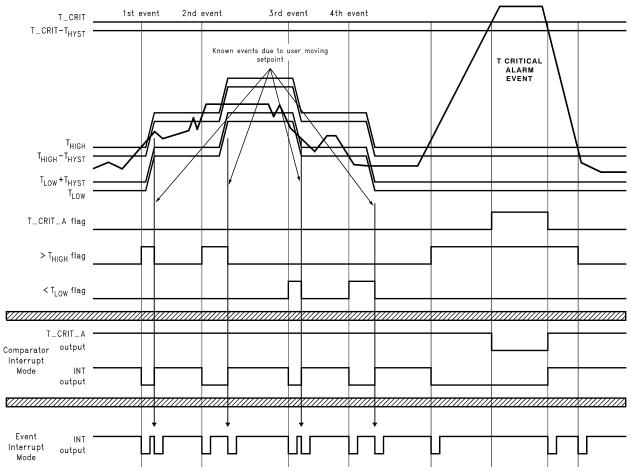
APPLICATION HINTS

The temperature response graph in Figure 16 depicts a typical application designed to meet ACPI requirements. In this type of application, the temperature scale is given an arbitrary value of "granularity", or the window within which temperature notification events should occur. The LM92 can be programmed to the window size chosen by the designer, and will issue interrupts to the processor whenever the window limits have been crossed. The internal flags permit quick determination of whether the temperature is rising or falling.

The T_CRIT limit would typically use its separate output to activate hardware shutdown circuitry separate from the processor. This is done because it is expected that if temperature has gotten this high that the processor may not be responding. The separate circuitry can then shut down the system, usually by shutting down the power supply.

Note that the INT and T_CRIT_A outputs are separate, but can be wire-ORed together. Alternatively the T_CRIT_A can be diode ORed to the INT line in such a way that a T_CRIT_A event activates the INT line, but an INT event does not activate the T_CRIT_A line. This may be useful in the event that it is desirable to notify both the processor and separate T_CRIT_A shutdown circuitry of a critical temperature alarm at the same time (maybe the processor is still working and can coordinate a graceful shutdown with the separate shutdown circuit).

To implement ACPI compatible sensing it is necessary to sense whenever the temperature goes outside the window, issue an interrupt, service the interrupt, and reprogram the window according to the desired granularity of the temperature scale. The reprogrammed window will now have the current temperature inside it, ready to issue an interrupt whenever the temperature deviates from the current window.


To understand this graph, assume that at the left hand side the system is at some nominal temperature. For the 1st event temperature rises above the upper window limit, T_{HIGH} , causing INT to go active. The system responds to the interrupt by querying the LM92's status bits and determines that T_{HIGH} was exceeded, indicating that temperature is rising. The system then programs the temperature limits to a value higher by an amount equal to the desired granularity. Note that in Event Interrupt Mode, reprogramming the limits has caused a second, known, interrupt to be issued since temperature has been returned within the window. In Comparator Interrupt Mode, the LM92 simply stops issuing interrupts.

The 2nd event is another identical rise in temperature. The 3rd event is typical of a drop in temperature. This is one of the conditions that demonstrates the power of the LM92, as the user receives notification that a lower limit is exceeded in such a way that temperature is dropping.

The Critical Alarm Event activates the separate T_CRIT_A output. Typically, this would feed circuitry separate from the processor on the assumption that if the system reached this temperature, the processor might not be responding.

SNIS110D-MARCH 2000-REVISED MARCH 2013

Note: Event Interrupt mode is drawn as if the user is reading the part. If the user doesn't read, the outputs would go low and stay that way until the LM92 is read.

Figure 16. Temperature Response Diagram for ACPI Implementation

Typical Applications

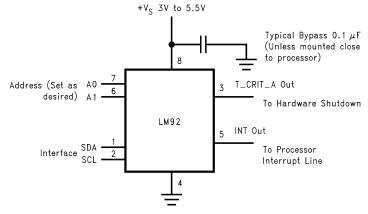


Figure 17. Typical Application

TEXAS INSTRUMENTS

www.ti.com

SNIS110D-MARCH 2000-REVISED MARCH 2013

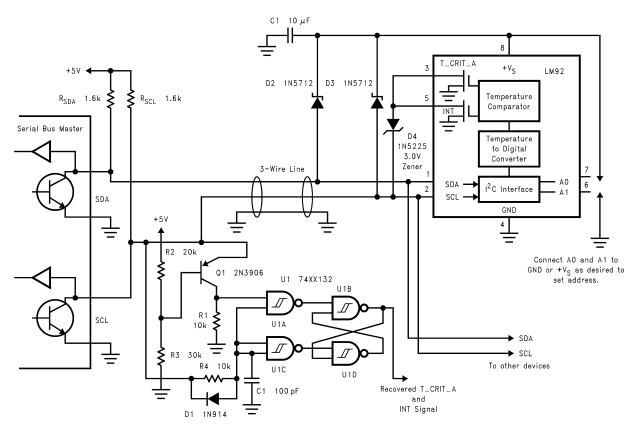


Figure 18. Remote HVAC temperature sensor communicates via 3 wires, including thermostat signals

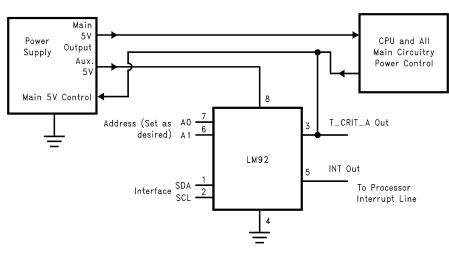


Figure 19. ACPI Compatible Terminal Alarm Shutdown

By powering the LM92 from auxiliary output of the power supply, a non-functioning overheated computer can be powered down to preserve as much of the system as possible.

SNIS110D - MARCH 2000 - REVISED MARCH 2013

Ch	nanges from Revision C (March 2013) to Revision D Page 10 Page	age
•	Changed layout of National Data Sheet to TI format	18

23-Sep-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
LM92CIM	NRND	SOIC	D	8	95	TBD	Call TI	Call TI	-55 to 150	LM92 CIM	
LM92CIM/NOPB	ACTIVE	SOIC	D	8	95	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-55 to 150	LM92 CIM	Samples
LM92CIMX/NOPB	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-55 to 150	LM92 CIM	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

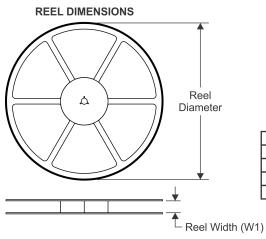
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

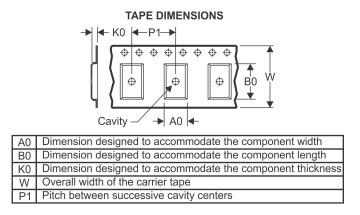
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

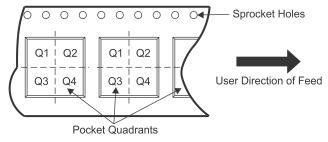
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

23-Sep-2017


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

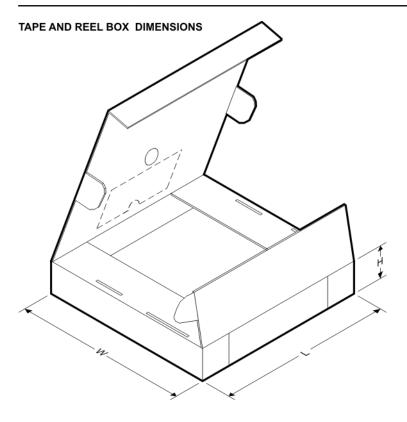
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal				
Device	Package	Package	SPQ	Reel

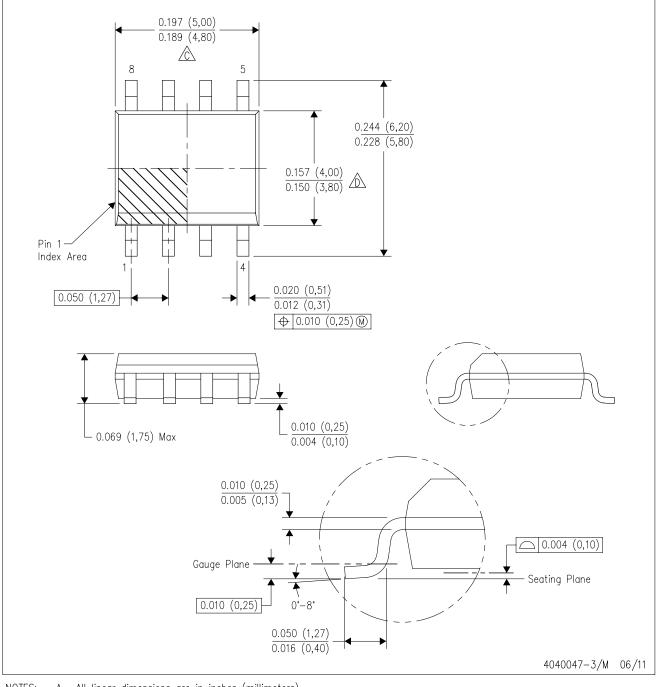

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM92CIMX/NOPB	SOIC	D	8	2500	330.0	12.4	6.5	5.4	2.0	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Aug-2017



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM92CIMX/NOPB	SOIC	D	8	2500	367.0	367.0	35.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated