

SBOS312B - JULY 2004 - REVISED DECEMBER 2004

Stereo Audio Volume Control

FEATURES

- DIGITALLY-CONTROLLED ANALOG VOLUME CONTROL: Two Independent Audio Channels Serial Control Interface Zero Crossing Detection
 - Mute Function
- WIDE GAIN AND ATTENUATION RANGE: +31.5dB to -95.5dB with 0.5dB Steps
- LOW NOISE AND DISTORTION: 120dB Dynamic Range 0.0003% THD+N at 1kHz
- LOW INTERCHANNEL CROSSTALK: -126dBFS
- NOISE-FREE LEVEL TRANSITIONS
- POWER SUPPLIES: ±15V Analog, +5V Digital
- AVAILABLE IN SOL-16 PACKAGE
- PIN-FOR-PIN COMPATIBLE WITH THE PGA2310

APPLICATIONS

- AUDIO AMPLIFIERS
- MIXING CONSOLES
- MULTI-TRACK RECORDERS
- BROADCAST STUDIO EQUIPMENT
- MUSICAL INSTRUMENTS
- EFFECTS PROCESSORS
- A/V RECEIVERS
- CAR AUDIO SYSTEMS

DESCRIPTION

The PGA2320 is a high-performance, stereo audio volume control designed for professional and high-end consumer audio systems. The ability to operate from $\pm 15V$ analog power supplies enables the PGA2320 to process input signals with large voltage swings, thereby preserving the dynamic range available in the overall signal path. Using high performance operational amplifier stages internal to the PGA2320 yields low noise and distortion, while providing the capability to drive 600Ω loads directly without buffering. The three-wire serial control interface allows for connection to a wide variety of host controllers, in addition to support for daisy-chaining of multiple PGA2320 devices.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

PGA2320

SBOS312B - JULY 2004 - REVISED DECEMBER 2004

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted⁽¹⁾

		PGA2320	UNIT
Supply voltage	V _A +	+15.5	V
	V _A -	-15.5	V
	V _D +	+5.5	V
Analog input voltage		0 to V _A +, V _A -	
Digital input voltage		–0.3 to V _D +	V
Operating temperature range		-40 to +85	°C
Storage temperature range		-65 to +150	°C
Junction temperature		+150	°C
Lead temperature (soldering, 7	0s)	+300	°C
Package temperature (IR, refle	w, 10s)	+235	°C

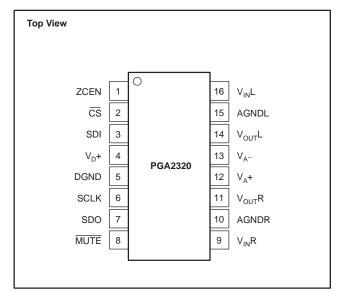
(1) Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.

PACKAGE/ORDERING INFORMATION

For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.

ELECTRICAL CHARACTERISTICS

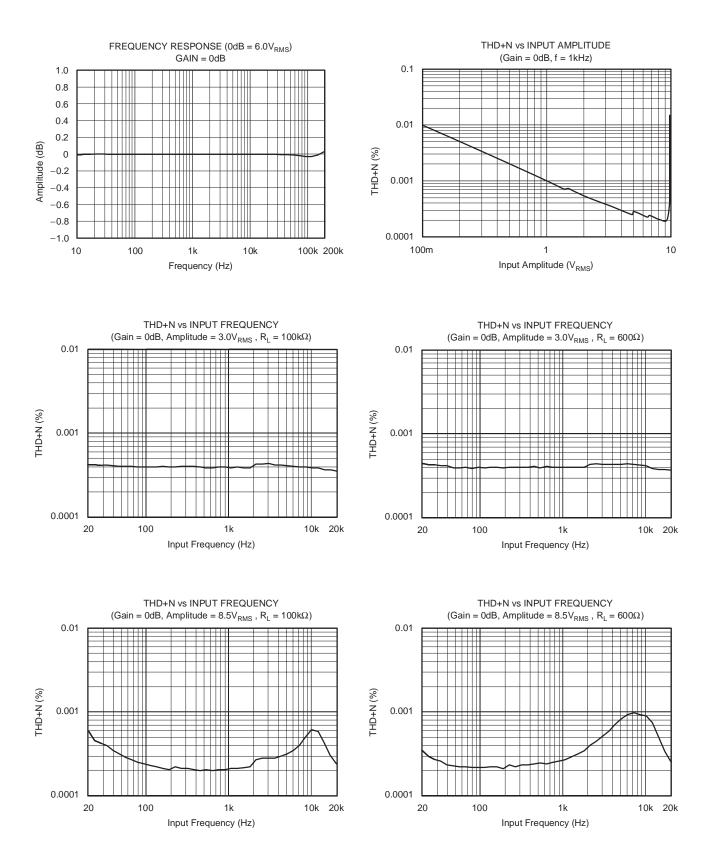
At $T_A = +25^{\circ}C$, $V_A + = +15V$, $V_A - = -15V$, $V_D + = +5V$, $R_L = 100k\Omega$, $C_L = 20pF$, BW measure = 20Hz to 20kHz, unless otherwise noted.


			PGA2320					
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
DC CHARACTERISTICS								
Step Size			0.5		dB			
Gain Error	Gain Setting = 31.5dB		±0.1		dB			
Gain Matching			±0.1		dB			
Input Resistance			12		kΩ			
Input Capacitance			18		pF			
AC CHARACTERISTICS								
THD+N	$V_{IN} = 10V_{PP}, f = 1kHz$		0.0003	0.001	%			
Dynamic Range	V _{IN} = AGND, Gain = 0dB	115	120		dB			
Voltage Range, Input and Output		(V _A –) + 0.86		(V _A +) – 0.86	V			
Output Noise	V _{IN} = AGND, Gain = 0dB		10.5	17.5	μVRMS			
Interchannel Crosstalk	f = 1kHz		-126		dBFS			
OUTPUT BUFFER								
Offset Voltage	V _{IN} = AGND, Gain = 0dB		1	7.5	mV			
Load Capacitance Stability	••••		1000		pF			
Short-Circuit Current			75		mA			
Unity-Gain Bandwidth, Small Signal			1		MHz			
DIGITAL CHARACTERISTICS								
High-Level Input Voltage, VIH		+2.0		V _D +	V			
Low-Level Input Voltage, VII		-0.3		0.8	V			
High-Level Output Voltage, V _{OH}	I _O = 200μA	(V _D +) – 1.0		0.0	V			
Low-Level Output Voltage, V _{OL}	$I_{O} = -2mA$	(1),		0.4	V			
Input Leakage Current	10 = 2.000		1	10	μÂ			
SWITCHING CHARACTERISTICS					port			
Serial Clock (SCLK) Frequency	^t SCLK	0		6.25	MHz			
Serial Clock (SCLK) Pulse Width Low	^t PH	80		0.20	ns			
Serial Clock (SCLK) Pulse Width	٢n	00			110			
High	tPL	80			ns			
MUTE Pulse Width Low	t _{MI}	2.0			ms			
Input Timing								
SDI Setup Time	^t SDS	20			ns			
SDI Hold Time	tSDH	20			ns			
CS Falling to SCLK Rising	tCSCR	90			ns			
SCLK Falling to CS Rising		35			ns			
Output Timing	^t CFCS	00			110			
CS Low to SDO Active	tCSO			35	ns			
SCLK Falling to SDO Data Valid				60	ns			
POWER SUPPLY	^t CFDO			00	113			
Operating Voltage								
V _A +		+4.5	+15	+15.5	V			
VA+ VA-		-4.5	+15 -15	-15.5	V			
v _A - V _D +		-4.5 +4.5			V			
VD+ Quiescent Current		+4.0	+5	+5.5	v			
			44	10	A			
IA+	V_{A} + = +15V		11	16	mA			
IA-	$V_{A} = -15V$		11	16	mA			
ID+	V_{D} + = +5V		0.6	1.5	mA			

PGA2320

SBOS312B - JULY 2004 - REVISED DECEMBER 2004

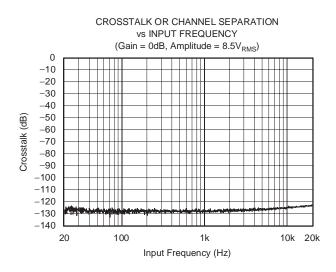
PIN CONFIGURATION


PIN ASSIGNMENTS

PIN	NAME	FUNCTION
1	ZCEN	Zero Crossing Enable Input (Active High)
2	CS	Chip-Select Input (Active Low)
3	SDI	Serial Data input
4	V _D +	Digital Power Supply, +5V
5	DGND	Digital Ground
6	SCLK	Serial Clock Input
7	SDO	Serial Data Output
8	MUTE	Mute Control Input (Active Low)
9	VINR	Analog Input, Right Channel
10	AGNDR	Analog Ground, Right Channel
11	VOUTR	Analog Output, Right Channel
12	V _A +	Analog Power Supply, +15V
13	VA-	Analog Power Supply, –15V
14	Vout	Analog Output, Left Channel
15	AGNDL	Analog Ground, Left Channel
16	VINL	Analog Input, Left Channel

TYPICAL CHARACTERISTICS

At $T_A = +25^{\circ}C$, $V_A + = +15V$, $V_A - = -15V$, $V_D + = +5V$, $R_L = 100k\Omega$, $C_L = 20pF$, BW measure = 20Hz to 20kHz, unless otherwise noted.



SBOS312B - JULY 2004 - REVISED DECEMBER 2004

TYPICAL CHARACTERISTICS (continued)

At $T_A = +25^{\circ}C$, $V_A + = +15V$, $V_A - = -15V$, $V_D + = +5V$, $R_L = 100k\Omega$, $C_L = 20pF$, BW measure = 20Hz to 20kHz, unless otherwise noted.

GENERAL DESCRIPTION

The PGA2320 is a stereo audio volume control. It may be used in a wide array of professional and consumer audio equipment. The PGA2320 is fabricated in a mixed-signal BiCMOS process in order to take advantage of the superior analog characteristics that the process offers.

The heart of the PGA2320 is a resistor network, an analog switch array, and a high-performance bipolar op amp stage. The switches are used to select taps in the resistor network that, in turn, determine the gain of the amplifier stage. Switch selections are programmed using a serial control port. The serial port allows connection to a wide variety of host controllers. Figure 1 shows a functional block diagram of the PGA2320.

POWER-UP STATE

On power up, all internal flip-flops are reset. The gain byte value for both the left and right channels are set to 00_{HEX} , or mute condition. The gain will remain at this setting until the host controller programs new settings for each channel via the serial control port.

ANALOG INPUTS AND OUTPUTS

The PGA2320 includes two independent channels, referred to as the left and right channels. Each channel has a corresponding input and output pin. The input and output pins are unbalanced, or referenced to analog ground (either AGNDR or AGNDL). The inputs are named V_{INR} (pin 9) and V_{INL} (pin 16), while the outputs are named $V_{OUT}R$ (pin 11) and $V_{OUT}L$ (pin 14).

It is important to drive the PGA2320 with a low source impedance. If a source impedance of greater than 600Ω is used, the distortion performance of the PGA2320 will begin to degrade.

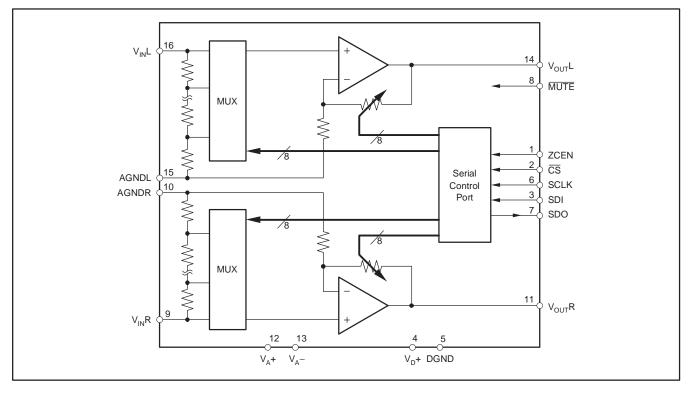


Figure 1. PGA2320 Block Diagram

SERIAL CONTROL PORT

The serial control port is utilized to program the gain settings for the PGA2320. The serial control port includes three input pins and one output pin. The inputs include \overline{CS} (pin 2), SDI (pin 3), and SCLK (pin 6). The sole output pin is SDO (pin 7).

The \overline{CS} pin functions as the chip select input. Data may be written to the PGA2320 only when \overline{CS} is low. SDI is the serial data input pin. Control data is provided as a 16-bit word at the SDI pin, 8 bits each for the left and right channel

gain settings. Data is formatted as MSB first, straight binary code. SCLK is the serial clock input. Data is clocked into SDI on the rising edge of SCLK.

SDO is the serial data output pin, and is used when daisy-chaining multiple PGA2320 devices. Daisy-chain operation is described in detail later in this section. SDO is a tristate output, and assumes a high impedance state when \overline{CS} is high.

The protocol for the serial control port is shown in Figure 2. See Figure 3 for detailed timing specifications of the serial control port.

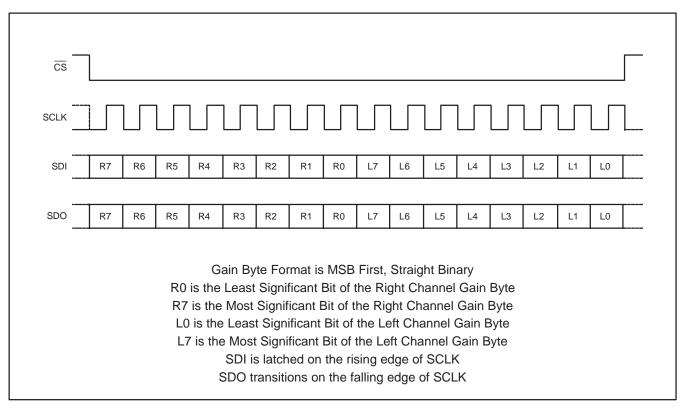


Figure 2. Serial Interface Protocol

GAIN SETTINGS

The gain for each channel is set by its corresponding 8-bit code, either R[7:0] or L[7:0]; see Figure 2. The gain code data is straight binary format. If we let *N* equal the decimal equivalent of R[7:0] or L[7:0], then the following relationships exist for the gain settings:

For N = 0:

Mute Condition. The input multiplexer is connected to analog ground (AGNDR or AGNDL).

For N = 1 to 255:

Gain (dB) = 31.5 - [0.5 • (255 - N)]

This results in a gain range of +31.5dB (with N = 255) to -95.5dB (with N = 1).

Changes in gain setting may be made with or without zero crossing detection. The operation of the zero crossing detector and timeout circuitry is discussed later in this data sheet.

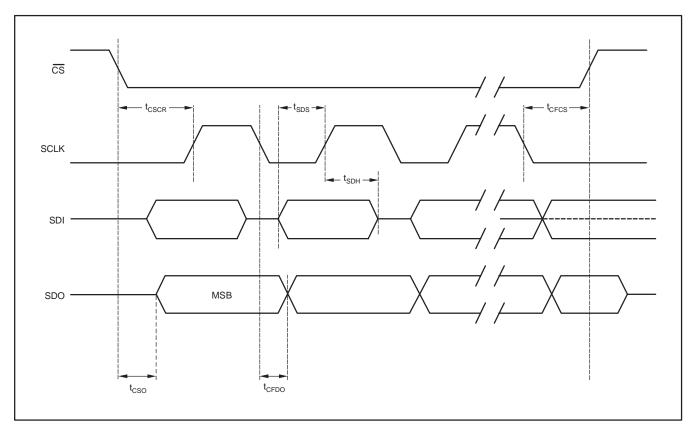


Figure 3. Serial Interface Timing Requirements

SBOS312B - JULY 2004 - REVISED DECEMBER 2004

DAISY-CHAINING MULTIPLE PGA2320 DEVICES

In order to reduce the number of control signals required to support multiple PGA2320 devices on a printed circuit board, the serial control port supports daisy-chaining of multiple PGA2320 devices. Figure 4 shows the connection requirements for daisy-chain operation. This arrangement allows a three-wire serial interface to control many PGA2320 devices.

As shown in Figure 4, the SDO pin from device #1 is connected to the SDI input of device #2, and is repeated for additional devices. This configuration in turn forms a large shift register, in which gain data may be written for all PGA2320s connected to the serial bus. The length of the shift register is $16 \times N$ bits, where N is equal to the number of PGA2320 devices included in the chain. The \overline{CS} input must remain low for $16 \times N$ SCLK periods, where N is the number of devices connected in the chain, in order to allow enough SCLK cycles to load all devices.

ZERO CROSSING DETECTION

The PGA2320 includes a zero crossing detection function that can provide for noise-free level transitions. The concept is to change gain settings on a zero crossing of the input signal, thus minimizing audible glitches. This function is enabled or disabled using the ZCEN input (pin 1). When ZCEN is low, zero crossing detection is disabled. When ZCEN is high, zero crossing detection will be enabled.

The zero crossing detection takes effect with a change in gain setting for a corresponding channel. The new gain setting will not be latched until either two zero crossings are detected, or a timeout period of 16ms has elapsed without detecting two zero crossings. In the case of a timeout, the new gain setting takes effect with no attempt to minimize audible artifacts.

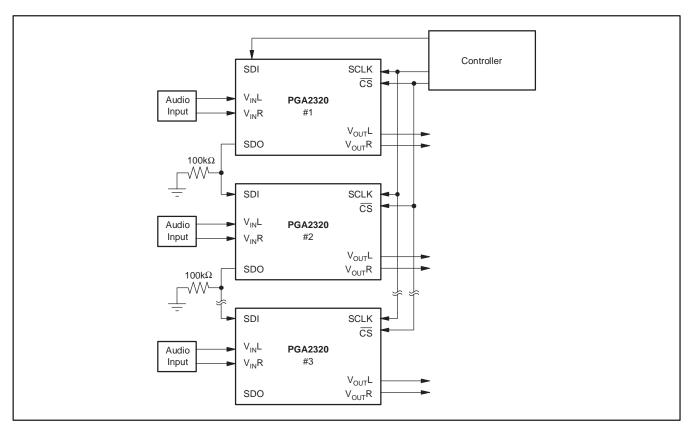


Figure 4. Daisy-Chaining Multiple PGA2320 Devices

MUTE FUNCTION

The PGA2320 includes a mute function. This function may be activated by either the $\overline{\text{MUTE}}$ input (pin 8), or by setting the gain byte value for one or both channels to 00_{HEX} . The $\overline{\text{MUTE}}$ pin may be used to mute both channels, while the gain setting may be used to selectively mute the left and right channels. Muting is accomplished by switching the input multiplexer to analog ground (AGNDR or AGNDL) with zero crossing enabled.

The $\overline{\text{MUTE}}$ pin is active low. When $\overline{\text{MUTE}}$ is low, each channel will be muted following the next zero crossing event or timeout that occurs on that channel. If $\overline{\text{MUTE}}$ becomes active while $\overline{\text{CS}}$ is also active, the mute will take effect once the $\overline{\text{CS}}$ pin goes high. When the $\overline{\text{MUTE}}$ pin is high, the PGA2320 operates normally, with the mute function disabled.

APPLICATIONS INFORMATION

This section includes additional information that is pertinent to designing the PGA2320 into an end application.

RECOMMENDED CONNECTION DIAGRAM

Figure 5 depicts the recommended connections for the PGA2320. Power-supply bypass capacitors should be placed as close to the PGA2320 package as physically possible.

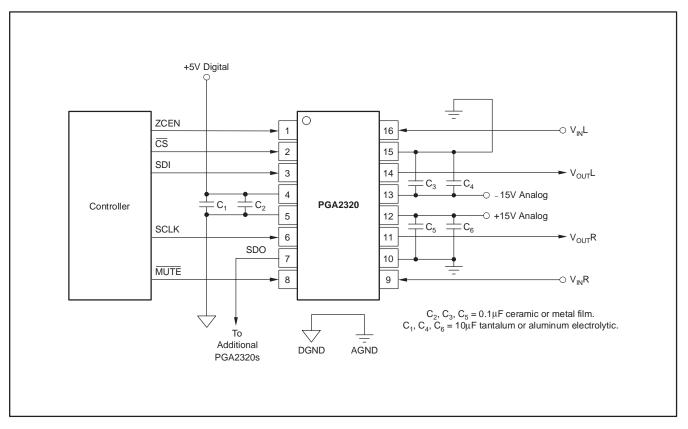


Figure 5. Recommended Connection Diagram

SBOS312B - JULY 2004 - REVISED DECEMBER 2004

PRINTED CIRCUIT BOARD LAYOUT GUIDELINES

It is recommended that the ground planes for the digital and analog sections of the printed circuit board (PCB) be separate from one another. The planes should be connected at a single point. Figure 6 shows the recommended PCB floor plan for the PGA2320. The PGA2320 is mounted so that it straddles the split between the digital and analog ground planes. Pins 1 through 8 are oriented to the digital side of the board, while pins 9 through 16 are on the analog side of the board.

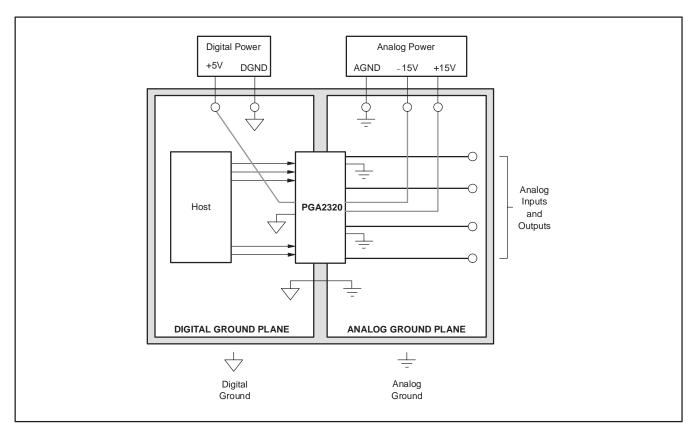


Figure 6. Typical PCB Layout Floor Plan

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
PGA2320IDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PGA23201	Samples
PGA2320IDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PGA23201	Samples
PGA2320IDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PGA23201	Samples
PGA2320IDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PGA23201	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

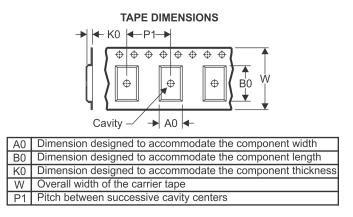
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

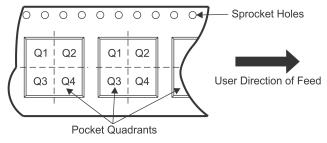
www.ti.com

PACKAGE OPTION ADDENDUM

11-Apr-2013


PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

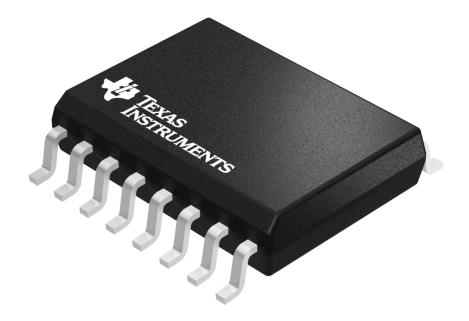
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PGA2320IDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

2-Apr-2014


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PGA2320IDWR	SOIC	DW	16	2000	367.0	367.0	38.0

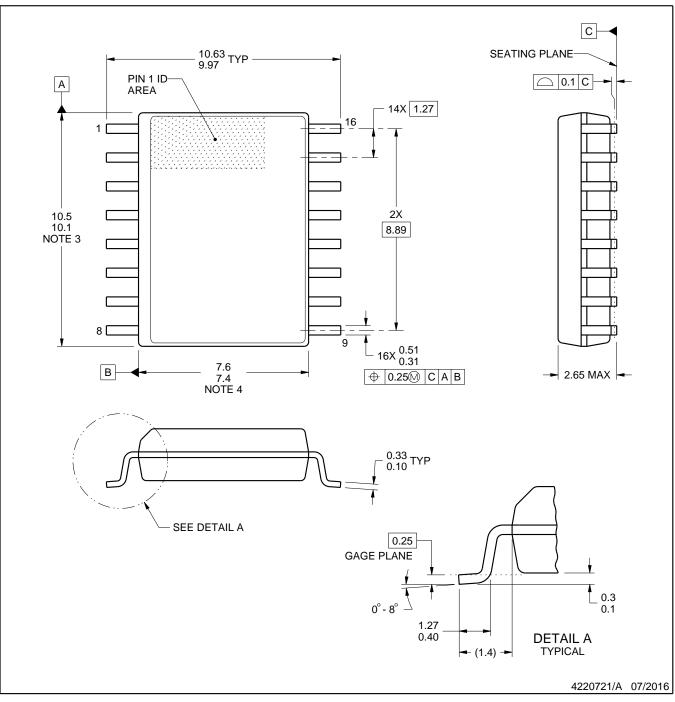
GENERIC PACKAGE VIEW

SOIC - 2.65 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040000-2/H


DW0016A

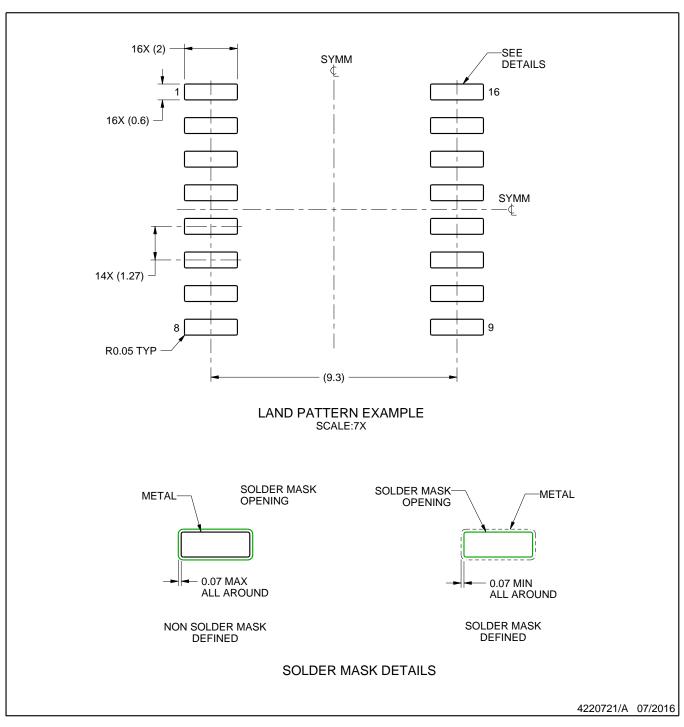
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.



DW0016A

EXAMPLE BOARD LAYOUT

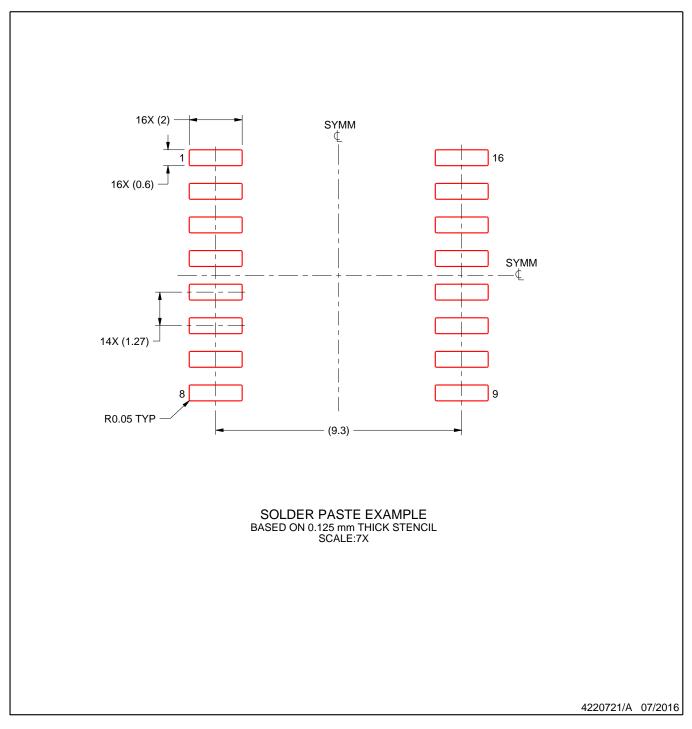
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0016A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated