

NGB8245N - 20 A, 450 V, N-Channel Ignition IGBT, D²PAK

20 Amps, 450 Volts VCE(on) ≤ 1.24 V @ IC = 15 A, VGE ≥ 4.0

Maximum Ratings (T_J = 25°C unless otherwise noted)

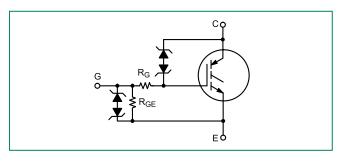
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{ces}	500	V
Gate Voltage	V _{cer}	500	V
Gate-Emitter Voltage	V _{ge}	±15	V
Collector Current–Continuous @T _c = 25°C – Pulsed	I _c	20 50	A _{DC} A _{AC}
Continuous Gate Current	Ι _g	1.0	mA
Transient Gate Current (t ≤ 2 ms, f ≤ 100 Hz)	I _G	20	mA
ESD (Human Body Model) R = 1500 Ω , C = 100 pF	ESD	8.0	kV
ESD (Machine Model) R = 0 Ω , C = 200 pF	ESD	500	V
Total Power Dissipation @T _c = 25°C Derate above 25°C	P _D	150 1.0	W W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Description

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over–Voltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.

Po


Features

- Ideal for Coil–on–Plug and Driver–on–Coil Applications
- D²PAK Package Offers Smaller Footprint for Increased Board Space
- Gate-Emitter ESD Protection
- Temperature Compensated Gate–Collector Voltage Clamp Limits Stress Applied to Load
- LowThreshold Voltage for Interfacing Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability
- This is a Pb–Free Device

Applications

Ignition Systems

Functional Diagram

Additional Information

Revised: 05/25/18

Unclamped Collector–To–Emitter Avalanche Characteristics

Rating	Symbol	Value	Unit
Single Pulse Collector–to–Emitter Avalanche Energy $V_{cc} = 50 \text{ V}, V_{GE} = 5.0 \text{ V}, \text{ Pk I}_{L} = 9.5 \text{ A}, \text{ R}_{G} = 1 \text{ k}\Omega, \text{ L} = 3.5 \text{ mH}, \text{ Starting T}_{c} = 150^{\circ}\text{C}$	E _{AS}	158	mJ

Thermal Characteristics

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{θJC}	1.0	°C/W
Thermal Resistance, Junction-to-Ambient (Note 1)	R _{θJA}	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds (Note 2)	TL	275	°C

1. When surface mounted to an FR4 board using the minimum recommended pad size.

2. For further details, see Soldering and Mounting Techniques Reference Manual: SOLDERRM/D.

Electrical Characteristics - OFF Characteristics (Note 3)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit							
		l _c = 2.0 mA	T _J = −40°C to 175°C	430	450	470								
Collector-Emitter	BV _{CES}	IC = 10 mA	T _J = −40°C to 175°C	450	475	500	V							
Clamp Voltage	CES	IC = 12 A, L = 3.5 mH, R _G = 1 kΩ (Note 4)	T _J = -40°C to 175°C	420	450	480								
Collector-Emitter		V _{ce} = 15 V V _{ge} = 0 V	T _J = 25°C	-	0.002	1.0								
Leakage Current	I _{CES}	$V_{ce} = 250V$ $R_{g} = 1k\Omega$	T _J = -40°C to 175°C	0.5	2.0	100	μΑ							
			T _J = 25°C	30	33	39								
Reverse Collector–Emitter Clamp Voltage	B _{VCES (R)}	IC = -75 mA	T _J = 175°C	31	35	40	v							
										$T_J = -40$ °C	30	31	37	
			T _J = 25°C	-	0.4	1.0								
Reverse Collector–Emitter Leakage Current	I _{CES(R)}	$V_{CE} = -24 V$	T _J = 175°C	-	20	35	mA							
			$T_J = -40$ °C	-	0.04	0.2								
Gate-Emitter Clamp Voltage	BV_{GES}	I _g = ±5.0 mA	T _J = −40°C to 175°C	12	12.5	14	V							
Gate-Emitter Leakage Current	I _{ges}	$V_{GE} = \pm 5.0 \text{ V}$	T _J = −40°C to 175°C	200	316	350	μA							
Gate Resistor	R_{G}	_	T _J = −40°C to 175°C	-	70	-	Ω							
Gate-Emitter Resistor	R_{GE}	_	T _J = −40°C to 175°C	14.25	16	25	kΩ							

Electrical Characteristics - ON Characteristics (Note 3)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
			T _J = 25°C	1.5	1.8	2.1	
Gate Threshold Voltage	VGE (th)	$I_c = 1.0 \text{ mA},$ $V_{GE} = V_{CE}$	Т _Ј = 175°С	0.7	1.0	1.3	V
		GE – CE	$T_J = -40$ °C	1.7	2.0	2.3	
Threshold Temperature Coefficient (Negative)	-	_	_	4.0	4.6	5.2	mV/⁰C
		V _{GE} = 3.7 V, I _C = 10 A	T _J = -40°C to 175°C	0.8	1.11	1.97	
Collector-to-Emitter On-Voltage	VG _(on)	V _{GE} = 4.0 V, I _c = 10 A	T _J = -40°C to 175°C	0.8	1.10	1.85	V
		V _{GE} = 4.0 V, I _C = 15 A	T _J = −40°C to 175°C	0.8	1.24	2.00	
Forward Transconductance	gfs	V _{ce} = 5.0 V, I _c = 6.0 A	T _J = 25°C	10	19	25	Mhos

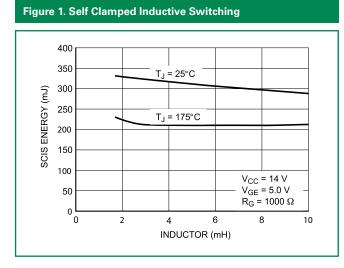
Dynamic Characteristics (Note 3)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit		
Input Capacitance	C _{ISS}	V _{ce} = 25 V f = 10 MHz		C _{ISS}		1100	1400	1600	
Output Capacitance	C _{oss}			T _J = 25°C	50	65	80	pF	
Transfer Capacitance	C _{RSS}				15	20	25		

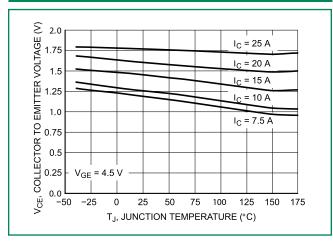
Surface Mount > 450V > NGB8245N

Switching Characteristics (Note 3)

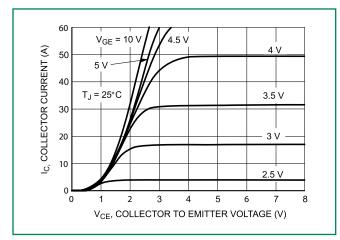
Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
Turn–On Delay Time (Resistive) 10% V _{GE} to 10% I _C	t _{d (on)R}		T _J = −40°C to 175°C	0.1	1.0	2.0	
Rise Time (Resistive) 10% I _c to 90% I _c	t _{rR}	V _{cc} = 14 V R _L = 1.0 Ω	T _J = −40°C to 175°C	1.0	3.4	6.0	
Turn-Off Delay Time (Resistive) 90% V _{GE} to 90% I _C	t _{d (off)R}	$V_{\rm GE} = 5.0 \text{ V}$ $R_{\rm G} = 1.0 \text{ k}\Omega$	T _J = −40°C to 175°C	2.0	4.5	8.0	
Fall Time (Resistive) 90% I _c to 10% I _c	t _{fR}		T _J = −40°C to 175°C	3.0	8.0	12	μS
Turn–Off Delay Time (Inductive) 90% $V_{_{GE}}$ to 90% I $_{_{C}}$	t _{d(off)L}	$V_{ce} = BV_{ces},$ L = 0.5mH,	T _J = −40°C to 175°C	6.5	9.7	12.5	
Fall Time (Inductive) 90% I _c to 10% I _c	t _{fL}	$R_{g} = 1.0 kΩ,$ $I_{c} = 10 A,$ $V_{ge} = 5.0 V$	T _J = −40°C to 175°C	6.0	8.3	11	


3. Electrical Characteristics at temperature other than 25°C, Dynamic and Switching characteristics are not subject to production testing.

4. Not subject to production testing.



Surface Mount > 450V > NGB8245N


Ratings and Characteristic Curves

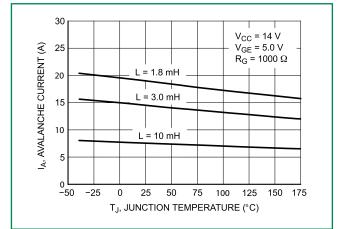
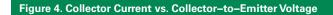
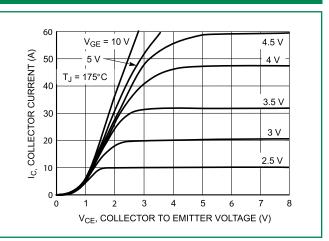


Figure 3. Collector-to-Emitter Voltage vs. Junction Temperature




Figure 5. Collector Current vs. Collector-to-Emitter Voltage

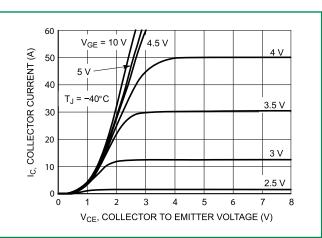
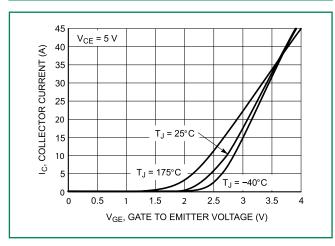


Figure 2. Open Secondary Avalanche Current vs. Temperature

Figure 6. Collector Current vs. Collector-to-Emitter Voltage



Ignition IGBT

Surface Mount > 450V > NGB8245N

Figure 7. . Transfer Characteristics

Figure 9. Gate Threshold Voltage vs. Temperature

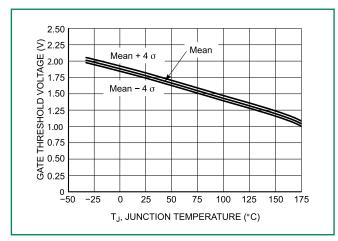
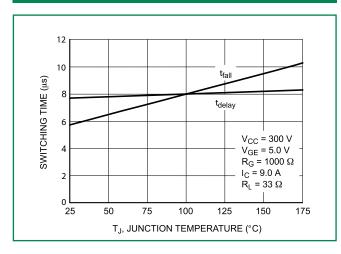
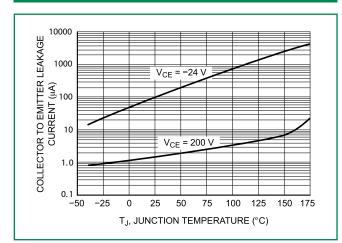
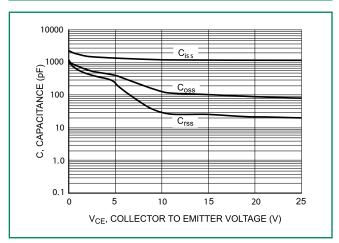


Figure 11. Resistive Switching Fall Time vs. Temperature

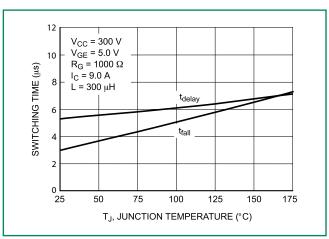
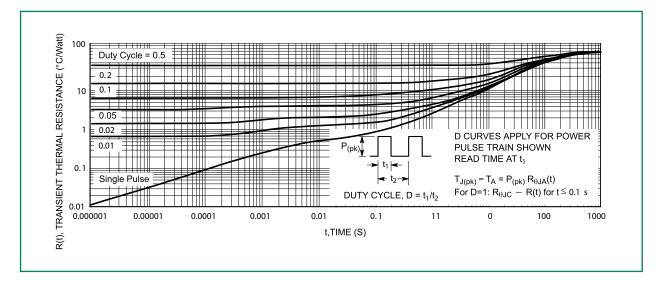
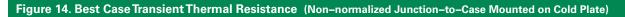
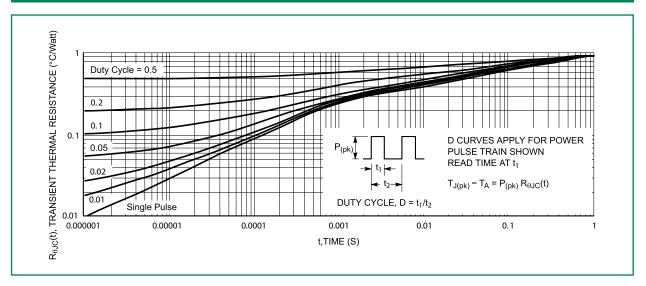
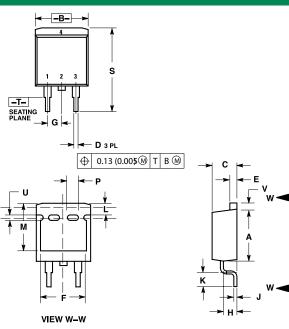

Figure 8. Collector-to-Emitter Leakage Current vs. Temperature

Figure 10. Capacitance vs. Collector-to-Emitter Voltage




Figure 12. Inductive Switching Fall Time vs. Temperature




Ignition IGBT

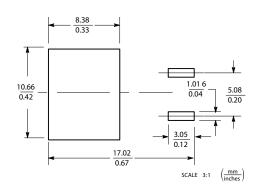
Surface Mount > 450V > NGB8245N

Dimensions

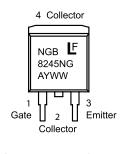
Littelfuse

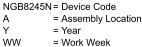
Expertise Applied Answers Delivered

Dim	Inches		Millin	neters	
Dim	Min	Max	Min	Max	
А	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
С	0.160	0.190	4.06	4.83	
D	0.020	0.035	0.51	0.89	
Е	0.045	0.055	1.14	1.40	
F	0.310	0.350	7.87	8.89	
G	0.100 BSC		2.54 BSC		
Н	0.080	0.110	2.03	2.79	
J	0.018	0.025	0.46	0.64	
К	0.090	0.110	2.29	2.79	
L	0.052	0.072	1.32	1.83	
Μ	0.280	0.320	7.11	8.13	
Ν	0.197	0.197 REF		REF	
Р	0.079 REF		2.00 REF		
R	0.039	0.039 REF		REF	
S	0.575	0.625	14.60	15.88	
V	0.045	0.055	1.14	1.40	


NOTES:

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.


3. 418B-01THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04. STYLE 4:


PIN: 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

Soldering Footrpint

Part Marking System

= Pb-Free Package

ORDERING INFORMATION

G

Device	Package	Shipping
NGB8245NT4G	D²PAK (Pb–Free)	800 / Tape & Reel

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: <u>www.littelfuse.com/disclaimer-electronics</u>.