

SN65LVCP23

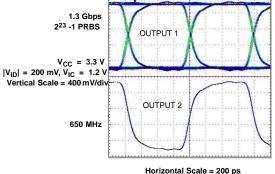
SLLS554E-NOVEMBER 2002-REVISED MAY 2006

2x2 LVPECL CROSSPOINT SWITCH

FEATURES

- High Speed 2x2 LVPECL Crosspoint Switch
- LVDS Crosspoint Switch Available in SN65LVCP22
- 50 ps (Typ), of Peak-to-Peak Jitter With PRBS = 2²³- 1 Pattern
- Output (Channel-to-Channel) Skew Is 10 ps (Typ), 50 ps (Max)
- Configurable as 2:1 Mux, 1:2 Demux, Repeater or 1:2 Signal Splitter
- Inputs Accept LVDS, LVPECL, and CML Signals
- Fast Switch Time of 1.7 ns (Typ)
- Fast Propagation Delay of 0.75 ns (Typ)
- 16 Lead SOIC and TSSOP Packages
- Operating Temperature: -40°C to 85°C

APPLICATIONS


- Gigabit Ethernet Redundant Transmission
 Paths
- Gigabit Interface Converters (GBICs)
- Fibre Channel Redundant Transmission
 Paths
- HDTV Video Routing
- Base Stations
- Protection Switching for Serial Backplanes
- Network Switches/Routers
- Optical Networking Line Cards/Switches
- Clock Distribution

DESCRIPTION

The SN65LVCP23 is a 2x2 LVPECL crosspoint switch. The dual channels incorporate wide common-mode (0 V to 4 V) receivers, allowing for the receipt of LVDS, LVPECL, and CML signals. The dual outputs are LVPECL drivers to provide high-speed operation. The SN65LVCP23 provides a single device supporting 2:2 buffering (repeating), 1:2 splitting, 2:1 multiplexing, 2x2 switching, and LVDS/CML to LVPECL level translation on each channel. The flexible operation of the SN65LVCP23 provides a single device to support the redundant serial bus transmission needs (working and protection switching cards) of fault-tolerant switch systems found in optical networking, wireless infrastructure, and data communications systems. TI offers an additional gigabit repeater/translator in the SN65LVDS101.

The SN65LVCP23 uses a fully differential data path to ensure low-noise generation, fast switching times, low pulse width distortion, and low jitter. Output channel-to-channel skew is less than 10 ps (typ) and 50 ps (max) to ensure accurate alignment of outputs in all applications. Both SOIC and TSSOP package options are available.

OUTPUTS OPERATING SIMULTANEOUSLY

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN65LVCP23

SLLS554E-NOVEMBER 2002-REVISED MAY 2006

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

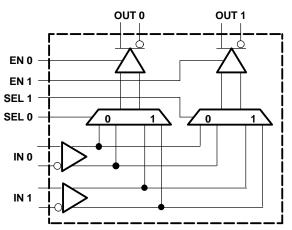
ORDERING INFORMATION

PACKAGE DESIGNATOR	PART NUMBER ⁽¹⁾	SYMBOLIZATION
SOIC	SN65LVCP23D	LVCP23
TSSOP	SN65LVCP23PW	LVCP23

(1) Add the suffix R for taped and reeled carrier

PACKAGE DISSIPATION RATINGS

PACKAGE	CIRCUIT BOARD MODEL	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ⁽¹⁾ ABOVE T _A = 25°C	T _A = 85°C POWER RATING
SOIC (D)	High-K ⁽²⁾	1361 mW	13.9 mW/°C	544 mW
TSSOP (PW)	High-K ⁽²⁾	1074 mW	10.7 mW/°C	430 mW

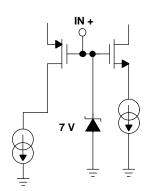

(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

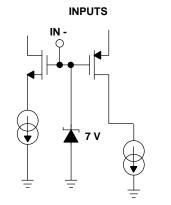
(2) In accordance with the High-K thermal metric definitions of EIA/JESD51-7.

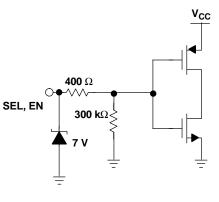
THERMAL CHARACTERISTICS

	PARAMETER		TEST CONDITIONS	VALUE	UNITS
0	Junction-to-board thermal resistance	D		15.7	°C/W
θ _{JB} J		PW		22.1	°C/W
0	Junction-to-case thermal resistance	D		26.1	°C/W
θ_{JC}	Junction-to-case thermal resistance	PW		17.3	°C/W
р	Device power dissipation	Typical	$V_{CC} = 3.3 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}, 2 \text{ Gbps}$	165	mW
PD	Device power dissipation	Maximum	$V_{CC} = 3.6 \text{ V}, \text{ T}_{A} = 85^{\circ}\text{C}, 2 \text{ Gbps}$	234	mW

FUNCTIONAL BLOCK DIAGRAM




CIRCUIT FUNCTION TABLE


		INPU	TS ⁽¹⁾			OUTP	UTS ⁽¹⁾	
IN 0	IN 1	SEL 0	SEL1	EN 0	EN 1	OUT 0	OUT 1	LOGIC DIAGRAM
Х	Х	Х	Х	L	L	L	L	
>100 mV	Х	L	L	Н	L	Н	L	EN 0
<-100 mV	Х	L	L	Н	L	L	L	
<-100 mV	Х	L	L	Н	Н	L	L	
>100 mV	Х	L	L	Н	Н	Н	Н	
>100 mV	Х	L	L	L	Н	L	Н	
<-100 mV	Х	L	L	L	Н	L	L	EN 1
>100 mV	Х	L	Н	Н	L	Н	L	
<-100 mV	Х	L	Н	Н	L	L	L	EN 0
<-100 mV	<-100 mV	L	Н	Н	Н	L	L	
<-100 mV	>100 mV	L	Н	Н	Н	L	Н	
>100 mV	<-100 mV	L	Н	Н	Н	Н	L	
>100 mV	>100 mV	L	Н	Н	Н	Н	Н	
Х	>100 mV	L	Н	L	Н	L	Н	EN 1
Х	<-100 mV	L	Н	L	Н	L	L	
Х	>100 mV	Н	Н	Н	L	Н	L	EN 0
Х	<-100 mV	Н	Н	Н	L	L	L	
Х	<-100 mV	Н	Н	Н	Н	L	L	
Х	>100 mV	Н	н	Н	Н	н	Н	
Х	>100 mV	Н	н	L	Н	L	Н	
Х	<-100 mV	Н	Н	L	Н	L	L	EN 1
Х	>100 mV	Н	L	Н	L	Н	L	
Х	<-100 mV	Н	L	Н	L	L	L	EN 0
<-100 mV	<-100 mV	Н	L	Н	Н	L	L	
<-100 mV	>100 mV	Н	L	Н	Н	Н	L	
>100 mV	<-100 mV	Н	L	Н	Н	L	Н	
>100 mV	>100 mV	Н	L	Н	Н	н	Н	
>100 mV	Х	Н	L	L	Н	L	Н	EN 1
<-100 mV	Х	Н	L	L	Н	L	L	

(1) H = High level, L = Low level, Z = High impedance, X = Don't care


EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

OUTPUTS

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted⁽¹⁾

			UNITS
Supply voltage range, (2)	V _{CC}	–0.5 V to 4 V	
CMOS/TTL input voltage	(ENO, EN1, SEL0, SEL1)		–0.5 V to 4 V
Receiver input voltage (II	N+, IN–)		–0.7 V to 4.3 V
LVPECL driver output vo	ltage (OUT+, OUT-)		–0.5 V to 4 V
Output ourroat	Continuous		50 mA
Output current	Surge		100 mA
Storage temperature ran	ge		–65°C to 125°C
Lead temperature 1,6 mr	m (1/16 inch) from case for 10) seconds	235°C
Continuous power dissipa	ation		See Dissipation Rating Table
Flastrastatia diasharras	Human body model ⁽³⁾	All pins	±5 kV
Electrostatic discharge	Charged-device mode ⁽⁴⁾	All pins	±500 V

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminals.
 (3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
 (4) Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	3	3.3	3.6	V
	Receiver input voltage	0		4	V
	Junction temperature			125	°C
T _A	Operating free-air temperature ⁽¹⁾	-40		85	°C
$ V_{ID} $	Magnitude of differential input voltage	0.1		3	V

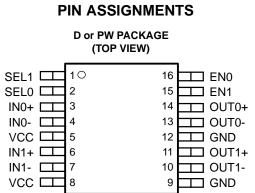
(1) Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded.

SLLS554E-NOVEMBER 2002-REVISED MAY 2006

INPUT ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
CMOS/T	TL DC SPECIFICATIONS (EN0, EN1, SEL0, SEL	1)				
VIH	High-level input voltage		2		V _{CC}	V
V _{IL}	Low-level input voltage		GND		0.8	V
I _{IH}	High-level input current	V_{IN} = 3.6 V or 2.0 V, V_{CC} = 3.6 V		±3	±20	μA
IIL	Low-level input current	V_{IN} = 0.0 V or 0.8 V, V_{CC} = 3.6 V		±1	±10	μA
V _{CL}	Input clamp voltage	I _{CL} = -18 mA		-0.8	-1.5	V
LVPECL	OUTPUT SPECIFICATIONS (OUT0, OUT1)	·				
V _{OH}	Output high voltage		V _{CC} – 1.3		$V_{CC} - 0.85$	V
V _{OL}	Output low voltage	$R_L = 50 \Omega$ to V_{TT} , $V_{TT} = V_{CC} - 2.0 V$, See Figure 2	V _{CC} – 2.2		V _{CC} – 1.65	v
V _{OD}	Differential output voltage		600	800	1000	mV
Co	Differential output capacitance	$V_{I} = 0.4 \sin(4E6\pi t) + 0.5 V$		3		pF
RECEIV	ER DC SPECIFICATIONS (IN0, IN1)					
V _{TH}	Positive-going differential input voltage threshold	See Figure 1 and Table 1			100	mV
V _{TL}	Negative-going differential input voltage threshold	See Figure 1 and Table 1	-100			mV
V _{ID(HYS)}	Differential input voltage hysteresis			25		mV
V _{CMR}	Common-mode voltage range	V _{ID} = 100 mV, V _{CC} = 3.0 V to 3.6 V	0.05		3.95	V
		$V_{IN} = 4 \text{ V}, V_{CC} = 3.6 \text{ V} \text{ or } 0.0 \text{ V}$		±1	±10	
I _{IN}	Input current	$V_{IN} = 0 \text{ V}, \text{ V}_{CC} = 3.6 \text{ V} \text{ or } 0.0 \text{ V}$		±1	±10	μA
CIN	Differential input capacitance	V _I = 0.4 sin (4E6πt) + 0.5 V		1		pF
SUPPLY	CURRENT	·				
I _{CCD}	DC supply current	No load		50	65	mA


(1) All typical values are at 25°C and with a 3.3-V supply.

SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{SET}	Input to SEL setup time	Figure 5	1	0.5		ns
t _{HOLD}	Input to SEL hold time	Figure 5	1.1	0.5		ns
t _{SWITCH}	SEL to switched output	Figure 5		1.7	2.5	ns
t _{PHKL}	Disable time, high-level-to-known LOW	Figure 4		2	2.5	ns
t _{PKLH}	Enable time, known LOW-to-high-level output	Figure 4		2	2.5	ns
t _{LHT}	Differential output signal rise time $(20\% - 80\%)^{(1)}$	Figure 3	80	110	220	ps
t _{HLT}	Differential output signal fall time $(20\% - 80\%)^{(1)}$	Figure 3	80	110	220	ps
		$\rm V_{ID}$ = 200 mV, 50% duty cycle, $\rm V_{CM}$ = 1.2 V, 650 MHz		15	30	ps
t _{JIT} Added peak-to-peak jitter		V_{ID} = 200 mV, PRBS = 2 ²³ –1 data pattern and K28.5 (0011111010), V_{CM} = 1.2 V at 1.3 Gbps		50	100	ps
t _{Jrms}	Added random jitter (rms)	V_{ID} = 200 mV, 50% duty cycle, V_{CM} = 1.2 V, 650 MHz		0.3	0.5	ps _{RMS}
t _{PLHD}	Propagation delay time, low-to-high-level output ⁽¹⁾	$V_{CC} = 3.3 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}, \text{ See Figure 3}$	400	750	1100	ps
t _{PHLD}	Propagation delay time, high-to-low-level output ⁽¹⁾	V_{CC} = 3.3 V, T_A = 25°C, See Figure 3	400	750	1100	ps
t _{skew}	Pulse skew (t _{PLHD} - t _{PHLD}) ⁽²⁾	Figure 3		20	100	ps
t _{CCS}	Output channel-to-channel skew, splitter mode	Figure 3		10	50	ps
f _{MAX}	Maximum operating frequency ⁽³⁾		1			GHz

- Input: V_{IC} = 1.2 V, V_{ID} = 200 mV, 50% duty cycle, 1 MHz, t_f/t_f = 500 ps
 t_{skew} is the magnitude of the time difference between the t_{PLHD} and t_{PHLD} of any output of a single device.
 Signal generator conditions: 50% duty cycle, t_r or t_f ≤ 100 ps (10% to 90%), transmitter output criteria: duty cycle = 45% to 55% V_{OD} ≥ 300 mV.

PARAMETER MEASUREMENT INFORMATION

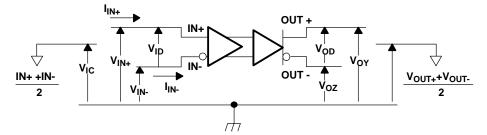
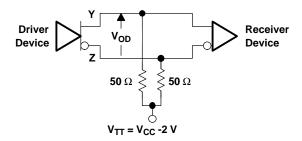
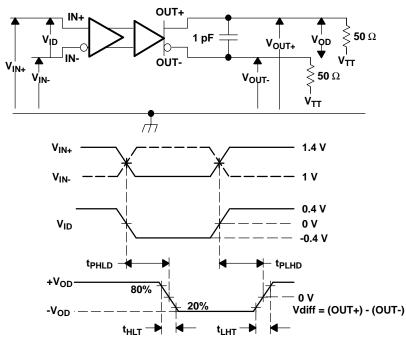
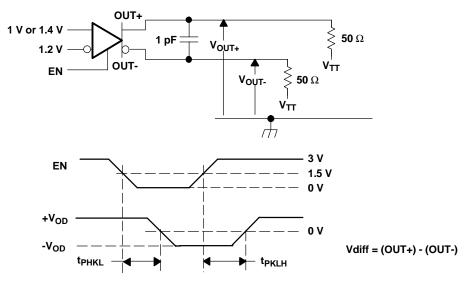




Figure 1. Voltage and Current Definitions

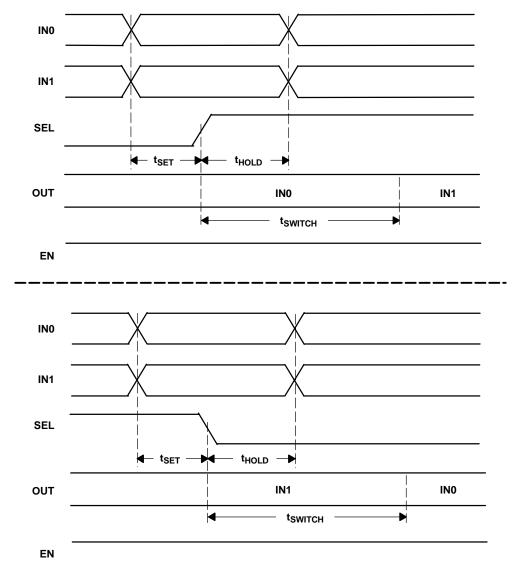


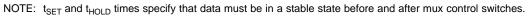
NOTE: All input pulses are supplied by a generator having the following characteristics: t_r or t_f ≤ 0.25 ns, pulse-repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ±10 ns; C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

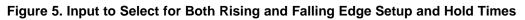
Figure 3. Timing Test Circuit and Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

NOTE: All input pulses are supplied by a generator having the following characteristics: t_r or t_f ≤ 1 ns, pulse-repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns, C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.


Figure 4. Enable and Disable Time Circuit and Definitions


APPLIED V	OLTAGES	RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE	OUTPUT ⁽¹⁾	
VIA	V _{IB}	V _{ID}	V _{IC}	1	
1.25 V	1.15 V	100 mV	1.2 V	Н	
1.15 V	1.25 V	–100 mV	1.2 V	L	
4.0 V	3.9 V	100 mV	3.95 V	Н	
3.9 V	4. 0 V	–100 mV	3.95 V	L	
0.1 V	0.0 V	100 mV	0.05 V	Н	
0.0 V	0.1 V	–100 mV	0.05 V	L	
1.7 V	0.7 V	1000 mV	1.2 V	Н	
0.7 V	1.7 V	–1000 mV	1.2 V	L	
4.0 V	3.0 V	1000 mV	3.5 V	Н	
3.0 V	4.0 V	–1000 mV	3.5 V	L	
1.0 V	0.0 V	1000 mV	0.5 V	Н	
0.0 V	1.0 V	–1000 mV	0.5 V	L	


Table 1. Receiver Input Voltage Threshold Test

(1) H = high level, L = low level

TYPICAL CHARACTERISTICS

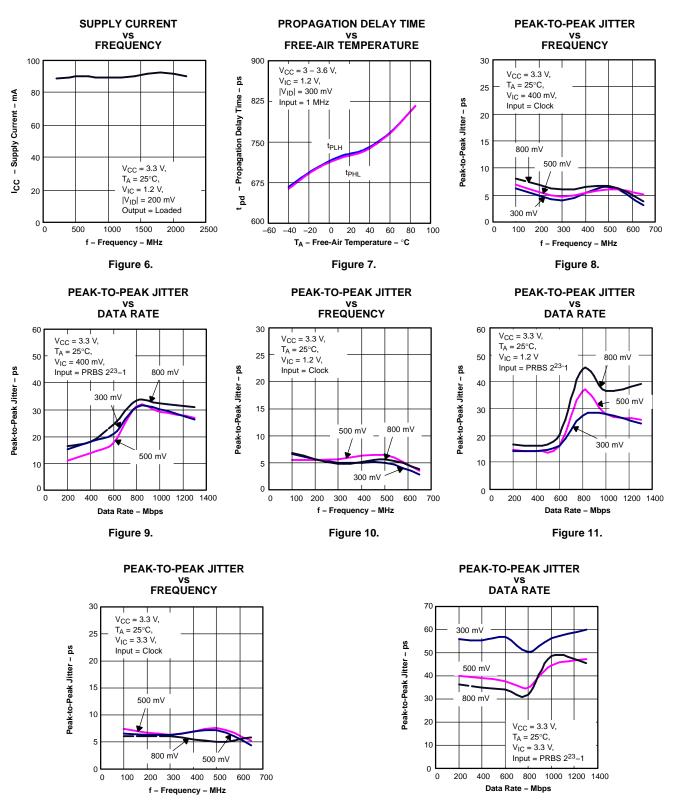


Figure 13.

Figure 12.

TYPICAL CHARACTERISTICS (continued)

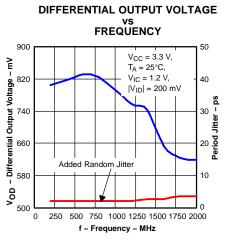
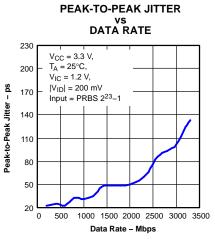
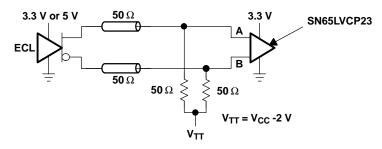
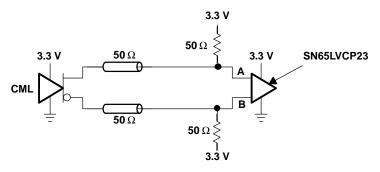


Figure 14.


Figure 15.

APPLICATION INFORMATION

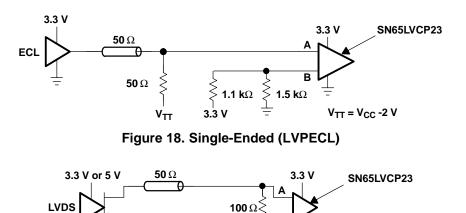

TYPICAL APPLICATION CIRCUITS (ECL, PECL, LVDS, etc.)

Figure 17. Current-Mode Logic (CML)

В

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead finish/	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	Ball material	(3)		(4/5)	
							(6)				
SN65LVCP23D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCP23	Samples
SN65LVCP23PW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCP23	Samples
SN65LVCP23PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVCP23	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

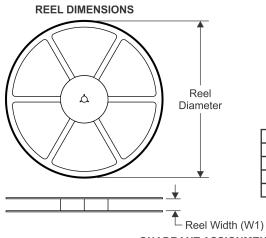
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

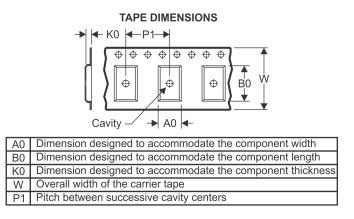
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

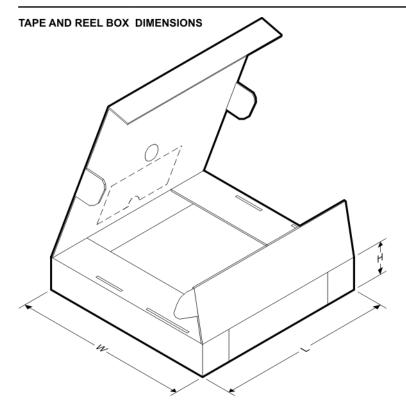
Texas Instruments

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dime	nsions are	nominal	

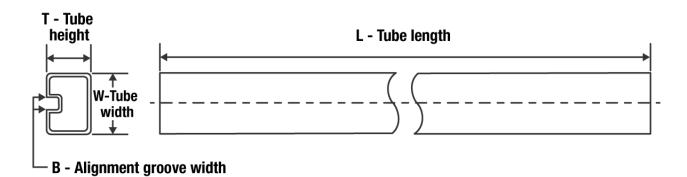

Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LVCP23PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Jan-2022

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVCP23PWR	TSSOP	PW	16	2000	350.0	350.0	43.0

www.ti.com

5-Jan-2022

TUBE

*All dimensions are nominal

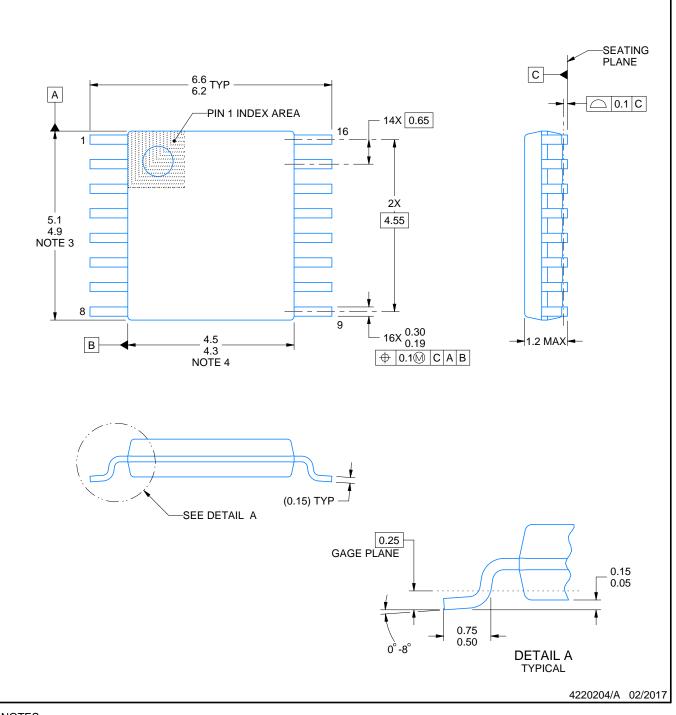
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN65LVCP23D	D	SOIC	16	40	505.46	6.76	3810	4
SN65LVCP23PW	PW	TSSOP	16	90	530	10.2	3600	3.5

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.


PW0016A

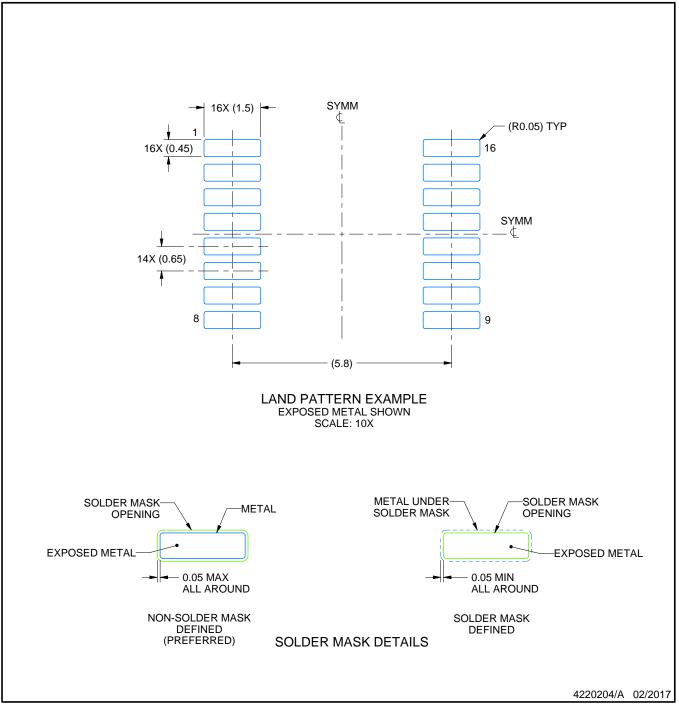
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

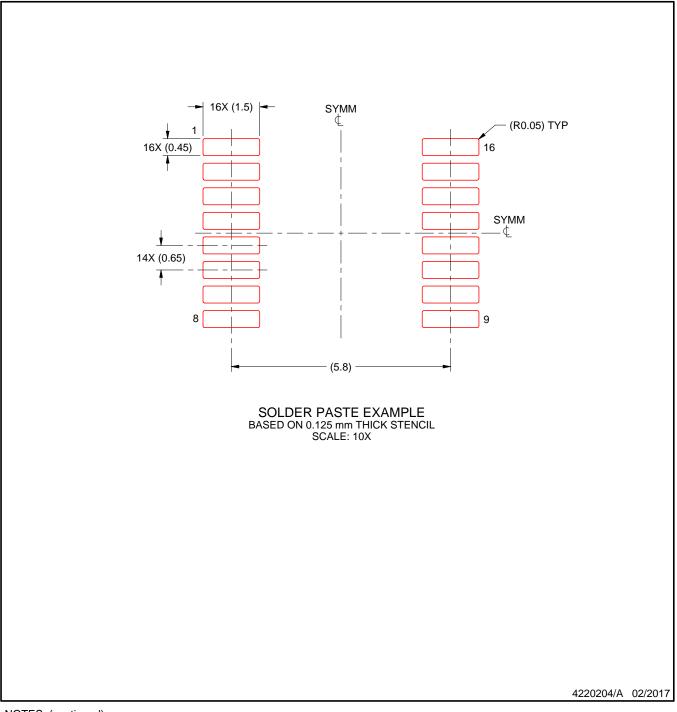
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated