

Sample &

Buy

Reference

Design

SBAS221H-DECEMBER 2001-REVISED OCTOBER 2015

REG710xx Buck-Boost Charge Pump with up to 60-mA Output Current

Technical

Documents

1 Features

- Wide Input Voltage Range: 1.8 V to 5.5 V
- Automatic Step-Up and Step-Down Operation
- Low Input Current Ripple
- Low Output Voltage Ripple
- Minimum Number of External Components—No Inductors
- 1-MHz Internal Oscillator Allows Small Capacitors
- Shutdown Mode
- Thermal and Current Limit Protection
- Six Fixed Output Voltages Available:
 - 2.5 V, 2.7 V, 3 V, 3.3 V, 5 V, 5.5 V

2 Applications

- White LED Driver
- Smart Card Readers
- SIM Cards
- Handheld devices
- Modems
- PCMCIA Cards
- LCD Displays
- Battery Backup Supplies

3 Description

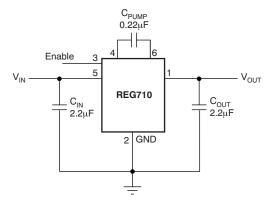
Tools &

Software

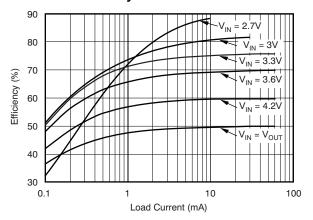
The REG710 family of devices are switched capacitor voltage converters that generate regulated, low-ripple output voltage from an unregulated input voltage. A wide input supply voltage from 1.8 V to 5.5 V makes the REG710 family of devices ideal for a variety of battery sources, such as single-cell Li-lon, or 2-cell and 3-cell nickel-based or alkaline-based chemistries.

Support &

Community


29

The input voltage may vary above and below the output voltage and the output remains in regulation. The device works as step-up or step-down converters without the need of an inductor, providing low EMI DC-DC conversion. The high switching frequency allows the use of small surface-mount capacitors, saving board space and reducing cost. The REG710 device is thermally protected and current limited, protecting the load and the regulator during fault conditions. Typical ground pin current (quiescent current) is 65 μ A with no load, and less than 1 μ A in shutdown mode.


Device	Inform	nation ⁽¹⁾
--------	--------	-----------------------

PART NUMBER	PACKAGE	BODY SIZE (NOM)
REG710	SOT-23 (6)	2.90 mm × 1.60 mm
DEOTION	SOT (6)	2.90 mm × 1.60 mm
REG71050	SON (6)	2.00 mm × 2.00 mm
REG71055	SOT-23 (6)	2.90 mm × 1.60 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Efficiency vs Load Current

Typical Operating Circuit

2

Product Folder Links: REG71050 REG71055 REG710

Table of Contents

1	Feat	tures 1
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Dev	ice Comparison Table 3
6	Pin	Configuration and Functions 3
7	Spe	cifications 3
	7.1	Absolute Maximum Ratings 3
	7.2	ESD Ratings 4
	7.3	Recommended Operating Conditions 4
	7.4	Thermal Information 4
	7.5	Electrical Characteristics 4
	7.6	Typical Characteristics 6
8	Deta	ailed Description7
	8.1	Overview 7
	8.2	Functional Block Diagram 8
	8.3	Feature Description8

	8.4	Device Functional Modes	8
9	App	lication and Implementation	10
	9.1	Application Information	. 10
	9.2	Typical Applications	. 10
	9.3	System Examples	. 14
10	Pow	er Supply Recommendations	17
11	Laye	out	17
	11.1	Layout Guidelines	. 17
	11.2	Layout Example	. 17
12	Dev	ice and Documentation Support	18
	12.1	Device Support	. 18
	12.2	Related Links	. 18
	12.3	Community Resources	. 18
	12.4	Trademarks	. 18
	12.5	Electrostatic Discharge Caution	. 18
	12.6	Glossary	. 18
13	Мес	hanical, Packaging, and Orderable	
	Infor	mation	18

Copyright © 2001–2015, Texas Instruments Incorporated

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision G (January 2009) to Revision H

 Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

www.ti.com


Page

5 Device Comparison Table

ORDER NUMBER	OUTPUT VOLTAGE		
REG71055	5.5 V		
REG710NA-5	5.)/		
REG71050	5 V		
REG710NA-3.3	3.3 V		
REG710NA-3	3 V		
REG710NA-2.7	2.7 V		
REG710NA-2.5	2.5 V		

6 Pin Configuration and Functions

Pin Functions

PIN NAME DDC/DBV DRV			1/0	DESCRIPTION			
NAME	DDC/DBV	DRV	I/O	DESCRIPTION			
C _{pump-}	4	3	-	Connect to the flying capacitor			
C _{pump+}	6	1	-	Connect to the flying capacitor			
Enable	3	5	I	Hardware Enable/Disable pin (high=enable)			
GND	2	4	-	Ground			
V _{in}	5	2	I	I Input supply pin. Connect the input capacitor to this pin.			
Vout	1	6	0	Output supply. Connect the output capacitor to this pin.			

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{IN}	Supply voltage	-0.3	6	
Enable	Enable input	-0.3	V _{IN}	V
	Output short-circuit duration	Indef	inite	
T _A	Operating ambient temperature	-55	125	
TJ	Operating ambient temperature	-55	150	°C
T _{stg}	Storage temperature	-55	150	

STRUMENTS

XAS

7.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 $^{(2)}$	±500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
INPUT VOLTAGE REG71055 3 5.5 V Tested Startup ⁽¹⁾ REG710-5 2.7 5.5 V				
	REG71055	3	5.5	V
Tested Startup ⁽¹⁾ R A	REG710-5	2.7	5.5	V
	All other models	1.8	5.5	V
T _A	Operating ambient temperature range	-40	85	°C

(1) See conditions under Output Voltage with a resistive load no lower than typical V_{OUT}/I_{OUT} in *Electrical Characteristics*.

7.4 Thermal Information

			REG710		
	THERMAL METRIC ⁽¹⁾	DRV	DDC	DBV	UNIT
		6 PINS	6 PINS	6 PINS	
$R_{\theta J A}$	Junction-to-ambient thermal resistance	119.1	204.6	184.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	110.5	50.5	124.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	88.7	54.3	30.6	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	7.7	0.8	22.1	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	89	52.8	30.1	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	61.8	n/a	n/a	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

 $T_A = -40^{\circ}$ C to 85°C, typical values are at $T_A = 25^{\circ}$ C (unless otherwise noted), $V_{IN} = (V_{OUT} / 2 + 0.75 \text{ V})$, $I_{OUT} = 10 \text{ mA}$, $C_{IN} = C_{OUT} = 2.2 \mu$ F, $C_{PUMP} = 0.22 \mu$ F, and $V_{ENABLE} = 1.3 \text{ V}$, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUP	PLY					
V_{IN}	Input voltage range. Tested Startup.					
	REG71055	See conditions under Output Voltage	3		5.5	
	REG710-5	with a resistive load no lower than typical V _{OUT} /I _{OUT} .	2.7		5.5	V
	All other models		1.8		5.5	
Ι _Q	Operating quiescent current	$I_{OUT} = 0 \text{ mA}, T_A = 25^{\circ}\text{C}$		65	100	μA
I_{SD}	Shutdown current	$V_{IN} = 1.8$ V to 5.5 V, Enable = 0 V, T _A = 25°C		0.01	1	μA
CON	ITROL SIGNALS (ENABLE)					
	Logic high input voltage	V _{IN} = 1.8 V to 5.5 V	1.3		V _{IN}	V
	Logic low input voltage	V _{IN} = 1.8 V to 5.5 V	-0.2		0.4	V
	Logic high input current	V _{IN} = 1.8 V to 5.5 V, T _A = 25°C			100	nA
	Logic low input current	V _{IN} = 1.8 V to 5.5 V, T _A = 25°C			100	nA
osc	ILLATOR FREQUENCY ⁽¹⁾			1		MHz

(1) The converter regulates by enabling and disabling periods of switching cycles. The switching frequency is the oscillator frequency during an active period.

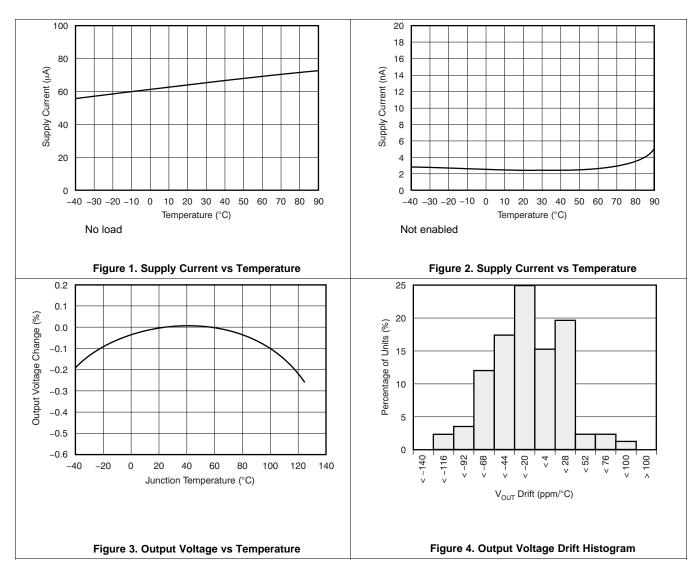
Electrical Characteristics (continued)

 $T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C, \text{ typical values are at } T_{A} = 25^{\circ}C \text{ (unless otherwise noted)}, \text{ V}_{\text{IN}} = (\text{V}_{\text{OUT}} / 2 + 0.75 \text{ V}), \text{ I}_{\text{OUT}} = 10 \text{ mA}, \text{ C}_{\text{IN}} = C_{\text{OUT}} = 2.2 \text{ } \mu\text{F}, \text{ C}_{\text{PUMP}} = 0.22 \text{ } \mu\text{F}, \text{ and } \text{V}_{\text{ENABLE}} = 1.3 \text{ V}, \text{ unless otherwise noted}.$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ουτ	PUT					
	DEC74055	$I_{OUT} \le 10 \text{ mA}, 3 \text{ V} \le V_{IN} \le 5.5 \text{ V}$	5.2	5.5	5.8	V
	REG71055	$I_{OUT} \le 30$ mA, 3.25 V \le V _{IN} ≤ 5.5 V	5.2	5.5	5.8	V
		$I_{OUT} \le 10 \text{ mA}, 2.7 \text{ V} \le V_{IN} \le 5.5 \text{ V}$	4.7	5	5.3	V
	REG710-5, REG71050	$I_{OUT} \le 30 \text{ mA}, 3 \text{ V} \le V_{IN} \le 5.5 \text{ V}$	4.7	5	5.3	V
		$I_{OUT} \le 60 \text{ mA}, 3.3 \text{ V} \le \text{V}_{\text{IN}} \le 4.2 \text{ V}$	4.6	5	5.4	V
	RE0.740.0.0	$I_{OUT} \le 10 \text{ mA}, 1.8 \text{ V} \le V_{IN} \le 5.5 \text{ V}$	3.1	3.3	3.5	V
	REG710-3.3	$I_{OUT} \le 30$ mA, 2.2 V $\le V_{IN} \le 5.5$ V	3.1	3.3	3.5	V
	REG710-3	$I_{OUT} \le 10 \text{ mA}, 1.8 \text{ V} \le V_{IN} \le 5.5 \text{ V}$	2.82	3	3.18	V
		$I_{OUT} \le 30$ mA, 2.2 V $\le V_{IN} \le 5.5$ V	2.82	3	3.18	V
	REG710-2.7	$I_{OUT} \le 10 \text{ mA}, 1.8 \text{ V} \le V_{IN} \le 5.5 \text{ V}$	2.54	2.7	2.86	V
		$I_{OUT} \le 30 \text{ mA}, 2 \text{ V} \le \text{V}_{IN} \le 5.5 \text{ V}$	2.54	2.7	2.86	V
	DEC 740.25	$I_{OUT} \le 10 \text{ mA}, 1.8 \text{ V} \le \text{V}_{\text{IN}} \le 5.5 \text{ V}$	2.35	2.5	2.65	V
	REG710-2.5	$I_{OUT} \le 30$ mA, 2 V $\le V_{IN} \le 5.5$ V	2.35	2.5	2.65	V
out	Nominal output current	$T_A = 25^{\circ}C$	30			mA
sc	Short circuit output current	$T_A = 25^{\circ}C$		100		mA
RIPP	LE VOLTAGE ⁽²⁾	I _{OUT} = 30 mA, T _A = 25°C		35		тV _{PF}
EFFI	CIENCY ⁽³⁾	I _{OUT} = 10 mA, V _{IN} = 1.8 V, REG710- 3.3, T _A = 25°C		90%		
THE	RMAL SHUTDOWN					
	Shutdown temperature			160		°C
-	Shutdown recovery			140		°C

(2) Effective series resistance (ESR) of capacitors is < 0.1 Ω .

(3) See efficiency curves for other V_{IN}/V_{OUT} configurations.


REG71050, REG71055, REG710 SBAS221H-DECEMBER 2001-REVISED OCTOBER 2015

www.ti.com

7.6 Typical Characteristics

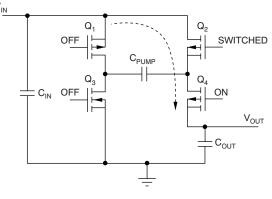
At $T_A = 25^{\circ}$ C, $V_{IN} = (V_{OUT} / 2 + 0.75 \text{ V})$, $I_{OUT} = 5 \text{ mA}$, $C_{IN} = C_{OUT} = 2.2 \mu$ F, $C_{PUMP} = 0.22 \mu$ F, and $V_{ENABLE} = 1.3 \text{ V}$, unless otherwise noted.

6

Copyright © 2001–2015, Texas Instruments Incorporated

8 Detailed Description

8.1 Overview


REG71050, REG71055, REG710

The REG710 regulated charge pump provides a regulated output voltage for input voltages which are not regulated with a value that can be lower or higher than the regulated output voltage. This is accomplished by automatic mode switching within the device. When the input voltage is greater than the required output, the device operates as a variable frequency switched-mode regulator. This operation is shown in Figure 5. Transistors Q_1 and Q_3 are held off, Q_4 is on, and Q_2 is switched as needed to maintain a regulated output voltage.

When the input voltage is less than the required output voltage, the device switches to a step-up or boost mode of operation, as shown in Figure 6.

A conversion clock of 50% duty cycle is generated. During the first half cycle the FET switches are configured as shown in Figure 6 (A), and C_{PUMP} charges to V_{IN} .

During the second half cycle the FET switches are configured as shown in Figure 6 (B), and the voltage on C_{PUMP} is added to V_{IN} . The output voltage is regulated by skipping clock cycles as necessary.

Step-Down (Buck) Mode

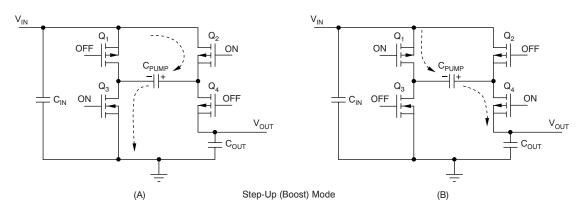
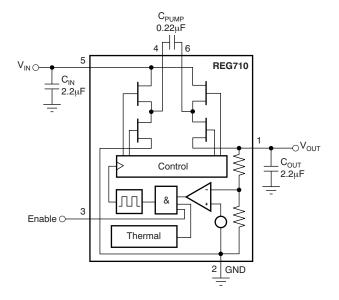



Figure 6. Simplified Schematic of the REG710 Operating in the Step-Up or Boost Mode

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Shutdown Mode

The EN pin enables the IC when pulled high and places it into energy-saving shutdown mode when pulled low. When in shutdown mode, the output is disconnected from the input and the quiescent current is reduced to 0.01 μ A typical. This shutdown mode functionality is only valid when V_{IN} is above the minimum recommended operating voltage. The EN pin cannot be left floating and must be actively terminated either high or low.

8.3.2 Protection

The regulator includes thermal shutdown circuitry protecting the device from damage caused by overload conditions. The thermal protection circuitry disables the output when the junction temperature reaches approximately 160°C, allowing the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry is automatically reenabled. Continuously operating the regulator into thermal shutdown can degrade reliability. The regulator also provides current limit to protect itself and the load.

8.4 Device Functional Modes

8.4.1 Peak Current Reduction

In normal operation, the charging of the pump and the output capacitors usually leads to relatively high peak input currents which can be much higher than the average load current. The regulator incorporates circuitry to limit the input peak current, lowering the total EMI emission and lowering the output voltage ripple and the input current ripple. The Input capacitor (C_{IN}) supplies most of the charge required by the input current peaks.

8.4.2 Efficiency

8

The efficiency of the charge pump regulator varies with the output voltage version, the applied input voltage, the load current, and the internal operation mode of the device.

The approximate efficiency is given by:

Device Functional Modes (continued)

Efficiency (%) =
$$V_{OUT} / (2 \times V_{IN}) \times 100$$

(step-up operating mode)
or
 $\frac{V_{OUT}}{V_{IN}} \times 100$

(step-down operating mode)

(1)

Table 1. Operating Mode Change versus V _{IN}	•	Table 1	. Operating	Mode	Change	versus	VIN	
---	---	---------	-------------	------	--------	--------	-----	--

PRODUCT	OPERATING MODE CHANGES AT V _{IN} OF
REG710-2.5	> 3.2 V
REG710-2.7	> 3.4 V
REG710-3	> 3.7 V
REG710-3.3	> 4.0 V
REG710-5, REG71050, REG71055	Step-up only

Table 1 lists the approximate values of the input voltage at which the device changes internal operating mode. See efficiency curves in *Typical Characteristics* for various loads and input voltages.

NSTRUMENTS

EXAS

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The REG710 is a switched capacitor voltage converter that produces a regulated, low-ripple output voltage from an unregulated input voltage range from 1.8 V to 5.5 V. The high switching frequency allows the use of small surface-mount capacitors. The following section gives guidance to choose external components to complete the power supply design. Application curves are included for the typical application shown below.

9.2 Typical Applications

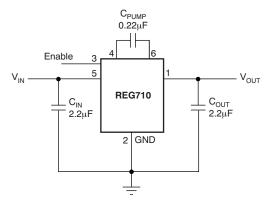


Figure 7. Typical Operating Circuit

9.2.1 Design Requirements

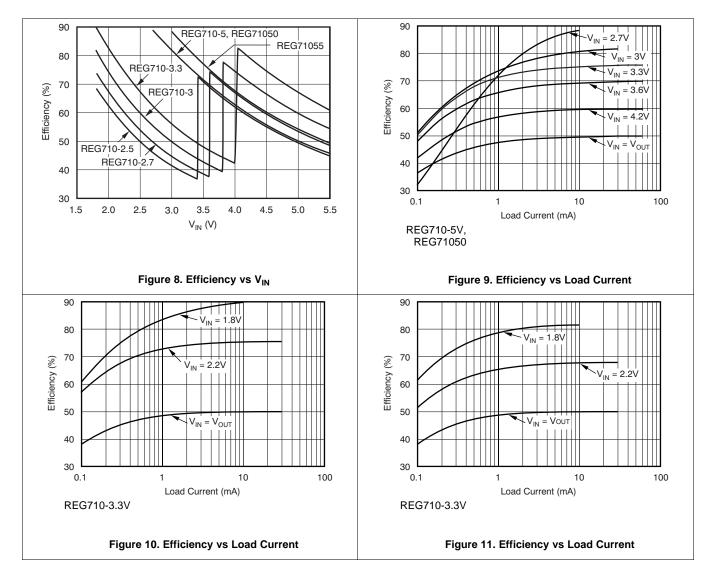
The REG710 family of switched capacitor voltage converters offers a variety of regulated fixed output voltages. This family supports unregulated input voltages which can have values that are lower or higher than the regulated output voltage. Only input and output capacitors as well as a pump capacitor are required to have a fully functional converter. The following design procedure is adequate for the whole V_{IN} , V_{OUT} and load current range of REG710.

9.2.2 Detailed Design Procedure

9.2.2.1 Capacitor Selection

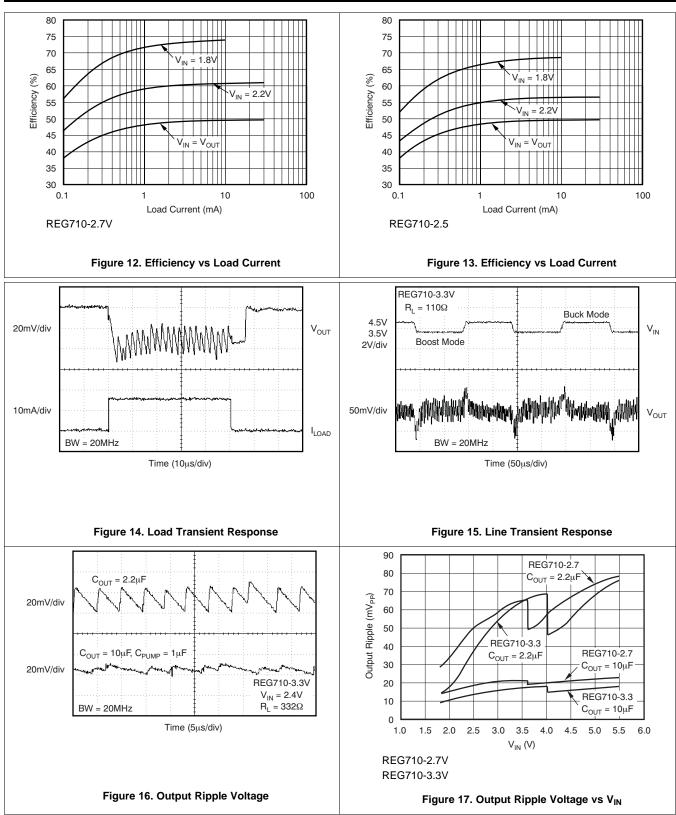
For minimum output voltage ripple, the output capacitor C_{OUT} should be a ceramic, surface-mount type. Tantalum capacitors generally have a higher effective series resistance (ESR) and may contribute to higher output voltage ripple. Leaded capacitors also increase ripple due to the higher inductance of the package itself. To achieve best operation with low input voltage and high load current, the input and pump capacitors (C_{IN} and C_{PUMP} , respectively) should also be surface-mount ceramic types. In all cases, X7R or X5R dielectric are recommended. See the typical operating circuit shown in Figure 7 for component values.

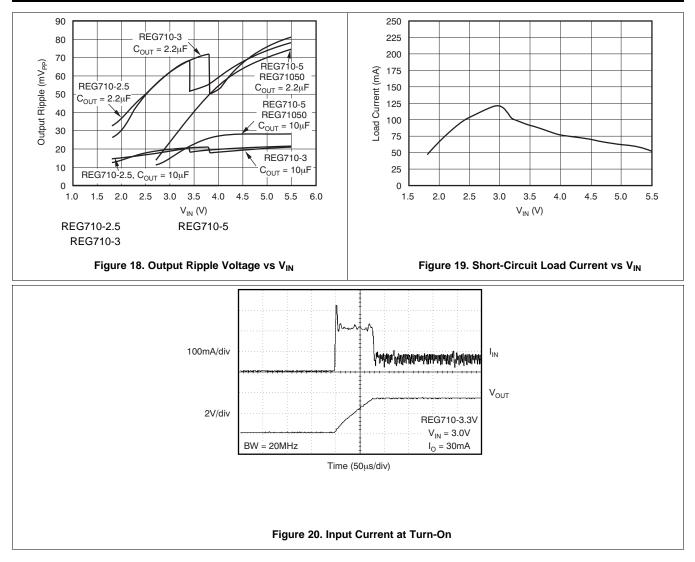
With light loads or higher input voltage, a smaller $0.1-\mu F$ pump capacitor (C_{PUMP}) and smaller $1-\mu F$ input and output capacitors (C_{IN} and C_{OUT} , respectively) can be used. To minimize output voltage ripple, increase the output capacitor, C_{OUT} , to 10 μF or larger.


The capacitors listed in Table 2 can be used with the REG710. This table is only a representative list of compatible parts.

MANUFACTURER	PART NUMBER	VALUE	TOLERANCE	DIELECTRIC MATERIAL	PACKAGE SIZE	RATED WORKING VOLTAGE
Komot	C1206C255K8RAC	2.2 µF	±10%	X7R	1206	10 V
Kemet	C1206C224K8RAC	0.22 µF	±10%	X7R	1206	10 V
	ECJ-2YBOJ225K	2.2 µF	±10%	X5R	805	6.3 V
Panasonic	ECJ-2VBIC224K	0.22 µF	±10%	X7R	805	16 V
	ECJ-2VBIC104	0.1 µF	±10%	X7R	805	16 V
Taiyo Yuden	EMK316BJ225KL	2.2 µF	±10%	X7R	1206	16 V
	TKM316BJ224KF	0.22 µF	±10%	X7R	1206	25 V

Table 2. Suggested Capacitors


9.2.3 Application Curves



REG71050, REG71055, REG710

SBAS221H - DECEMBER 2001 - REVISED OCTOBER 2015

9.3 System Examples

9.3.1 1.8 V to 5.0 V With 10-mA Output Current

The REG710 family of charge pumps can be cascaded to reach higher output voltages, as shown in Figure 21.

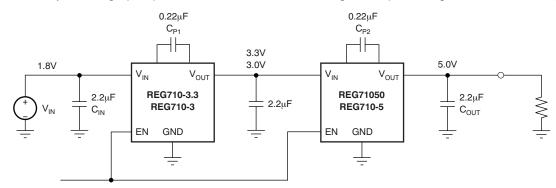
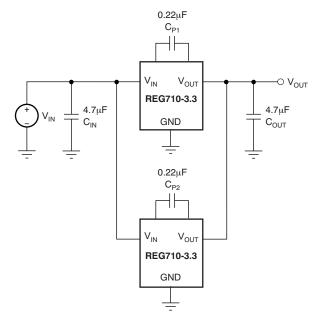


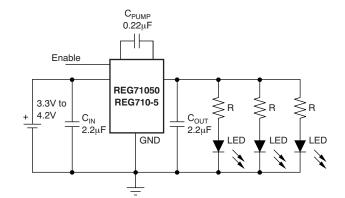
Figure 21. REG710 Circuit for Step-Up Operation From 1.8 V to 5 V With 10-mA Output Current


This application circuits operates from 1.8 V input voltage and generates 5 V output voltage supporting 10 mA load current.

Higher output voltages can be achieved when two REG710 devices are connected in cascade. When cascading two devices from the REG710 family, the relationship between output current and input voltage must be taken into account. (see *Electrical Characteristics*). In this case, REG710 can deliver a maximum of 10 mA. REG710-3.3 or REG710-3 can be used. A second charge pump, REG71050 or REG710-5, steps up the voltage from 3 V or 3.3 V to 5 V. Connect both Enable pins together.

System Examples (continued)

9.3.2 Doubling the Output Current


Figure 22. REG710 Circuit for Doubling the Output Current

When higher output currents are required, the REG710 family can be paralleled to double the output current. When paralleling two devices the relationship between output current and input voltage must be taken into account (see *Electrical Characteristics*).

This particular application can deliver 20 mA for an input voltage from 1.8 V to 5.5 V, or 60-mA output for an input voltage from 2.2 V to 5.5 V. The output voltage is 3.3 V.

9.3.3 Driving LEDs

Figure 23. REG710 Circuit for Driving LEDs

The REG710 family can be used to drive LEDs. The feed forward voltage of the chosen LED determines the required output voltage. In this application, the charge pump can drive multiple LEDs up to 60 mA in total.

$$R = \frac{5V - V_{LED}}{I_{LED}}$$

(2)

10 Power Supply Recommendations

The input supply to the REG710 must have a current rating according to the supply voltage, output voltage and output current of the REG710.

11 Layout

11.1 Layout Guidelines

Large transient currents flow in the V_{IN}, V_{OUT}, and GND traces. To minimize both input and output ripple, keep the capacitors as close as possible to the regulator using short, direct circuit traces.

A suggested printed-circuit-board (PCB) routing is shown in Figure 24. The trace lengths from the input and output capacitors have been kept as short as possible.

11.2 Layout Example

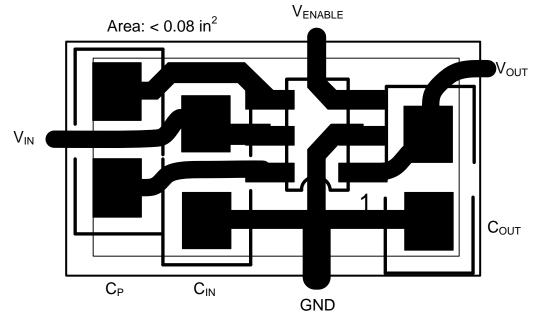


Figure 24. Suggested PCB Design for Minimum Ripple

TEXAS INSTRUMENTS

www.ti.com

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
REG71050	Click here	Click here	Click here	Click here	Click here
REG71055	Click here	Click here	Click here	Click here	Click here

Table 3. Related Links

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
REG71050DDCR	ACTIVE	SOT-23-THIN	DDC	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	GAAI	Samples
REG71050DDCRG4	ACTIVE	SOT-23-THIN	DDC	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	GAAI	Samples
REG71050DDCT	ACTIVE	SOT-23-THIN	DDC	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	GAAI	Samples
REG71050DDCTG4	ACTIVE	SOT-23-THIN	DDC	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	GAAI	Samples
REG71050DRVR	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CFF	Samples
REG71050DRVRG4	ACTIVE	WSON	DRV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CFF	Samples
REG71050DRVT	ACTIVE	WSON	DRV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	CFF	Samples
REG71055DDCR	ACTIVE	SOT-23-THIN	DDC	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10H	Samples
REG71055DDCRG4	ACTIVE	SOT-23-THIN	DDC	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10H	Samples
REG71055DDCT	ACTIVE	SOT-23-THIN	DDC	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10H	Samples
REG71055DDCTG4	ACTIVE	SOT-23-THIN	DDC	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10H	Samples
REG710NA-2.5/250	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10G	Samples
REG710NA-2.5/250G4	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10G	Samples
REG710NA-2.7/250	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10F	Samples
REG710NA-3.3/250	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10C	Samples
REG710NA-3.3/250G4	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10C	Samples
REG710NA-3.3/3K	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10C	Samples

17-Mar-2017

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
REG710NA-3/250	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10D	Samples
REG710NA-3/250G4	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10D	Samples
REG710NA-3/3K	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10D	Samples
REG710NA-3/3KG4	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10D	Samples
REG710NA-5/250	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10B	Samples
REG710NA-5/250G4	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10B	Samples
REG710NA-5/3K	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10B	Samples
REG710NA-5/3KG4	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	R10B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

17-Mar-2017

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

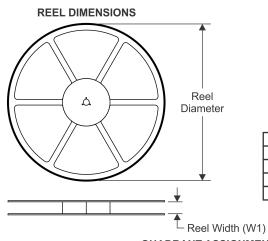
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

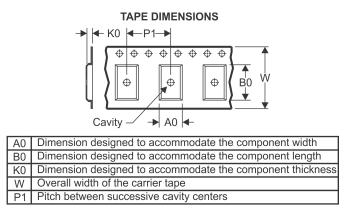
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF REG71055 :

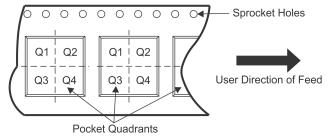
Automotive: REG71055-Q1

NOTE: Qualified Version Definitions:


• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

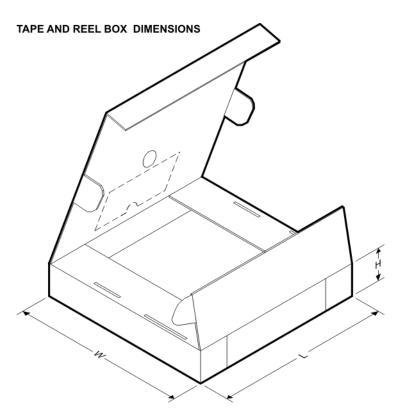

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

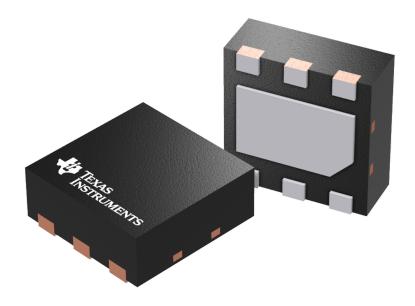

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
REG71050DDCR	SOT- 23-THIN	DDC	6	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
REG71050DDCT	SOT- 23-THIN	DDC	6	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
REG71050DRVR	WSON	DRV	6	3000	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
REG71050DRVT	WSON	DRV	6	250	179.0	8.4	2.2	2.2	1.2	4.0	8.0	Q2
REG71050DRVT	WSON	DRV	6	250	180.0	8.4	2.3	2.3	1.15	4.0	8.0	Q2
REG710NA-2.5/250	SOT-23	DBV	6	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
REG710NA-2.7/250	SOT-23	DBV	6	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
REG710NA-3.3/250	SOT-23	DBV	6	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
REG710NA-3.3/3K	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
REG710NA-3.3/3K	SOT-23	DBV	6	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
REG710NA-3/250	SOT-23	DBV	6	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
REG710NA-3/250	SOT-23	DBV	6	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
REG710NA-3/3K	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
REG710NA-3/3K	SOT-23	DBV	6	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
REG710NA-5/250	SOT-23	DBV	6	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
REG710NA-5/250	SOT-23	DBV	6	250	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
REG710NA-5/3K	SOT-23	DBV	6	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3

22-Nov-2017

Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
REG710NA-5/3K	SOT-23	DBV	6	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

*All dimensions are nomin	al
---------------------------	----

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
REG71050DDCR	SOT-23-THIN	DDC	6	3000	203.0	203.0	35.0
REG71050DDCT	SOT-23-THIN	DDC	6	250	203.0	203.0	35.0
REG71050DRVR	WSON	DRV	6	3000	195.0	200.0	45.0
REG71050DRVT	WSON	DRV	6	250	195.0	200.0	45.0
REG71050DRVT	WSON	DRV	6	250	210.0	185.0	35.0
REG710NA-2.5/250	SOT-23	DBV	6	250	203.0	203.0	35.0
REG710NA-2.7/250	SOT-23	DBV	6	250	203.0	203.0	35.0
REG710NA-3.3/250	SOT-23	DBV	6	250	180.0	180.0	18.0
REG710NA-3.3/3K	SOT-23	DBV	6	3000	180.0	180.0	18.0
REG710NA-3.3/3K	SOT-23	DBV	6	3000	203.0	203.0	35.0
REG710NA-3/250	SOT-23	DBV	6	250	203.0	203.0	35.0
REG710NA-3/250	SOT-23	DBV	6	250	180.0	180.0	18.0
REG710NA-3/3K	SOT-23	DBV	6	3000	180.0	180.0	18.0
REG710NA-3/3K	SOT-23	DBV	6	3000	203.0	203.0	35.0
REG710NA-5/250	SOT-23	DBV	6	250	180.0	180.0	18.0
REG710NA-5/250	SOT-23	DBV	6	250	203.0	203.0	35.0


22-Nov-2017

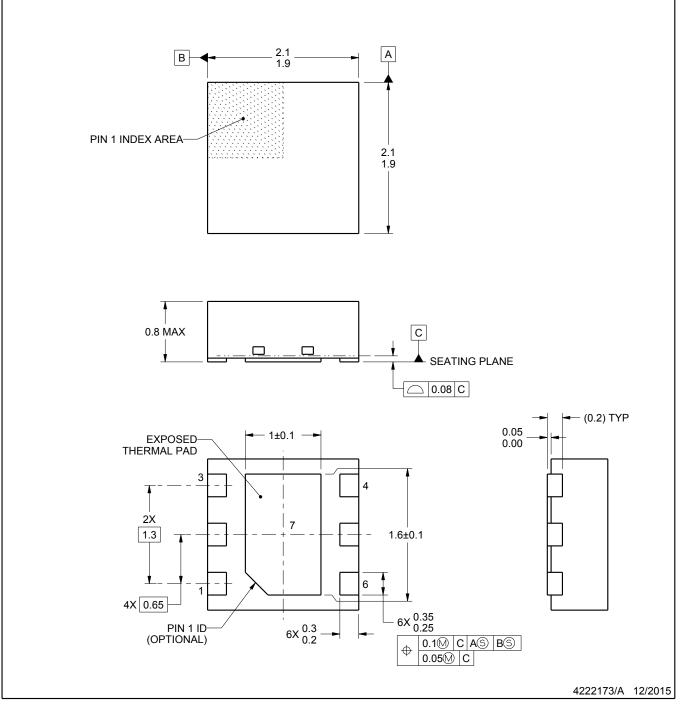
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
REG710NA-5/3K	SOT-23	DBV	6	3000	180.0	180.0	18.0
REG710NA-5/3K	SOT-23	DBV	6	3000	203.0	203.0	35.0

DRV 6

GENERIC PACKAGE VIEW

WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DRV0006A

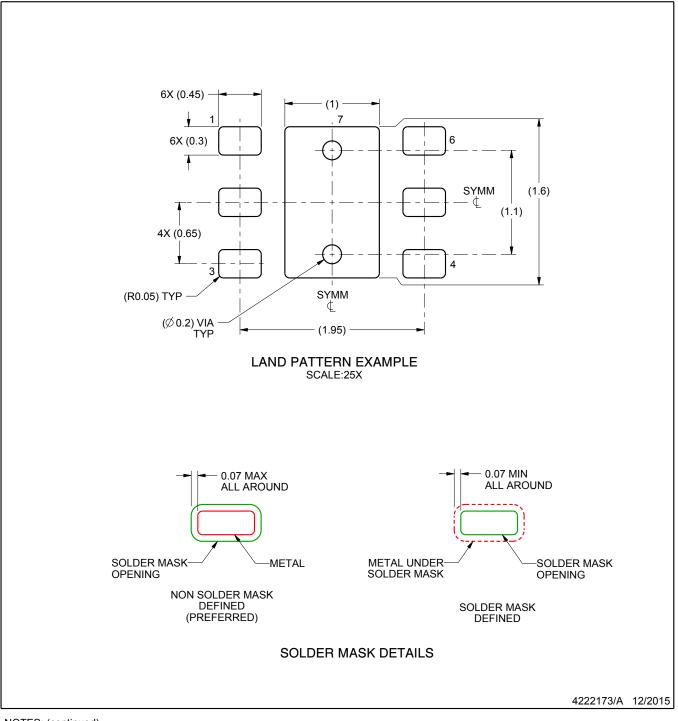
PACKAGE OUTLINE

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



DRV0006A

EXAMPLE BOARD LAYOUT

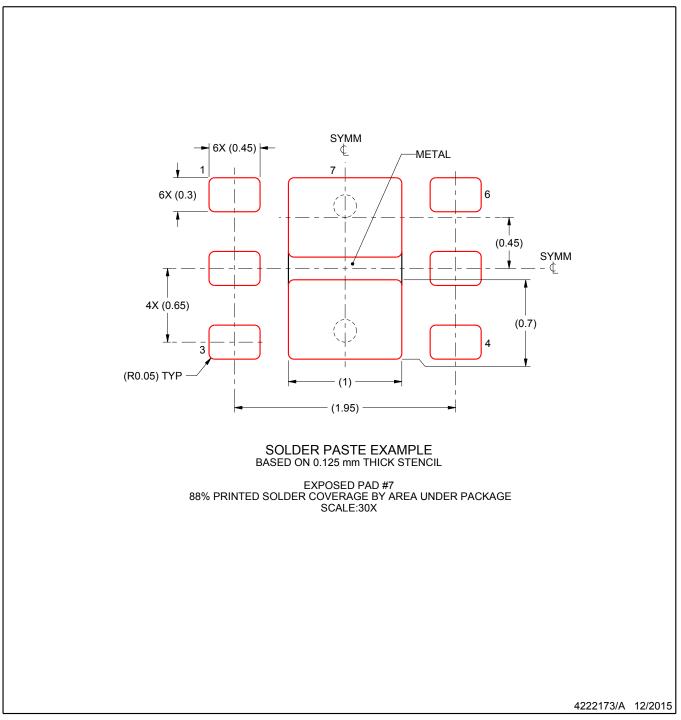
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature

number SLUA271 (www.ti.com/lit/slua271).
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.

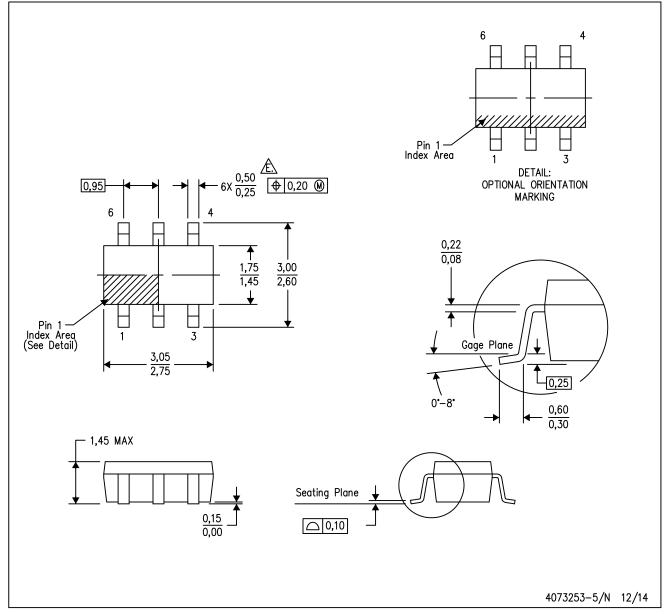


DRV0006A

EXAMPLE STENCIL DESIGN

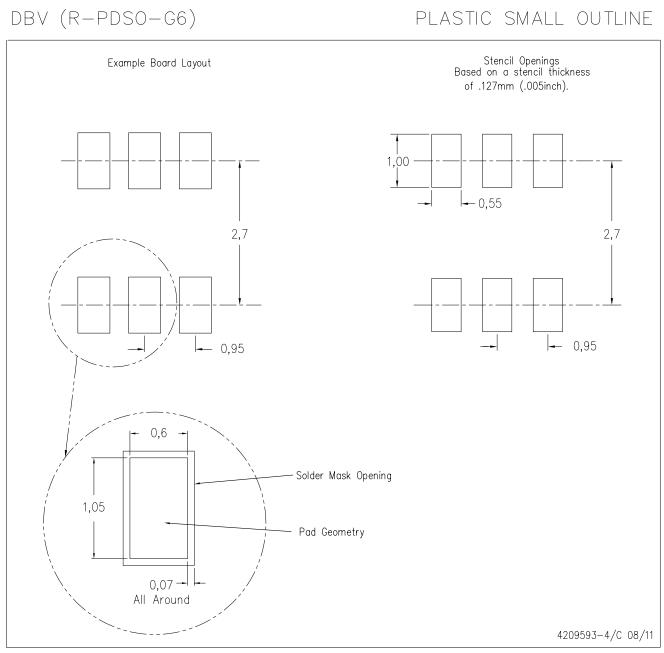
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD


NOTES: (continued)

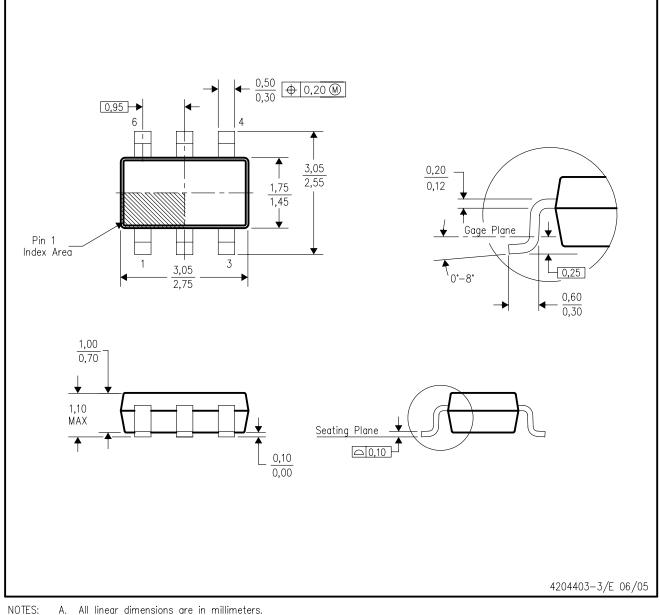
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DBV (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE

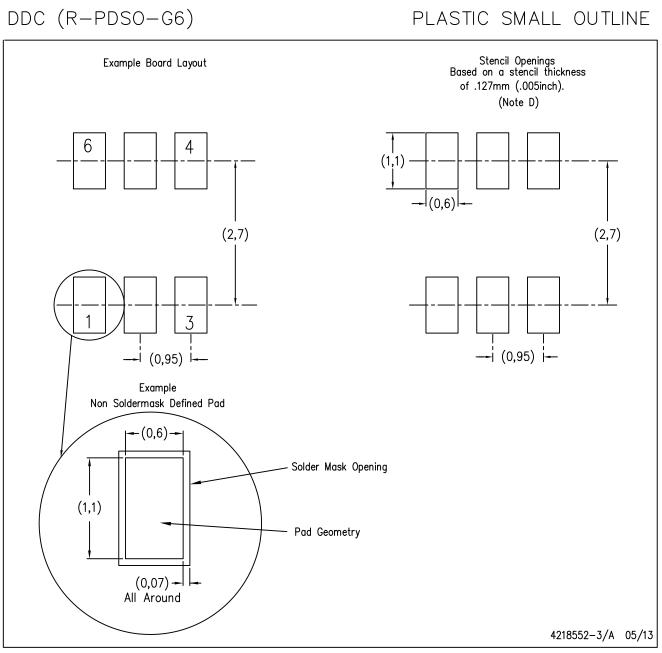
- NOTES:
 - A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
 - È Falls within JEDEC MO-178 Variation AB, except minimum lead width.

LAND PATTERN DATA


NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DDC (R-PDSO-G6)


PLASTIC SMALL-OUTLINE

Α. All linear dimensions are in millimeters.

- This drawing is subject to change without notice. Β.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-193 variation AA (6 pin).

NOTES:

A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.

C. Publication IPC-7351 is recommended for alternate designs.

D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated