

Sample &

Buy

PCA9548A SCPS143E - JUNE 2009-REVISED FEBRUARY 2015

PCA9548A Low Voltage 8-Channel I²C Switch With Reset

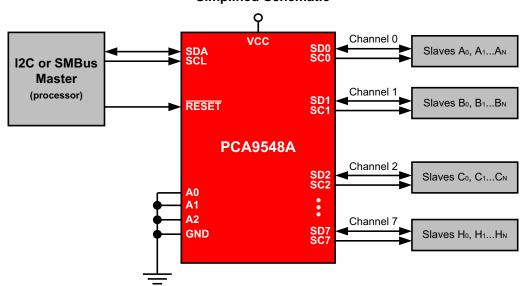
1 Features

- 1-of-8 Bidirectional Translating Switches
- I²C Bus and SMBus Compatible
- Active-Low Reset Input
- Three Hardware Address Pins for Use of up to Eight PCA9548A Devices on the I²C Bus
- Channel Selection Via I²C Bus
- Power-Up with All Switch Channels Deselected
- Low RON Switches
- Allows Voltage-Level Translation Between 1.8-V, ٠ 2.5-V, 3.3-V, and 5-V Buses
- No Glitch on Power Up
- Supports Hot Insertion
- Low Standby Current
- **Operating Power-Supply Voltage Range of 2.3** V to 5.5 V
- 5-V Tolerant Inputs
- 0 to 400-kHz Clock Frequency
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Servers
- Routers (Telecom Switching Equipment)
- Factory Automation
- Products With I²C Slave Address Conflicts (e.g. Multiple, Identical Temp Sensors)

3 Description


The PCA9548A has eight bidirectional translating switches that can be controlled via the I²C bus. The SCL/SDA upstream pair fans out to eight downstream pairs, or channels. Any individual SCx/SDx channel or combination of channels can be selected, determined by the contents of the programmable control register.

The system master can reset the PCA9548A in the event of a timeout or other improper operation by asserting a low in the RESET input. Similarly, the power-on reset deselects all channels and initializes the I²C/SMBus state machine. Asserting RESET causes the same reset/initialization to occur without powering down the part.

Device Information⁽¹⁾

DEVICE NAME	PACKAGE	BODY SIZE (NOM)
PCA9548A	TSSOP (24)	7.80 mm × 4.40 mm
	VQFN (24)	4.00 mm × 4.00 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

1

2

3

4

5

6

7

8

9

Table of Contents

Features 1		9.2 Functional Block Diagram	10
Applications 1		9.3 Feature Description	11
Description 1		9.4 Device Functional Modes	11
Revision History		9.5 Programming	11
Description (continued)		9.6 Register Map	
Pin Configuration and Functions	10	Application and Implementation	
•		10.1 Application Information	16
Specifications		10.2 Typical Application	16
7.1 Absolute Maximum Ratings 4	11	Power Supply Recommendations	
7.2 ESD Ratings 4	••	11.1 Power-On Reset Errata	
7.3 Recommended Operating Conditions 4			
7.4 Thermal Information 4	12	Layout	
7.5 Electrical Characteristics		12.1 Layout Guidelines	20
7.6 I ² C Interface Timing Requirements		12.2 Layout Example	21
o 1	13	Device and Documentation Support	22
7.7 Switching Characteristics		13.1 Trademarks	
7.8 Reset Timing Requirements 6			
Parameter Measurement Information		13.2 Electrostatic Discharge Caution	
Detailed Description9		13.3 Glossary	22
-	14	Mechanical, Packaging, and Orderable	
9.1 Overview 9		Information	22

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Ch	Changes from Revision D (June 2014) to Revision E Changed front page image			
•	Changed front page image			
•	Added Thermal Information.	4		
•	Added Layout Example	21		

Updated Typical Application schematic.	Page	
•	Added RESET Errata section.	11
•	Updated Typical Application schematic.	17
•	Added Power-On Reset Errata section.	20

2

EXAS **STRUMENTS**


www.ti.com

5 Description (continued)

The pass gates of the switches are constructed so that the V_{CC} pin can be used to limit the maximum high voltage, which is passed by the PCA9548A. This allows the use of different bus voltages on each pair, so that 1.8-V or 2.5-V or 3.3-V parts can communicate with 5-V parts, without any additional protection. External pull-up resistors pull the bus up to the desired voltage level for each channel. All I/O pins are 5-V tolerant.

6 Pin Configuration and Functions

Pin Functions

PIN			
	NO.		DESCRIPTION
NAME	DW, DB, TPW, AND DGV	QFN (RGE)	
A0	1	22	Address input 0. Connect directly to V_{CC} or ground.
A1	2	23	Address input 1. Connect directly to V _{CC} or ground.
RESET	3	24	Active-low reset input. Connect to $V_{\mbox{\scriptsize CC}}$ through a pull-up resistor, if not used.
SD0	4	1	Serial data 0. Connect to V_{CC} through a pull-up resistor.
SC0	5	2	Serial clock 0. Connect to V _{CC} through a pull-up resistor.
SD1	6	3	Serial data 1. Connect to V _{CC} through a pull-up resistor.
SC1	7	4	Serial clock 1. Connect to V _{CC} through a pull-up resistor.
SC2	8	5	Serial data 2. Connect to V _{CC} through a pull-up resistor.
SC2	9	6	Serial clock 2. Connect to V _{CC} through a pull-up resistor.
SD3	10	7	Serial data 3. Connect to V _{CC} through a pull-up resistor.
SC3	11	8	Serial clock 3. Connect to V _{CC} through a pull-up resistor.
GND	12	9	Ground
SD4	13	10	Serial data 4. Connect to V _{CC} through a pull-up resistor.
SC4	14	11	Serial clock 4. Connect to V _{CC} through a pull-up resistor.
SD5	15	12	Serial data 5. Connect to V _{CC} through a pull-up resistor.
SC5	16	13	Serial clock 5. Connect to V _{CC} through a pull-up resistor.
SD6	17	14	Serial data 6. Connect to V _{CC} through a pull-up resistor.
SC6	18	15	Serial clock 6. Connect to V _{CC} through a pull-up resistor.
SD7	19	16	Serial data 7. Connect to V _{CC} through a pull-up resistor.
SC7	20	17	Serial clock 7. Connect to V _{CC} through a pull-up resistor.
A2	21	18	Address input 2. Connect directly to V _{CC} or ground.
SCL	22	19	Serial clock bus. Connect to V _{CC} through a pull-up resistor.
SDA	23	20	Serial data bus. Connect to V_{CC} through a pull-up resistor.
V _{CC}	24	21	Supply voltage

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply voltage	-0.5	7	V
VI	Input voltage ⁽²⁾	-0.5	7	V
II.	Input current		±20	mA
I _O	Output current		±25	mA
I _{CC}	Supply current		±100	mA
T _{stg}	Storage temperature range	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

7.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right) }$	±1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2.3	5.5	V
		SCL, SDA	$0.7 \times V_{CC}$	6	V
VIH	High-level input voltage	A2–A0, RESET	$0.7 \times V_{CC}$	V _{CC} + 0.5	
V	Low-level input voltage	SCL, SDA	-0.5	$0.3 \times V_{CC}$	V
V _{IL}		A2–A0, RESET	-0.5	$0.3 \times V_{CC}$	
T _A	Operating free-air temperature		-40	85	°C

 All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

7.4 Thermal Information

		PCA9548A					
	THERMAL METRIC ⁽¹⁾	DB	DGV	DW	PW	RGE	UNIT
				24 PINS			
R_{\thetaJA}	Junction-to-ambient thermal resistance	89.1	99.6	73.2	100.6	49.5	
R _{θJC(to}	Junction-to-case (top) thermal resistance	51.1	31.1	41.3	46.2	53.2	
$R_{\theta JB}$	Junction-to-board thermal resistance	46.6	53.1	42.9	54.5	26.4	°C/W
ΨJT	Junction-to-top characterization parameter	18.5	0.9	15.3	6.8	1.7	C/vv
ψ_{JB}	Junction-to-board characterization parameter	46.3	52.6	42.6	54.0	26.4	
R _{θJC(b} ot)	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	8.5	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

V_{CC} = 2.3 V to 3.6 V, over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETE	R	TEST CONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{POR}	Power-on reset v	oltage ⁽²⁾	No load, $V_I = V_{CC}$ or GND	V _{POR}		1.6	2.1	V
				5 V		3.6		
				4.5 V to 5.5 V	2.6		4.5	
				3.3 V		1.9		
V _{o(sw)}	Switch output vol	tage	$V_{i(sw)} = V_{CC}$, $I_{SWout} = -100 \ \mu A$	3 V to 3.6 V	1.6		2.8	V
				2.5 V		1.5		
				2.3 V to 2.7 V	1.1		2	
	0.0.4		V _{OL} = 0.4 V		3	6		
I _{OL}	SDA		V _{OL} = 0.6 V	2.3 V to 5.5 V	6	9		mA
	SCL, SDA						±1	
	SC7-SC0, SD7-	SD0					±1	
l _l	A2-A0		$V_{I} = V_{CC}$ or GND	2.3 V to 5.5 V			±1	μA
	RESET		_				±1	
				5.5 V		50	80	
		f _{SCL} = 400 kHz	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V		20	35	- μΑ
	Operating mode			2.7 V		11	20	
				5.5 V		9	30	
		f _{SCL} = 100 kHz	$V_{I} = V_{CC}$ or GND, $I_{O} = 0$	3.6 V		6	15	
				2.7 V		4	8	
ICC		Low inputs	$V_1 = GND, I_0 = 0$ $V_1 = V_{CC}, I_0 = 0$	5.5 V		0.2	1	
				3.6 V		0.1	1	
				2.7 V		0.1	1	
	Standby mode			5.5 V		0.2	1	
		High inputs		3.6 V		0.1	1	
				2.7 V		0.1	1	
A.1	Supply-current		SCL or SDA input at 0.6 V, Other inputs at V_{CC} or GND			3	20	۵
ΔI _{CC}	change	SCL, SDA	SCL or SDA input at $V_{CC} - 0.6 V$, Other inputs at V_{CC} or GND	2.3 V to 5.5 V		3	20	μA
	A2–A0					4	5	
Ci	RESET		$V_{I} = V_{CC}$ or GND	2.3 V to 5.5 V		4	5	pF
	SCL		$V_I = V_{CC}$ or GND, Switch OFF			20	28	-
(3)	SDA			22V to EEV		20	28	۳E
C _{io(off)} ⁽³⁾	SC7-SC0, SD7-SD0		$V_{I} = V_{CC}$ or GND, Switch OFF	2.3 V to 5.5 V		5.5	7.5	pF
			(1 - 0.4)(1 - 45 - 45)	4.5 V to 5.5 V	4	10	20	
R _{ON}	Switch-on resista	nce	$V_0 = 0.4 V, I_0 = 15 mA$	3 V to 3.6 V	5	12	30	Ω
			V _O = 0.4 V, I _O = 10 mA	2.3 V to 2.7 V	7	15	45	

(1) All typical values are at nominal supply voltage (2.5-V, 3.3-V, or 5-V V_{CC}), $T_A = 25^{\circ}C$. (2) The power-on reset circuit resets the I²C bus logic with V_{CC} < V_{POR}. V_{CC} must be lowered to 0.2 V to reset the device. (3) C_{io(ON)} depends on internal capacitance and external capacitance added to the SCn lines when channels(s) are ON.

SCPS143E -JUNE 2009-REVISED FEBRUARY 2015

www.ti.com

TRUMENTS

XAS

7.6 I²C Interface Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			STANDARD MODE I ² C BUS		FAST MODE I ² C BUS		UNIT
			MIN	MAX	MIN	MAX	
f _{scl}	I ² C clock frequency		0	100	0	400	kHz
t _{sch}	I ² C clock high time		4		0.6		μs
t _{scl}	I ² C clock low time		4.7		1.3		μs
t _{sp}	I ² C spike time			50		50	ns
t _{sds}	I ² C serial-data setup time		250		100		ns
t _{sdh}	I ² C serial-data hold time		0 ⁽¹⁾		0 ⁽¹⁾		μs
t _{icr}	I ² C input rise time			1000	20 + 0.1C _b ⁽²⁾	300	ns
t _{icf}	I ² C input fall time			300	20 + 0.1C _b ⁽²⁾	300	ns
t _{ocf}	l ² C output (SDn) fall time (10-pF to	9 400-pF bus)		300	20 + 0.1C _b ⁽²⁾	300	ns
t _{buf}	I ² C bus free time between stop and	d start	4.7		1.3		μs
t _{sts}	I ² C start or repeated start condition	n setup	4.7		0.6		μs
t _{sth}	I ² C start or repeated start condition	hold	4		0.6		μs
t _{sps}	I ² C stop condition setup		4		0.6		μs
t _{vdL(Data)}	Valid-data time (high to low) ⁽³⁾	SCL low to SDA output low valid		1		1	μs
t _{vdH(Data)}	Valid-data time (low to high) ⁽³⁾	SCL low to SDA output high valid		0.6		0.6	μs
t _{vd(ack)}	Valid-data time of ACK condition	ACK signal from SCL low to SDA output low		1		1	μs
C _b	I ² C bus capacitive load			400		400	pF

 A device internally must provide a hold time of at least 300 ns for the SDA signal (referred to the V_{IH} min of the SCL signal), to bridge the undefined region of the falling edge of SCL.

(2) $C_b = total bus capacitance of one bus line in pF$

(3) Data taken using a 1-kΩ pull-up resistor and 50-pF load (see Figure 2)

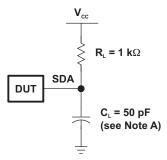
7.7 Switching Characteristics

over recommended operating free-air temperature range, $C_L \le 100 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER			FROM (INPUT)	TO (OUTPUT)	MIN MAX	UNIT
(1) Drana patient datas time	R_{ON} = 20 Ω , C_L = 15 pF	SDA or SCL	SDn or SCn	0.3	20	
'pd `	t _{pd} ⁽¹⁾ Propagation delay time	$R_{ON} = 20 \ \Omega, \ C_L = 50 \ pF$	SDA UI SCL	3011 01 3011	1	ns
t _{rst} ⁽²⁾	RESET time (SDA clear)		RESET	SDA	500	ns

(1) The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

(2) t_{rst} is the propagation delay measured from the time the RESET pin is first asserted low to the time the SDA pin is asserted high, signaling a stop condition. It must be a minimum of t_{WL}.

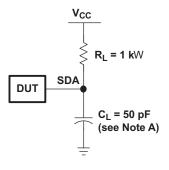

7.8 Reset Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
t _{W(L)}	Pulse duration, RESET low	6		ns
t _{REC(STA)}	Recovery time from RESET to start	0		ns

8 Parameter Measurement Information

SDA LOAD CONFIGURATION



BYTE	DESCRIPTION
1	I ² C address
2, 3	P-port data

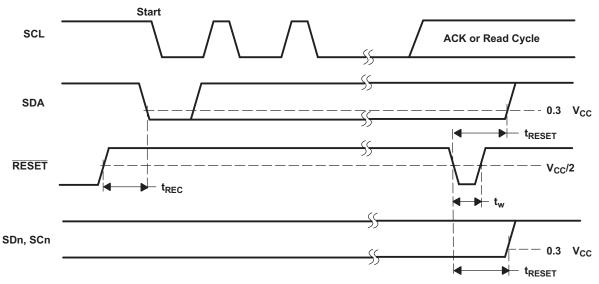

- A. C_L includes probe and jig capacitance.
- B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f \leq 30 ns.
- C. Not all parameters and waveforms are applicable to all devices.

Figure 1. I²C Load Circuit and Voltage Waveforms

Parameter Measurement Information (continued)

SDA LOAD CONFIGURATION

A. C_L includes probe and jig capacitance.

- B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f \leq 30 ns.
- C. I/Os are configured as inputs.

D. Not all parameters and waveforms are applicable to all devices.

Figure 2. Reset Load Circuit and Voltage Waveforms

www.ti.com

ISTRUMENTS

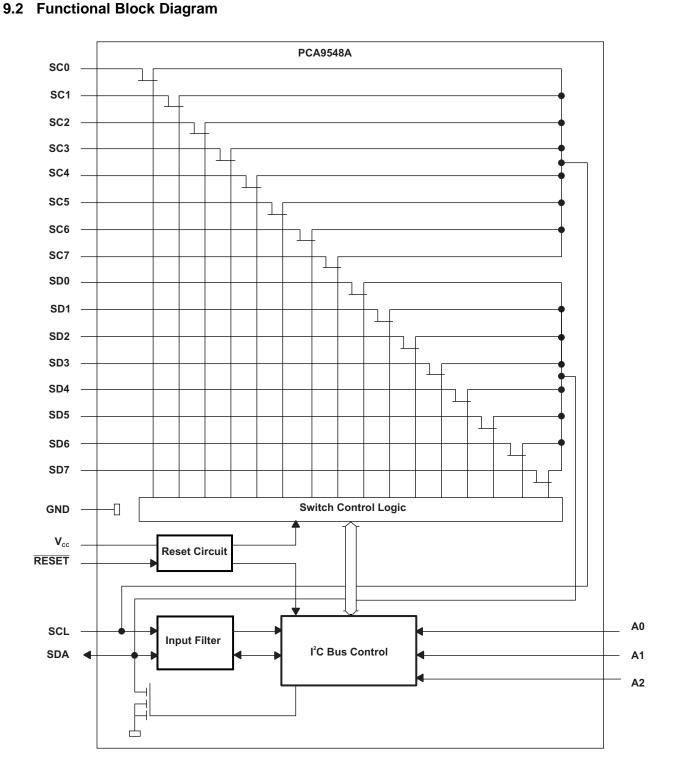
EXAS

9 Detailed Description

9.1 Overview

The PCA9548A is a 8-channel, bidirectional translating I²C switch. The master SCL/SDA signal pair is directed to eight channels of slave devices, SC0/SD0-SC3/SD3. Any individual downstream channel can be selected as well as any combination of the eight channels.

The device offers an active-low $\overrightarrow{\text{RESET}}$ input which resets the state machine and allows the PCA9548A to recover should one of the downstream I²C buses get stuck in a low state. The state machine of the device can also be reset by cycling the power supply, V_{CC}, also known as a power-on reset (POR). Both the $\overrightarrow{\text{RESET}}$ function and a POR will cause all channels to be deselected.


The connections of the I^2C data path are controlled by the same I^2C master device that is switched to communicate with multiple I^2C slaves. After the successful acknowledgment of the slave address (hardware selectable by A0 and A1 pins), a single 8-bit control register is written to or read from to determine the selected channels.

The PCA9548A may also be used for voltage translation, allowing the use of different bus voltages on each SCn/SDn pair such that 1.8-V, 2.5-V, or 3.3-V parts can communicate with 5-V parts. This is achieved by using external pull-up resistors to pull the bus up to the desired voltage for the master and each slave channel.

PCA9548A SCPS143E – JUNE 2009 – REVISED FEBRUARY 2015

Copyright © 2009–2015, Texas Instruments Incorporated

www.ti.com

9.3 Feature Description

The PCA9548A is an 8-channel, bidirectional translating switch for I²C buses that supports Standard-Mode (100 kHz) and Fast-Mode (400 kHz) operation. The PCA9548A features I²C control using a single 8-bit control register in which each bit controls the enabling and disabling for one of the 8 switch channels of I²C data flow. Depending on the application, voltage translation of the I²C bus can also be achieved using the PCA9548A to allow 1.8-V, 2.5-V, or 3.3-V parts to communicate with 5-V parts. Additionally, in the event that communication on the I²C bus enters a fault state, the PCA9548A can be reset to resume normal operation using the RESET pin feature or by a power-on reset which results from cycling power to the device.

9.4 Device Functional Modes

9.4.1 RESET Input

The RESET input is an active-low signal that may be used to recover from a bus-fault condition. When this signal is asserted low for a minimum of t_{WL} , the PCA9548A resets its registers and I²C state machine and deselects all channels. The RESET input must be connected to V_{CC} through a pull-up resistor.

9.4.1.1 RESET Errata

If RESET voltage set higher than VCC, current will flow from RESET pin to VCC pin.

System Impact

VCC will be pulled above its regular voltage level

System Workaround

Design such that **RESET** voltage is same or lower than VCC

9.4.2 Power-On Reset

When power (from 0 V) is applied to V_{CC} , an internal power-on reset holds the PCA9548A in a reset condition until V_{CC} has reached V_{POR} . At that point, the reset condition is released and the PCA9548A registers and I²C state machine initialize to their default states. After that, V_{CC} must be lowered to below V_{POR} and then back up to the operating voltage for a power-reset cycle.

Refer to the *Power-On Reset Errata* section.

9.5 Programming

9.5.1 I²C Interface

The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply through a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

I²C communication with this device is initiated by a master sending a start condition, a high-to-low transition on the SDA input/output while the SCL input is high (see Figure 3). After the start condition, the device address byte is sent, most significant bit (MSB) first, including the data direction bit (R/W).

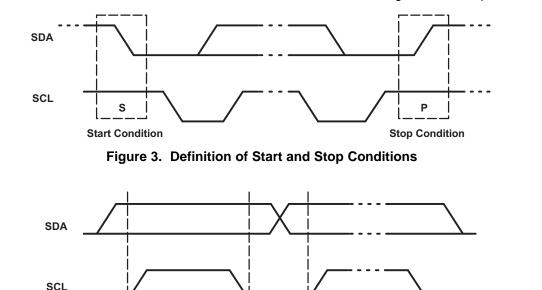
After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/output during the high of the ACK-related clock pulse. The address inputs (A0–A2) of the slave device must not be changed between the start and the stop conditions.

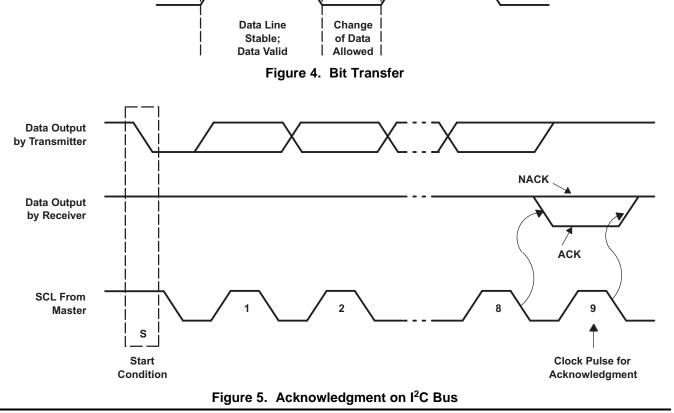
On the l²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (start or stop) (see Figure 4).

A stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see Figure 3).

Copyright © 2009–2015, Texas Instruments Incorporated

PCA9548A SCPS143E – JUNE 2009–REVISED FEBRUARY 2015

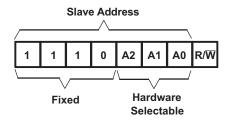



www.ti.com

Programming (continued)

Any number of data bytes can be transferred from the transmitter to receiver between the start and the stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 5). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to ensure proper operation.

A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a stop condition.



9.6 Register Map

9.6.1 Device Address

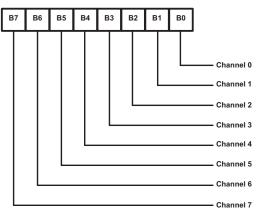
Figure 6 shows the address byte of the PCA9548A.

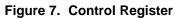
Figure 6. PCA9548A Address

The last bit of the slave address defines the operation (read or write) to be performed. When it is high (1), a read is selected, while a low (0) selects a write operation.

	INPUTS		I ² C BUS SLAVE ADDRESS				
A2	A1	A0	TC BUS SLAVE ADDRESS				
L	L	L	112 (decimal), 70 (hexadecimal)				
L	L	Н	113 (decimal), 71 (hexadecimal)				
L	н	L	114 (decimal), 72 (hexadecimal)				
L	Н	Н	115 (decimal), 73 (hexadecimal)				
н	L	L	116 (decimal), 74 (hexadecimal)				
н	L	Н	117 (decimal), 75 (hexadecimal)				
н	Н	L	118 (decimal), 76 (hexadecimal)				
Н	Н	Н	119 (decimal), 77 (hexadecimal)				

Table 1. Address Reference


9.6.2 Control Register


Following the successful acknowledgment of the address byte, the bus master sends a command byte that is stored in the control register in the PCA9548A (see Figure 7). This register can be written and read via the I^2C bus. Each bit in the command byte corresponds to a SCn/SDn channel and a high (or 1) selects this channel. Multiple SCn/SDn channels may be selected at the same time. When a channel is selected, the channel becomes active after a stop condition has been placed on the I^2C bus. This ensures that all SCn/SDn lines are in a high state when the channel is made active, so that no false conditions are generated at the time of connection. A stop condition always must occur immediately after the acknowledge cycle. If multiple bytes are received by the PCA9548A, it saves the last byte received.

TEXAS INSTRUMENTS

www.ti.com

Channel Selection Bits (Read/Write)

		С	ONTROL RE	EGISTER BIT	s			COMMAND
B7	B6	B5	B4	B3	B2	B1	B0	COMMAND
x	x	х	v	x	х	х	0	Channel 0 disabled
^	^	^	Х	^	^ ^ 1		1	Channel 0 enabled
x	x	х	х	x	х	0	x	Channel 1 disabled
^	^	^	^	^	^	1	^	Channel 1 enabled
х	х	х	х	x	0	- X	х	Channel 2 disabled
^	~	X	^	^	1	^	^	Channel 2 enabled
х	х	х	х	0	х	x	х	Channel 3 disabled
^	^	^	^	1	^		^	Channel 3 enabled
V	V	v	0	Х	х	x	V	Channel 4 disabled
Х	X	X	1		^		Х	Channel 4 enabled
х	х	0	х	x	x	х	х	Channel 5 disabled
^	^	1	^	^	^	^	^	Channel 5 enabled
x	0	x	х	x	х	x	х	Channel 6 disabled
^	1	^	^	^	^	^	^	Channel 6 enabled
0	V	v	V	V	х	v	V	Channel 7 disabled
1	X	Х	Х	X	X	X	Х	Channel 7 enabled
0	0	0	0	0	0	0	0	No channel selected, power-up/reset default state

9.6.3 Bus Transactions

Data is exchanged between the master and PCA9548A through write and read commands.

9.6.3.1 Writes

Data is transmitted to the PCA9548A by sending the device address and setting the least-significant bit (LSB) to a logic 0 (see Figure 6 for device address). The command byte is sent after the address and determines which SCn/SDn channel receives the data that follows the command byte (see Figure 8). There is no limitation on the number of data bytes sent in one write transmission.

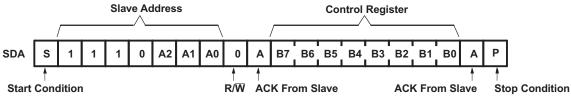


Figure 8. Write to Control Register

9.6.3.2 Reads

The bus master first must send the PCA9548A address with the LSB set to a logic 1 (see Figure 6 for device address). The command byte is sent after the address and determines which SCn/SDn channel is accessed. After a restart, the device address is sent again, but this time, the LSB is set to a logic 1. Data from the SCn/SDn channel defined by the command byte then is sent by the PCA9548A (see Figure 9). After a restart, the value of the SCn/SDn channel defined by the command byte matches the SCn/SDn channel being accessed when the restart occurred. Data is clocked into the SCn/SDn channel on the rising edge of the ACK clock pulse. There is no limitation on the number of data bytes received in one read transmission, but when the final byte is received, the bus master must not acknowledge the data.

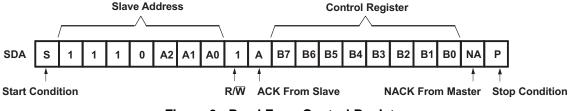


Figure 9. Read From Control Register

10 Application and Implementation

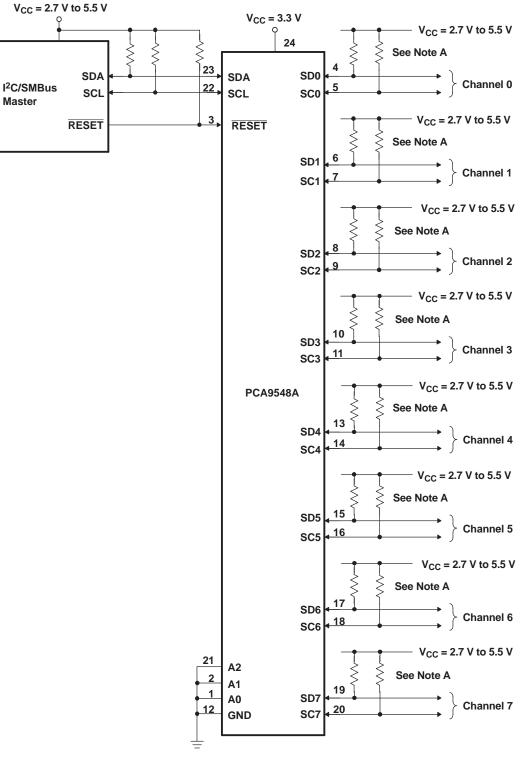
NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

Applications of the PCA9548A will contain an I^2C (or SMBus) master device and up to eight I^2C slave devices. The downstream channels are ideally used to resolve I^2C slave address conflicts. For example, if eight identical digital temperature sensors are needed in the application, one sensor can be connected at each channel: 0, 1, 2, and 3. When the temperature at a specific location needs to be read, the appropriate channel can be enabled and all other channels switched off, the data can be retrieved, and the I^2C master can move on and read the next channel.

In an application where the I²C bus will contain many additional slave devices that do not result in I²C slave address conflicts, these slave devices can be connected to any desired channel to distribute the total bus capacitance across multiple channels. If multiple switches will be enabled simultaneously, additional design requirements must be considered (See *Design Requirements* and *Detailed Design Procedure*).


10.2 Typical Application

A typical application of the PCA9548A will contain 1 or many separate data pull-up voltages, V_{CC} , one for the master device and one for each of the selectable slave channels, 0 through 7. In the event where the master device and all slave devices operate at the same voltage, then the VCC pin can be connected to this supply voltage. In an application where voltage translation is necessary, additional design requirements must be considered (See *Design Requirements*).

Figure 10 shows an application in which the PCA9548A can be used.

Typical Application (continued)

A. Pin numbers shown are for the PW and RTW packages.

Figure 10. PCA9548A Typical Application Schematic

18

Typical Application (continued)

10.2.1 Design Requirements

The A0, A1, and A2 pins are hardware selectable to control the slave address of the PCA9548A. These pins may be tied directly to GND or V_{CC} in the application.

If multiple slave channels will be activated simultaneously in the application, then the total I_{OL} from SCL/SDA to GND on the master side will be the sum of the currents through all pull-up resistors, R_p .

The pass-gate transistors of the PCA9548A are constructed such that the V_{CC} voltage can be used to limit the maximum voltage that is passed from one I^2C bus to another.

Figure 11 shows the voltage characteristics of the pass-gate transistors (note that the graph was generated using data specified in the *Electrical Characteristics* section of this data sheet). In order for the PCA9548A to act as a voltage translator, the V_{pass} voltage must be equal to or lower than the lowest bus voltage. For example, if the main bus is running at 5 V and the downstream buses are 3.3 V and 2.7 V, V_{pass} must be equal to or below 2.7 V to effectively clamp the downstream bus voltages. As shown in Figure 11, $V_{pass(max)}$ is 2.7 V when the PCA9548A supply voltage is 4 V or lower, so the PCA9548A supply voltage could be set to 3.3 V. Pull-up resistors then can be used to bring the bus voltages to their appropriate levels (see Figure 10).

10.2.2 Detailed Design Procedure

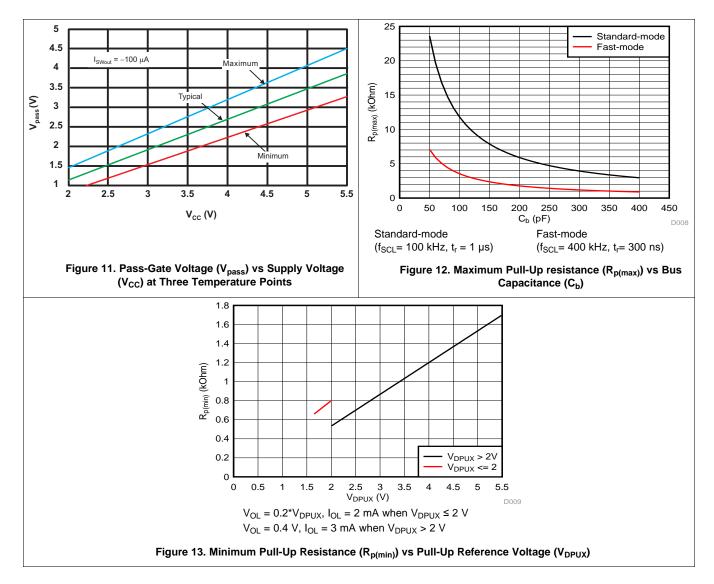
Once all the slaves are assigned to the appropriate slave channels and bus voltages are identified, the pull-up resistors, R_p , for each of the buses need to be selected appropriately. The minimum pull-up resistance is a function of the reference voltage of the specific I²C channel (V_{DPUX}), V_{OL(max)}, and I_{OL}:

$$\mathsf{R}_{\mathsf{p}(\mathsf{min})} = \frac{\mathsf{V}_{\mathsf{DPUX}} - \mathsf{V}_{\mathsf{OL}(\mathsf{max})}}{\mathsf{I}_{\mathsf{OL}}} \tag{1}$$

The maximum pull-up resistance is a function of the maximum rise time, t_r (300 ns for fast-mode operation, f_{SCL} = 400 kHz) and bus capacitance, C_b :

$$\mathsf{R}_{\mathsf{p}(\mathsf{max})} = \frac{t_{\mathsf{r}}}{0.8473 \times \mathsf{C}_{\mathsf{b}}} \tag{2}$$

The maximum bus capacitance for an I^2C bus must not exceed 400 pF for fast-mode operation. The bus capacitance can be approximated by adding the capacitance of the PCA9548A, $C_{io(OFF)}$, the capacitance of wires/connections/traces, and the capacitance of each individual slave on a given channel. If multiple channels will be activated simultaneously, each of the slaves on all channels will contribute to total bus capacitance.


Copyright © 2009–2015, Texas Instruments Incorporated

Typical Application (continued)

10.2.3 PCA9548A Application Curves

PCA9548A SCPS143E – JUNE 2009–REVISED FEBRUARY 2015

11 Power Supply Recommendations

The operating power-supply voltage range of the PCA9548A is 2.3 V to 5.5 V applied at the VCC pin. When the PCA9548A is powered on for the first time or anytime the device needs to be reset by cycling the power supply, the power-on reset requirements must be followed to ensure the I²C bus logic is initialized properly.

11.1 Power-On Reset Errata

A power-on reset condition can be missed if the VCC ramps are outside specification listed below.

System Impact

If ramp conditions are outside timing allowances above, POR condition can be missed, causing the device to lock up.

12 Layout

12.1 Layout Guidelines

For PCB layout of the PCA9548A, common PCB layout practices should be followed but additional concerns related to high-speed data transfer such as matched impedances and differential pairs are not a concern for I²C signal speeds. It is common to have a dedicated ground plane on an inner layer of the board and pins that are connected to ground should have a low-impedance path to the ground plane in the form of wide polygon pours and multiple vias. By-pass and de-coupling capacitors are commonly used to control the voltage on the VCC pin, using a larger capacitor to provide additional power in the event of a short power supply glitch and a smaller capacitor to filter out high-frequency ripple.

In an application where voltage translation is not required, all V_{DPUX} voltages and V_{CC} could be at the same potential and a single copper plane could connect all of pull-up resistors to the appropriate reference voltage. In an application where voltage translation is required, V_{DPUM} and V_{DPU0} - V_{DPU7} may all be on the same layer of the board with split planes to isolate different voltage potentials.

To reduce the total I²C bus capacitance added by PCB parasitics, data lines (SCn and SDn) should be a short as possible and the widths of the traces should also be minimized (e.g. 5-10 mils depending on copper weight).

12.2 Layout Example

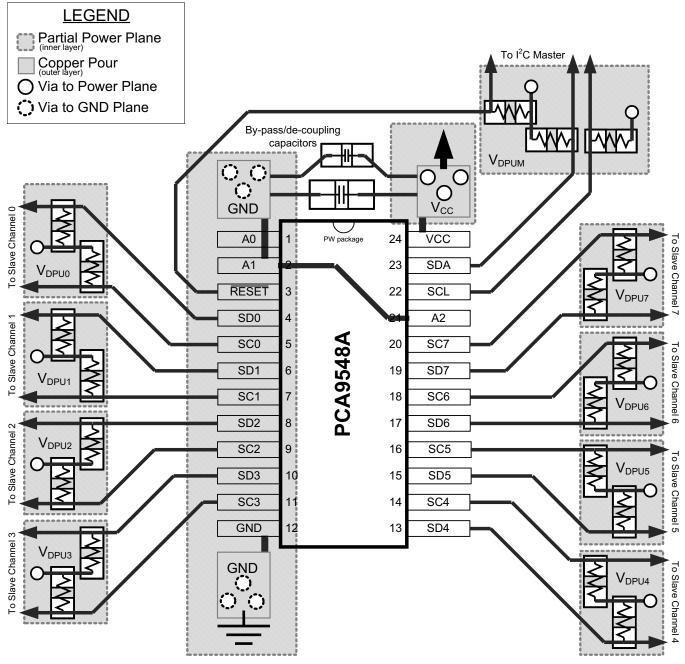


Figure 14. Layout Example

13 Device and Documentation Support

13.1 Trademarks

All trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

24-Apr-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
PCA9548ADB	ACTIVE	SSOP	DB	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD548A	Samples
PCA9548ADBG4	ACTIVE	SSOP	DB	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD548A	Samples
PCA9548ADBR	ACTIVE	SSOP	DB	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD548A	Samples
PCA9548ADGV	NRND	TVSOP	DGV	24		TBD	Call TI	Call TI	-40 to 85		
PCA9548ADGVR	ACTIVE	TVSOP	DGV	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD548A	Samples
PCA9548ADW	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCA9548A	Samples
PCA9548ADWG4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCA9548A	Samples
PCA9548ADWR	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCA9548A	Samples
PCA9548APW	NRND	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD548A	
PCA9548APWR	NRND	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD548A	
PCA9548APWRG4	NRND	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PD548A	
PCA9548ARGER	NRND	VQFN	RGE	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PD548A	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

PACKAGE OPTION ADDENDUM

24-Apr-2015

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

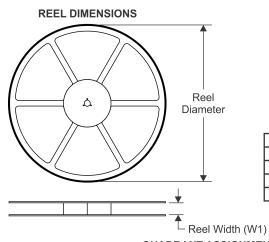
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

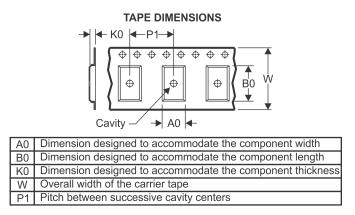
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

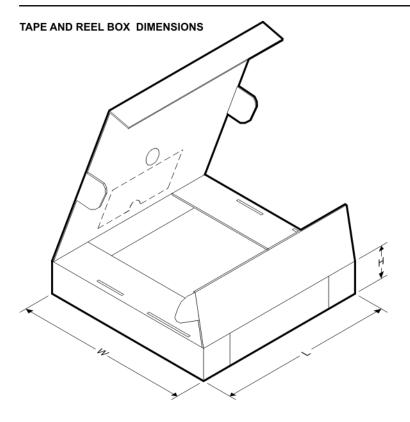

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

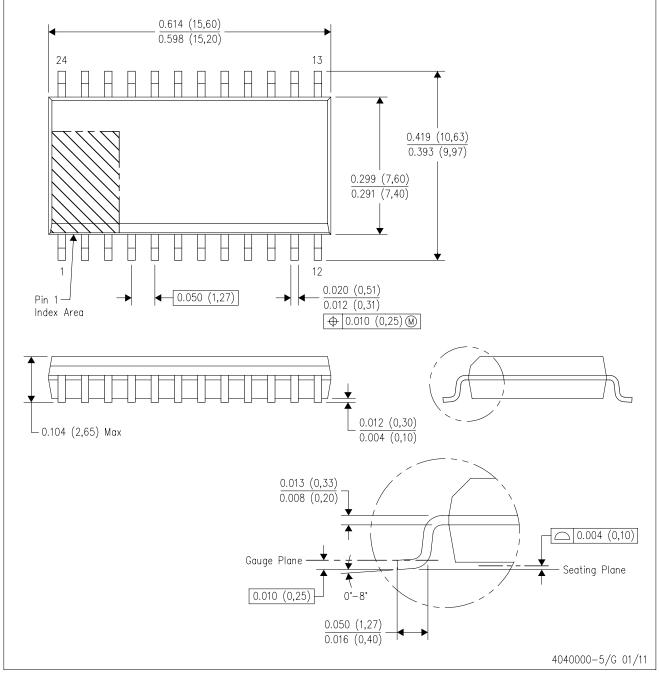

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PCA9548ADBR	SSOP	DB	24	2000	330.0	16.4	8.2	8.8	2.5	12.0	16.0	Q1
PCA9548ADGVR	TVSOP	DGV	24	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
PCA9548ADWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
PCA9548APWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
PCA9548ARGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

3-Feb-2015



*All dimensions are nominal

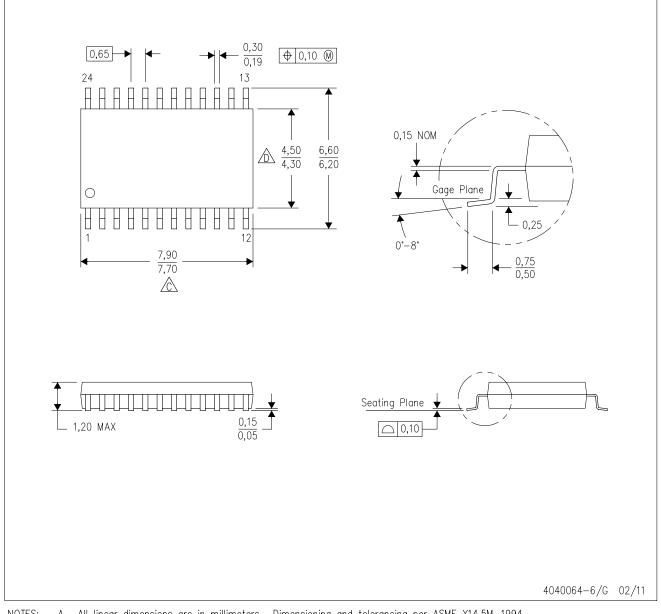
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PCA9548ADBR	SSOP	DB	24	2000	367.0	367.0	38.0
PCA9548ADGVR	TVSOP	DGV	24	2000	367.0	367.0	35.0
PCA9548ADWR	SOIC	DW	24	2000	367.0	367.0	45.0
PCA9548APWR	TSSOP	PW	24	2000	367.0	367.0	38.0
PCA9548ARGER	VQFN	RGE	24	3000	367.0	367.0	35.0

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

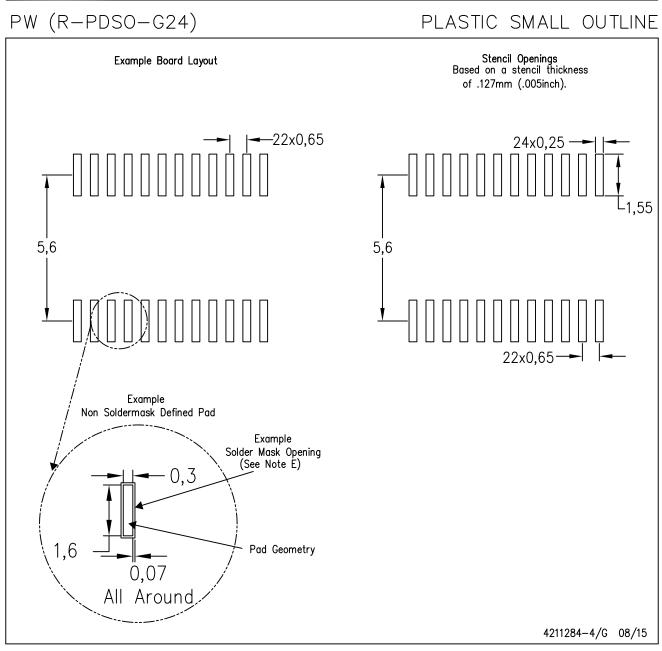
D. Falls within JEDEC MS-013 variation AD.

PW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

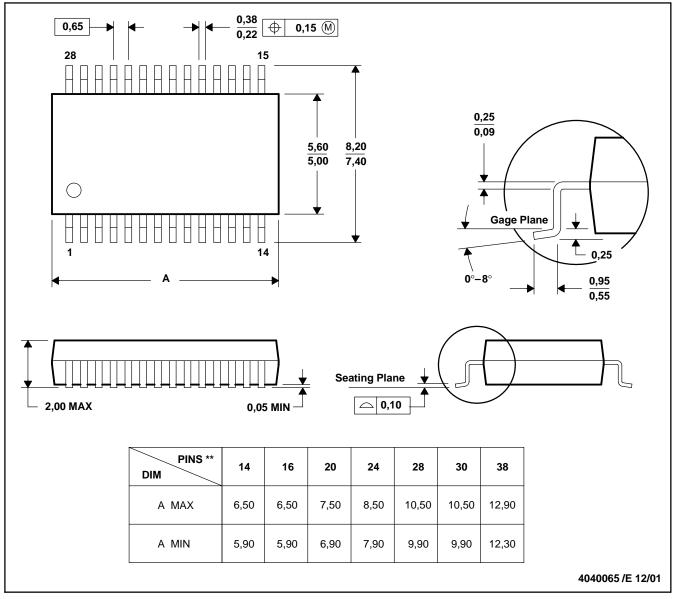
Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


MECHANICAL DATA

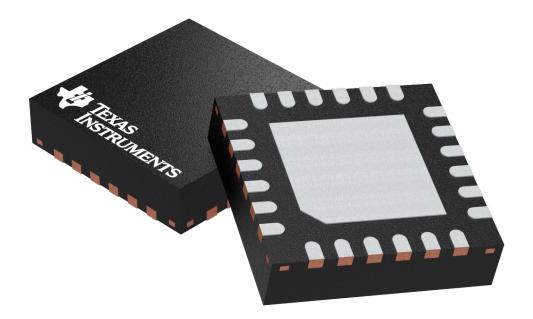
MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

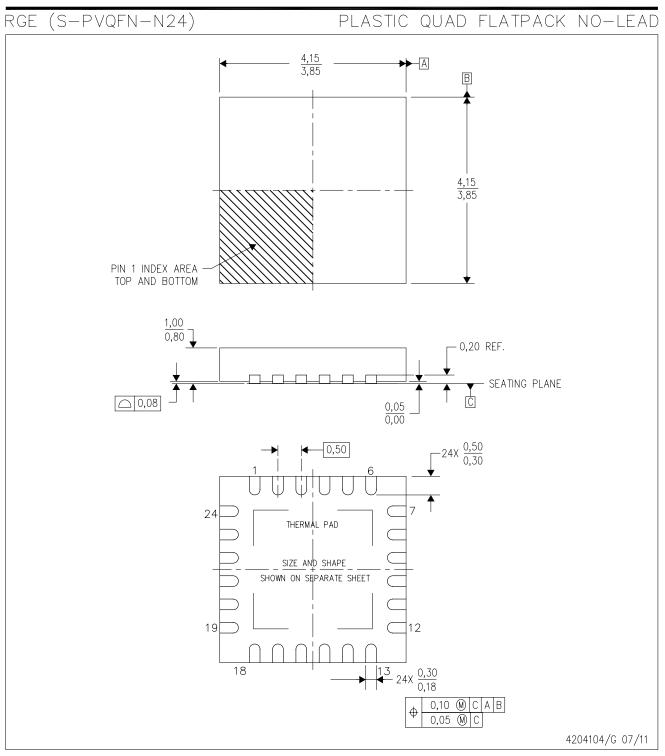
28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

GENERIC PACKAGE VIEW

VQFN - 1 mm max height


PLASTIC QUAD FLATPACK - NO LEAD

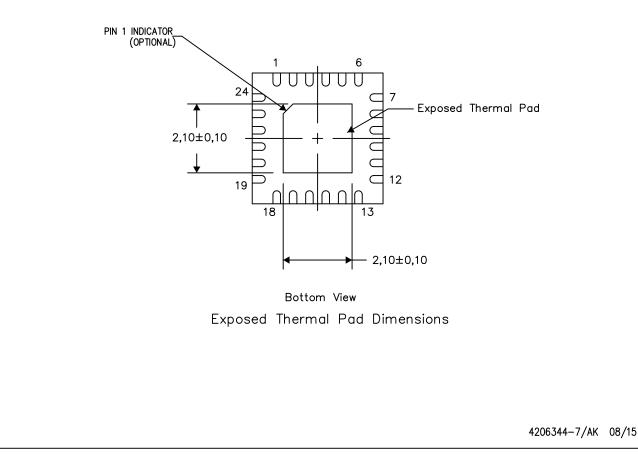
Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. F. Falls within JEDEC MO-220.
 - TEXAS INSTRUMENTS www.ti.com

RGE (S-PVQFN-N24)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES: A. All linear dimensions are in millimeters

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated