PCF8575 Remote16-BIT I ${ }^{2}$ C AND SMBus I/0 Expander with Interrupt Output

1 Features

- $\mathrm{I}^{2} \mathrm{C}$ to Parallel-Port Expander
- Open-Drain Interrupt Output
- Low Standby-Current Consumption of $10 \mu \mathrm{~A}$ Max
- Compatible With Most Microcontrollers
- $400-\mathrm{kHz}$ Fast $\mathrm{I}^{2} \mathrm{C}$ Bus
- Address by Three Hardware Address Pins for Use of up to Eight Devices
- Latched Outputs With High-Current Drive Capability for Directly Driving LEDs
- Current Source to V_{CC} for Actively Driving a High at the Output
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model
- 200-V Machine Model
- 1000-V Charged-Device Model

2 Applications

- Telecom Shelters: Filter Units
- Servers
- Routers (Telecom Switching Equipment)
- Personal Computers
- Personal Electronics
- Industrial Automation
- Products with GPIO-Limited Processors

3 Description

This 16-bit I/O expander for the two-line bidirectional bus $\left(I^{2} \mathrm{C}\right)$ is designed for $2.5-\mathrm{V}$ to $5.5-\mathrm{V} \quad \mathrm{V}_{\mathrm{CC}}$ operation.
The PCF8575 device provides general-purpose remote I/O expansion for most microcontroller families by way of the $I^{2} C$ interface [serial clock (SCL), serial data (SDA)].
The device features a 16-bit quasi-bidirectional input/output (I/O) port (P07-P00, P17-P10), including latched outputs with high-current drive capability for directly driving LEDs. Each quasi-bidirectional I/O can be used as an input or output without the use of a data-direction control signal. At power on, the I/Os are high. In this mode, only a current source to V_{CC} is active.

	Device Information	
(1)		
	PACKAGE (PIN)	BODY SIZE (NOM)
	SSOP (24)	$8.20 \mathrm{~mm} \times 5.30 \mathrm{~mm}$
	QSOP (24)	$8.65 \mathrm{~mm} \times 3.90 \mathrm{~mm}$
	TVSOP (24)	$5.00 \mathrm{~mm} \times 4.50 \mathrm{~mm}$
	$\operatorname{SOIC}(24)$	$15.40 \mathrm{~mm} \times 7.50 \mathrm{~mm}$
	TSSOP (24)	$7.80 \mathrm{~mm} \times 4.40 \mathrm{~mm}$
	QFN (24)	$4.00 \mathrm{~mm} \times 4.00 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.

4 Simplified Schematic

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Simplified Schematic 1
5 Revision History. 2
6 Pin Configurations and Functions 3
7 Specifications 4
7.1 Absolute Maximum Ratings 4
7.2 ESD Ratings 4
7.3 Recommended Operating Conditions 4
7.4 Thermal Information 4
7.5 Electrical Characteristics. 5
7.6 $1^{2} \mathrm{C}$ Interface Timing Requirements 5
7.7 Switching Characteristics 6
7.8 Typical Characteristics. 6
8 Parameter Measurement Information 9
9 Detailed Description 12
9.1 Overview 12
9.2 Functional Block Diagram 13
9.3 Feature Description 14
9.4 Device Functional Modes 16
10 Application and Implementation 18
10.1 Application Information. 18
10.2 Typical Application 18
11 Power Supply Recommendations 21
11.1 Power-On Reset Requirements 21
12 Layout. 23
12.1 Layout Guidelines 23
12.2 Layout Example 24
13 Device and Documentation Support 25
13.1 Trademarks 25
13.2 Electrostatic Discharge Caution. 25
13.3 Glossary 25
14 Mechanical, Packaging, and Orderable Information 25

5 Revision History

Changes from Revision E (January 2015) to Revision F Page

- Fixed naming typo in pin out graphic. 3
Changes from Revision D (April 2007) to Revision E Page
- Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Typical Characteristics, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. 1
- Deleted Ordering Information table. 1

6 Pin Configurations and Functions

DB, DBQ, DGV, DW, OR PW PACKAGE (TOP VIEW)

RGE PACKAGE (TOP VIEW)

Pin Functions

PIN			TYPE	DESCRIPTION
NAME	DB, DBQ, DGV, DW, AND PW	RGE		
A0	21	18	1	Address input 0 . Connect directly to V_{CC} or ground. Pull-up resistors are not needed.
A1	2	23	I	Address input 1. Connect directly to V_{CC} or ground. Pull-up resistors are not needed.
A2	3	24	I	Address input 2. Connect directly to V_{CC} or ground. Pull-up resistors are not needed.
$\overline{\text { INT }}$	1	22	0	Interrupt output. Connect to V_{CC} through a pull-up resistor.
P00	4	1	I/O	P-port input/output. Push-pull design structure.
P01	5	2	I/O	P-port input/output. Push-pull design structure.
P02	6	3	I/O	P-port input/output. Push-pull design structure.
P03	7	4	I/O	P-port input/output. Push-pull design structure.
P04	8	5	I/O	P-port input/output. Push-pull design structure.
P05	9	6	I/O	P-port input/output. Push-pull design structure.
P06	10	7	I/O	P-port input/output. Push-pull design structure.
P07	11	8	I/O	P-port input/output. Push-pull design structure.
GND	12	9	-	Ground
P10	13	10	I/O	P-port input/output. Push-pull design structure.
P11	14	11	I/O	P-port input/output. Push-pull design structure.
P12	15	12	I/O	P-port input/output. Push-pull design structure.
P13	16	13	I/O	P-port input/output. Push-pull design structure.
P14	17	14	I/O	P-port input/output. Push-pull design structure.
P15	18	15	I/O	P-port input/output. Push-pull design structure.
P16	19	16	I/O	P-port input/output. Push-pull design structure.
P17	20	17	I/O	P-port input/output. Push-pull design structure.
SCL	22	19	1	Serial clock line. Connect to $\mathrm{V}_{C C}$ through a pull-up resistor
SDA	23	20	1/O	Serial data line. Connect to V_{CC} through a pull-up resistor.
V_{CC}	24	21	-	Supply voltage

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

			MIN	MAX
V_{CC}	Supply voltage range	UNIT		
V_{I}	Input voltage range ${ }^{(2)}$	-0.5	6.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage range $^{(2)}$	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
I_{IK}	Input clamp current	$\mathrm{V}_{\mathrm{l}}<0$	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$
I_{OK}	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$	V	
I_{OK}	Input/output clamp current	$\mathrm{V}_{\mathrm{O}}<0$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	-20	mA
I_{OL}	Continuous output low current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}	-20	mA
I_{OH}	Continuous output high current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}	-20	mA
	Continuous current through V_{CC} or GND		50	mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature range		-4	mA

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

7.2 ESD Ratings

		VALUE	UNIT
	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins	2000	
$\mathrm{V}_{\text {(ESD) }} \quad$ Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22C101, all pins	1000	V

7.3 Recommended Operating Conditions

		MIN	MAX
V_{CC}	Unpply voltage	2.5	5.5
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	V	
V_{IL}	Low-level input voltage	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$
I_{OH}	P-port high-level output current	-0.5	$0.3 \times \mathrm{V}_{\mathrm{CC}}$
$\mathrm{I}_{\mathrm{OHT}}$	P-port transient pullup current	V	
I_{OL}	P-port low-level output current	-1	mA
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	-10	mA

7.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		PCF8575						UNIT
		DB	DBQ	DGV	DW	PW	RGE	
		24 PINS						
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	63	61	86	46	88	53	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

PCF8575
www.ti.com
SCPS121F - JANUARY 2005-REVISED MAY 2015

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	V_{cc}	MIN	TYP ${ }^{(1)}$	MAX	UNIT
$\mathrm{V}_{\text {IK }}$	Input diode clamp voltage	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$	2.5 V to 5.5 V	-1.2			V
$\mathrm{V}_{\text {POR }}$	Power-on reset voltage ${ }^{(2)}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\mathrm{O}}=0$	$\mathrm{V}_{\mathrm{POR}}$		1.2	1.8	V
IOH	P port	$\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$	2.5 V to 5.5 V	-30		-300	$\mu \mathrm{A}$
IOHT	P-port transient pullup current	High during ACK, $\mathrm{V}_{\mathrm{OH}}=\mathrm{GND}$	2.5 V	-0.5	-1		mA
loL	SDA	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	2.5 V to 5.5 V	3			mA
	P port	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		5	15		
		$\mathrm{V}_{\mathrm{OL}}=1 \mathrm{~V}$		10	25		
	$\overline{\text { INT }}$	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		1.6			
1	SCL, SDA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{C C}$ or GND	2.5 V to 5.5 V			± 5	$\mu \mathrm{A}$
	A0, A1, A2					± 1	
I_{HL}	P port	$\mathrm{V}_{1} \geq \mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{1} \leq$ GND	2.5 V to 5.5 V			± 400	$\mu \mathrm{A}$
ICC	Operating mode	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0, \\ & \mathrm{f}_{\mathrm{scl}}=400 \mathrm{kHz} \end{aligned}$	5.5 V		100	200	$\mu \mathrm{A}$
			3.6 V		30	75	
			2.7 V		20	50	
	Standby mode	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0, \mathrm{f}_{\text {Scl }}=0 \mathrm{kHz}$	5.5 V		2.5	10	
			3.6 V		2.5	10	
			2.7 V		2.5	10	
$\Delta \mathrm{l}_{\mathrm{CC}}$	Supply current increase	One input at $\mathrm{V}_{C C}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND	2.5 V to 5.5 V			200	$\mu \mathrm{A}$
C_{1}	SCL	$\mathrm{V}_{1}=\mathrm{V}_{C C}$ or GND	2.5 V to 5.5 V		3	7	pF
$\mathrm{C}_{\text {io }}$	SDA	$\mathrm{V}_{10}=\mathrm{V}_{\mathrm{CC}}$ or GND	2.5 V to 5.5 V		3	7	pF
	P port				4	10	

(1) All typical values are at nominal supply voltage ($2.5-\mathrm{V}, 3.3-\mathrm{V}$, or $5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$) and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) The power-on reset circuit resets the $I^{2} C$ bus logic with $V_{C C}<V_{P O R}$ and sets all I/Os to logic high (with current source to $V_{C C}$).

7.6 $I^{2} \mathrm{C}$ Interface Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 12)

			MIN MAX	UNIT
$\mathrm{f}_{\text {scl }}$	$1^{2} \mathrm{C}$ clock frequency		400	kHz
$\mathrm{t}_{\text {sch }}$	$1^{2} \mathrm{C}$ clock high time		0.6	$\mu \mathrm{s}$
$\mathrm{t}_{\text {scl }}$	$1^{2} \mathrm{C}$ clock low time		1.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {sp }}$	$1^{2} \mathrm{C}$ spike time		50	ns
$\mathrm{t}_{\text {sds }}$	$1^{2} \mathrm{C}$ serial data setup time		100	ns
$\mathrm{t}_{\text {sdh }}$	$\mathrm{I}^{2} \mathrm{C}$ serial data hold time		0	ns
$\mathrm{ticr}^{\text {cid }}$	$\mathrm{I}^{2} \mathrm{C}$ input rise time		$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(1)} \quad 300$	ns
$\mathrm{t}_{\text {icf }}$	$1^{2} \mathrm{C}$ input fall time		$20+0.1 C_{b}{ }^{(1)} 300$	ns
$\mathrm{t}_{\text {ocf }}$	$1^{2} \mathrm{C}$ output fall time	10-pF to 400-pF bus	300	ns
$\mathrm{t}_{\text {buf }}$	$I^{2} \mathrm{C}$ bus free time between Stop and Start		1.3	$\mu \mathrm{s}$
$\mathrm{t}_{\text {sts }}$	$I^{2} \mathrm{C}$ start or repeated Start condition setup		0.6	$\mu \mathrm{s}$
$\mathrm{t}_{\text {sth }}$	$1^{2} \mathrm{C}$ start or repeated Start condition hold		0.6	$\mu \mathrm{s}$
$\mathrm{t}_{\text {sps }}$	$1^{2} \mathrm{C}$ Stop condition setup		0.6	$\mu \mathrm{s}$
t_{vd}	Valid-data time	SCL low to SDA output valid	1.2	$\mu \mathrm{s}$
C_{b}	$1^{2} \mathrm{C}$ bus capacitive load		400	pF

(1) $\mathrm{C}_{\mathrm{b}}=$ total bus capacitance of one bus line in pF

7.7 Switching Characteristics

over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$ (unless otherwise noted) (see Figure 13 and Figure 14)

PARAMETER		FROM (INPUT)	TO (OUTPUT)	MIN MAX	UNIT
$\mathrm{t}_{\text {iv }}$	Interrupt valid time	P port	INT	4	$\mu \mathrm{s}$
t_{i}	Interrupt reset delay time	SCL	$\overline{\text { INT }}$	4	$\mu \mathrm{s}$
t_{pv}	Output data valid	SCL	P port	4	$\mu \mathrm{s}$
$\mathrm{t}_{\text {su }}$	Input data setup time	P port	SCL	0	$\mu \mathrm{s}$
t_{h}	Input data hold time	P port	SCL	4	$\mu \mathrm{s}$

7.8 Typical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

Figure 1. Supply Current vs Temperature

Figure 3. Supply Current vs Supply Voltage

Figure 2. Standby Supply Current vs Temperature

PCF8575
www.ti.com

Typical Characteristics (continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

Figure 5. I/O Sink Current vs Output Low Voltage

Figure 7. I/O Output Low Voltage vs Temperature

Figure 9. I/O Source Current vs Output High Voltage

Figure 6. I/O Sink Current vs Output Low Voltage

Figure 8. I/O Source Current vs Output High Voltage

Figure 10. I/O Source Current vs Output High Voltage

PCF8575

SCPS121F -JANUARY 2005-REVISED MAY 2015
www.ti.com

Typical Characteristics (continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PCF8575
www.ti.com

8 Parameter Measurement Information

SDA LOAD CONFIGURATION

VOLTAGE WAVEFORMS

BYTE	DESCRIPTION
1	$\mathrm{I}^{2} \mathrm{C}$ address
2,3	P-port data

Figure 12. $I^{2} \mathrm{C}$ Interface Load Circuit and Voltage Waveforms

Parameter Measurement Information (continued)

Figure 13. Interrupt Load Circuit and Voltage Waveforms

Parameter Measurement Information (continued)

Write-Mode Timing ($\mathrm{R} / \overline{\mathbf{W}}=0$)

Figure 14. P-Port Load Circuits and Voltage Waveforms

9 Detailed Description

9.1 Overview

The PCF8575 provides general-purpose remote I/O expansion for most microcontroller families via the $I^{2} C$ interface serial clock (SCL) and serial data (SDA).
The device features a 16-bit quasi-bidirectional input/output (I/O) port (P07-P00, P17-P10), including latched outputs with high-current drive capability for directly driving LEDs. Each quasi-bidirectional I/O can be used as an input or output without the use of a data-direction control signal. At power on, the I/Os are high. In this mode, only a current source (l_{OH}) to V_{CC} is active. An additional strong pullup to $\mathrm{V}_{\mathrm{CC}}\left(\mathrm{l}_{\mathrm{OHT}}\right)$ allows fast-rising edges into heavily loaded outputs. This device turns on when an output is written high and is switched off by the negative edge of SCL. The I/Os should be high before being used as inputs. After power on, as all the I/Os are set high, all of them can be used as inputs. Any change in setting of the I/Os as either input or outputs can be done with the write mode. If a high is applied externally to an I/O that has been written earlier to low, a large current (loL) will flow to GND.
The PCF8575 provides an open-drain interrupt (INT) output, which can be connected to the interrupt input of a microcontroller. An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time, t_{i}, the signal INT is valid. Resetting and reactivating the interrupt circuit is achieved when data on the port is changed to the original setting, or data is read from or written to the port that generated the interrupt. Resetting occurs in the read mode at the acknowledge (ACK) bit after the rising edge of the SCL signal or in the write mode at the ACK bit after the falling edge of the SCL signal. Interrupts that occur during the ACK clock pulse can be lost (or be very short), due to the resetting of the interrupt during this pulse. Each change of the $1 / \mathrm{Os}$ after resetting is detected and is transmitted as $\overline{\mathrm{NT}}$. Reading from or writing to another device does not affect the interrupt circuit. This device does not have internal configuration or status registers. Instead, read or write to the device I/Os directly after sending the device address (see Figure 18 and Figure 19).

By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports, without having to communicate via the $I^{2} \mathrm{C}$ bus. Thus, the PCF8575 can remain a simple slave device.

Every data transmission to or from the PCF8575 must consist of an even number of bytes. The first data byte in every pair refers to port 0 (P07-P00), and the second data byte in every pair refers to port 1 (P17-P10). To write to the ports (output mode), the master first addresses the slave device, setting the last bit of the byte containing the slave address to logic 0 . The PCF8575 acknowledges, and the master sends the first data byte for P07-P00. After the first data byte is acknowledged by the PCF8575, the second data byte (P17-P10) is sent by the master. Once again, the PCF8575 acknowledges the receipt of the data, after which this 16 -bit data is presented on the port lines.
The number of data bytes that can be sent successively is not limited. After every two bytes, the previous data is overwritten. When the PCF8575 receives the pairs of data bytes, the first byte is referred to as P07-P00 and the second byte as P17-P10. The third byte is referred to as P07-P00, the fourth byte as P17-P10, and so on.
Before reading from the PCF8575, all ports desired as input should be set to logic 1. To read from the ports (input mode), the master first addresses the slave device, setting the last bit of the byte containing the slave address to logic 1. The data bytes that follow on the SDA are the values on the ports. If the data on the input port changes faster than the master can read, this data may be lost.
When power is applied to V_{CC}, an internal power-on reset holds the PCF8575 in a reset state until V_{CC} has reached $V_{\text {POR }}$. At that time, the reset condition is released, and the device $I^{2} C$-bus state machine initializes the bus to its default state.
The hardware pins (A0, A1, and A2) are used to program and vary the fixed $\mathrm{I}^{2} \mathrm{C}$ address and allow up to eight devices to share the same $I^{2} \mathrm{C}$ bus or SMBus. The fixed $I^{2} \mathrm{C}$ address of the PCF8575 is the same as the PCF8575C, PCF8574, PCA9535, and PCA9555, allowing up to eight of these devices, in any combination, to share the same $I^{2} \mathrm{C}$ bus or SMBus.

PCF8575
www.ti.com

9.2 Functional Block Diagram

9.2.1 Logic Diagram (Positive Logic)

9.2.2 Simplified Schematic Diagram of Each P-Port Input/Output

9.3 Feature Description

9.3.1 $\quad I^{2} \mathrm{C}$ Interface

The bidirectional ${ }^{2} \mathrm{C}$ bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.
$1^{2} \mathrm{C}$ communication with this device is initiated by a master sending a Start condition, a high-to-low transition on the SDA input/output while the SCL input is high (see Figure 15). After the Start condition, the device address byte is sent, most significant bit (MSB) first, including the data direction bit (R/W). This device does not respond to the general call address. After receiving the valid address byte, this device responds with an ACK, a low on the SDA input/output during the high of the ACK-related clock pulse. The address inputs (A2-A0) of the slave device must not be changed between the Start and Stop conditions.
The data byte follows the address ACK. If the $\mathrm{R} / \overline{\mathrm{W}}$ bit is high, the data from this device are the values read from the P port. If the R/W bit is low, the data are from the master, to be output to the P port. The data byte is followed by an ACK sent from this device. If other data bytes are sent from the master, following the ACK, they are ignored by this device. Data are output only if complete bytes are received and acknowledged. The output data is valid at time (t_{pv}) after the low-to-high transition of SCL, during the clock cycle for the ACK.
On the $I^{2} \mathrm{C}$ bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (Start or Stop) (see Figure 16).
A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see Figure 15).
The number of data bytes transferred between the Start and Stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit.
A slave receiver that is addressed must generate an ACK after the reception of each byte. Also, a master must generate an ACK after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 17). Setup and hold times must be taken into account.
A master receiver must signal an end of data to the transmitter by not generating an acknowledge (NACK) after the last byte that has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a Stop condition.

Figure 15. Definition of Start and Stop Conditions

Feature Description (continued)

Figure 16. Bit Transfer

Figure 17. Acknowledgment on $\mathrm{I}^{2} \mathrm{C}$ Bus

9.3.2 Interface Definition

BYTE	BIT							
	7 (MSB)	6	5	4	3	2	1	0 (LSB)
$\mathrm{I}^{2} \mathrm{C}$ slave address	L	H	L	L	A2	A1	A0	R/W
P0x I/O data bus	P07	P06	P05	P04	P03	P02	P01	P00
P1x I/O data bus	P17	P16	P15	P14	P13	P12	P11	P10

9.3.3 Address Reference

INPUTS			$I^{2} \mathrm{C}$ BUS SLAVE 8-BIT READ ADDRESS	$I^{2} \mathrm{C}$ BUS SLAVE 8BIT WRITE ADDRESS
A2	A1	A0		
L	L	L	65 (decimal), 41 (hexadecimal)	64 (decimal), 40 (hexadecimal)
L	L	H	67 (decimal), 43 (hexadecimal)	66 (decimal), 42 (hexadecimal)
L	H	L	69 (decimal), 45 (hexadecimal)	68 (decimal), 44 (hexadecimal)
L	H	H	71 (decimal), 47 (hexadecimal)	70 (decimal), 46 (hexadecimal)
H	L	L	73 (decimal), 49 (hexadecimal)	72 (decimal), 48 (hexadecimal)
H	L	H	75 (decimal), 4B (hexadecimal)	74 (decimal), 4A (hexadecimal)
H	H	L	77 (decimal), 4D (hexadecimal)	76 (decimal), 4C (hexadecimal)
H	H	H	79 (decimal), 4F (hexadecimal)	78 (decimal), 4E (hexadecimal)

9.4 Device Functional Modes

Figure 18 and Figure 19 show the address and timing diagrams for the write and read modes, respectively.
Integral Multiples of Two Bytes

Figure 18. Write Mode (Output)

Device Functional Modes (continued)

Figure 19. Read Mode (Input)

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

Figure 20 shows an application in which PCF8575 can be used.

10.2 Typical Application

(1) The SCL and SDA pins must be tied directly to VCC because if SCL and SDA are tied to an auxiliary power supply that could be powered on while VCC is powered off, then the supply current, ICC, will increase as a result.
A. Device address is configured as 0100000 for this example.
B. $\mathrm{P} 0, \mathrm{P} 2$, and P 3 are configured as outputs.
C. P1, P4, and P5 are configured as inputs.
D. P6 and P7 are not used and must be configured as outputs.

Figure 20. Application Schematic

Typical Application (continued)

10.2.1 Design Requirements

10.2.1.1 Minimizing $I_{C C}$ When I/Os Control LEDs

When the I/Os are used to control LEDs, normally they are connected to V_{CC} through a resistor as shown in Figure 20. For a P-port configured as an input, $I_{c c}$ increases as V_{1} becomes lower than $V_{c c}$. The LED is a diode, with threshold voltage V_{T}, and when a P-port is configured as an input the LED will be off but V_{1} is a V_{T} drop below V_{cc}.

For battery-powered applications, it is essential that the voltage of P-ports controlling LEDs is greater than or equal to V_{cc} when the P -ports are configured as input to minimize current consumption. Figure 21 shows a highvalue resistor in parallel with the LED. Figure 22 shows V_{CC} less than the LED supply voltage by at least V_{T}. Both of these methods maintain the $I / O V_{1}$ at or above $V_{C C}$ and prevents additional supply current consumption when the P -port is configured as an input and the LED is off.

Figure 21. High-Value Resistor in Parallel With LED

Figure 22. Device Supplied by a Lower Voltage

Typical Application (continued)

10.2.2 Detailed Design Procedure

The pull-up resistors, R_{p}, for the SCL and SDA lines need to be selected appropriately and take into consideration the total capacitance of all slaves on the $I^{2} \mathrm{C}$ bus. The minimum pull-up resistance is a function of $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{OL},(\max)}$, and l_{OL} :

$$
\begin{equation*}
\mathrm{R}_{\mathrm{p}(\text { min })}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OL}(\max)}}{\mathrm{I}_{\mathrm{OL}}} \tag{1}
\end{equation*}
$$

The maximum pull-up resistance is a function of the maximum rise time, t_{r} (300 ns for fast-mode operation, $\mathrm{f}_{\mathrm{SCL}}=400 \mathrm{kHz}$) and bus capacitance, C_{b} :

$$
\begin{equation*}
\mathrm{R}_{\mathrm{p}(\max)}=\frac{t_{\mathrm{r}}}{0.8473 \times \mathrm{C}_{\mathrm{b}}} \tag{2}
\end{equation*}
$$

The maximum bus capacitance for an $\mathrm{I}^{2} \mathrm{C}$ bus must not exceed 400 pF for standard-mode or fast-mode operation. The bus capacitance can be approximated by adding the capacitance of the PCF8575, C_{i} for SCL or C_{i} for SDA, the capacitance of wires/connections/traces, and the capacitance of additional slaves on the bus.

10.2.3 Application Curves

Figure 23. Maximum Pull-Up Resistance $\left(\mathrm{R}_{\mathrm{p}(\mathrm{max})}\right)$ vs Bus Capacitance (C_{b})

$\mathrm{V}_{\mathrm{OL}}=0.2^{*} \mathrm{~V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
when $\mathrm{V}_{\mathrm{CC}} \leq 2 \mathrm{~V}$
$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$
when $\mathrm{V}_{\mathrm{Cc}}>2 \mathrm{~V}$
Figure 24. Minimum Pull-Up Resistance $\left(\mathbf{R}_{\mathrm{p}(\text { min })}\right)$ vs Pull-Up Reference Voltage (V_{cc})

11 Power Supply Recommendations

11.1 Power-On Reset Requirements

In the event of a glitch or data corruption, PCF8575 can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

The two types of power-on reset are shown in Figure 25 and Figure 26.

Figure 25. V_{cc} is Lowered Below 0.2 V or 0 V and Then Ramped Up to V_{cc}

Figure 26. V_{cc} is Lowered Below the POR Threshold, Then Ramped Back Up to \mathbf{V}_{cc}
Table 1 specifies the performance of the power-on reset feature for PCF8575 for both types of power-on reset.
Table 1. Recommended Supply Sequencing and Ramp Rates ${ }^{(1)}$

PARAMETER			MIN	TYP MAX	UNIT
$\mathrm{V}_{\text {CC_FT }}$	Fall rate	See Figure 25	1	100	ms
$\mathrm{V}_{\text {CC_RT }}$	Rise rate	See Figure 25	0.01	100	ms
VCC_TRR_GND	Time to re-ramp (when V_{CC} drops to GND)	See Figure 25	0.001		ms
$\mathrm{V}_{\text {CC_TRR_POR50 }}$	Time to re-ramp (when V_{CC} drops to $\mathrm{V}_{\text {POR_MIN }}-50 \mathrm{mV}$)	See Figure 26	0.001		ms
V CC_GH	Level that $\mathrm{V}_{\mathrm{CCP}}$ can glitch down to, but not cause a functional disruption when $\mathrm{V}_{\text {CCX_Gw }}=1 \mu \mathrm{~s}$	See Figure 27		1.2	V
$\mathrm{V}_{\text {CC_GW }}$	Glitch width that will not cause a functional disruption when $\mathrm{V}_{\mathrm{CCX} \text { _GH }}=0.5 \times \mathrm{V}_{\mathrm{CCX}}$	See Figure 27			$\mu \mathrm{s}$
$V_{\text {PORF }}$	Voltage trip point of POR on falling V_{CC}		0.767	1.144	V
$V_{\text {PORR }}$	Voltage trip point of POR on fising V_{CC}		1.033	1.428	V

(1) $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise noted)

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width ($\mathrm{V}_{\mathrm{CC}} \mathrm{Gw}$) and height ($\mathrm{V}_{\mathrm{CC}} \mathrm{GH}$) are dependent on each other. The bypass capacitance, source impedance, and device impedance are façors that affect power-on reset performance. Figure 27 and Table 1 provide more information on how to measure these specifications.

Figure 27. Glitch Width and Glitch Height
$\mathrm{V}_{\mathrm{POR}}$ is critical to the power-on reset. $\mathrm{V}_{\mathrm{POR}}$ is the voltage level at which the reset condition is released and all the registers and the $I^{2} \mathrm{C} /$ SMBus state machine are initialized to their default states. The value of $\mathrm{V}_{\text {POR }}$ differs based on the V_{CC} being lowered to or from 0 . Figure 28 and Table 1 provide more details on this specification.

Figure 28. $\mathrm{V}_{\mathrm{POR}}$

12 Layout

12.1 Layout Guidelines

For printed circuit board (PCB) layout of the PCF8575 device, common PCB layout practices should be followed but additional concerns related to high-speed data transfer such as matched impedances and differential pairs are not a concern for $I^{2} C$ signal speeds.
In all PCB layouts, it is a best practice to avoid right angles in signal traces, to fan out signal traces away from each other upon leaving the vicinity of an integrated circuit (IC), and to use thicker trace widths to carry higher amounts of current that commonly pass through power and ground traces. By-pass and de-coupling capacitors are commonly used to control the voltage on the V_{CC} pin, using a larger capacitor to provide additional power in the event of a short power supply glitch and a smaller capacitor to filter out high-frequency ripple. These capacitors should be placed as close to the PCF8575 as possible. These best practices are shown in Figure 29.
For the layout example provided in Figure 29, it would be possible to fabricate a PCB with only 2 layers by using the top layer for signal routing and the bottom layer as a split plane for power (V_{CC}) and ground (GND). However, a 4 layer board is preferable for boards with higher density signal routing. On a 4 layer PCB, it is common to route signals on the top and bottom layer, dedicate one internal layer to a ground plane, and dedicate the other internal layer to a power plane. In a board layout using planes or split planes for power and ground, vias are placed directly next to the surface mount component pad which needs to attach to V_{CC} or GND and the via is connected electrically to the internal layer or the other side of the board. Vias are also used when a signal trace needs to be routed to the opposite side of the board, but this technique is not demonstrated in Figure 29.

12.2 Layout Example

Figure 29. Layout Example for PCF8575

13 Device and Documentation Support

13.1 Trademarks

All trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

$\underset{\sim}{\Delta}$
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
PCF8575DB	ACTIVE	SSOP	DB	24	60	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF575	Samples
PCF8575DBQR	ACTIVE	SSOP	DBQ	24	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PCF8575	Samples
PCF8575DBQRG4	ACTIVE	SSOP	DBQ	24	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PCF8575	Samples
PCF8575DBR	ACTIVE	SSOP	DB	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF575	Samples
PCF8575DBRE4	ACTIVE	SSOP	DB	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF575	Samples
PCF8575DBRG4	ACTIVE	SSOP	DB	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF575	Samples
PCF8575DGVR	ACTIVE	TVSOP	DGV	24	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF575	Samples
PCF8575DGVRG4	ACTIVE	TVSOP	DGV	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF575	Samples
PCF8575DW	ACTIVE	SOIC	DW	24	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCF8575	Samples
PCF8575DWG4	ACTIVE	SOIC	DW	24	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCF8575	Samples
PCF8575DWR	ACTIVE	SOIC	DW	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PCF8575	Samples
PCF8575PW	ACTIVE	TSSOP	PW	24	60	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF575	Samples
PCF8575PWE4	ACTIVE	TSSOP	PW	24	60	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF575	Samples
PCF8575PWG4	ACTIVE	TSSOP	PW	24	60	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF575	Samples
PCF8575PWR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF575	Samples
PCF8575PWRE4	ACTIVE	TSSOP	PW	24	2000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PF575	Samples
PCF8575RGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PF575	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-$ Free/Green conversion plan has not been defined.
$\mathrm{Pb}-\mathrm{Free}$ (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 $\mathbf{W 1}(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PCF8575DBQR | SSOP | DBQ | 24 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 |
| PCF8575DBR | SSOP | DB | 24 | 2000 | 330.0 | 16.4 | 8.2 | 8.8 | 2.5 | 12.0 | 16.0 | Q1 |
| PCF8575DGVR | TVSOP | DGV | 24 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 |
| PCF8575DWR | SOIC | DW | 24 | 2000 | 330.0 | 24.4 | 10.75 | 15.7 | 2.7 | 12.0 | 24.0 | Q1 |
| PCF8575PWR | TSSOP | PW | 24 | 2000 | 330.0 | 16.4 | 6.95 | 8.3 | 1.6 | 8.0 | 16.0 | Q1 |
| PCF8575RGER | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 |

*All dimensions are nomina

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PCF8575DBQR	SSOP	DBQ	24	2500	367.0	367.0	38.0
PCF8575DBR	SSOP	DB	24	2000	367.0	367.0	38.0
PCF8575DGVR	TVSOP	DGV	24	2000	367.0	367.0	35.0
PCF8575DWR	SOIC	DW	24	2000	367.0	367.0	45.0
PCF8575PWR	TSSOP	PW	24	2000	367.0	367.0	38.0
PCF8575RGER	VQFN	RGE	24	3000	367.0	367.0	35.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-Leads (QFN) package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-220.

RGE (S-PVQFN-N24) PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES: A. All linear dimensions are in millimeters

DW (R-PDSO-G24) PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

PW (R-PDSO-G24)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed 0,15 each side
(D) Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153
5 PW (R—PDSO-G24)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate design.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

DBQ (R-PDSO-G24) PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$ per side.
D. Falls within JEDEC MO-137 variation AE.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Tl's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.
Tl's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate Tl products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.
Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such Tl Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

