

LVDS SERDES TRANSMITTER

Check for Samples: SN65LVDS95

FEATURES

- 3:21 Data Channel Compression at up to 1.428 Gigabits/s Throughput
- Suited for Point-to-Point Subsystem Communication With Very Low EMI
- 21 Data Channels Plus Clock in Low-Voltage TTL and 3 Data Channels Plus Clock Out Low-Voltage Differential
- Operates From a Single 3.3-V Supply and 250 mW (Typ)
- 5-V Tolerant Data Inputs
- 'LVDS95 Has Rising Clock Edge Triggered Inputs
- Bus Pins Tolerate 6-kV HBM ESD
- Packaged in Thin Shrink Small-Outline Package With 20 Mil Terminal Pitch
- Consumes <1 mW When Disabled
- Wide Phase-Lock Input Frequency Range 20 MHz to 68 MHz
- No External Components Required for PLL
- Inputs Meet or Exceed the Requirements of ANSI EIA/TIA-644 Standard
- Industrial Temperature Qualified T_A = -40°C to 85°C
- Replacement for the National DS90CR215

(TOP VIEW) 48 D3 47 D2 V_{CC} [2 D5 🛮 3 46 GND D6 **∏** 4 45 D1 GND [5 44 D0 43 NC D7 [D8 🛮 7 42 LVDSGND 41 YOM V_{CC} 8 40 YOP D9 [9 D10 **□** 10 39 TY1M GND [11 38 TY1P 37 LVDSV_{CC} D11 Γ 12 D12 **□** 13 36 LVDSGND 14 35 Y2M NC [34 Y2P D13 [15 D14 **□** 16 33 CLKOUTM GND [17 32 CLKOUTP D15 Γ 18 31 TLVDSGND 19 30 PLLGND D16 [D17 Γ 20 29 PLLV_{CC} 28 PLLGND 21 V_{CC} [D18 👖 22 27 SHTDN D19 [23 26 CLKIN 25 D20 24 GND [

DGG PACKAGE

DESCRIPTION

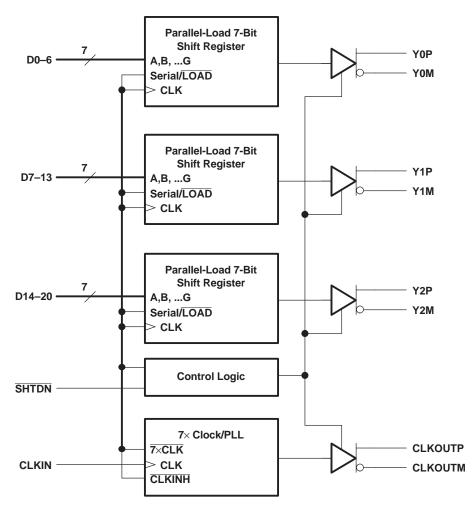
The SN65LVDS95 LVDS serdes (serializer/deserializer) transmitter contains three 7-bit parallel-load serial-out shift registers, a 7× clock synthesizer, and four low-voltage differential signaling (LVDS) line drivers in a single integrated circuit. These functions allow 21 bits of single-ended LVTTL data to be synchronously transmitted over 4 balanced-pair conductors for receipt by a compatible receiver, such as the SN65LVDS96.

When transmitting, data bits D0 through D20 are each loaded into registers of the SN65LVDS95 on the rising edge of the input clock signal (CLKIN). The frequency of CLKIN is multiplied seven times and then used to serially unload the data registers in 7-bit slices. The three serial streams and a phase-locked clock (CLKOUT) are then output to LVDS output drivers. The frequency of CLKOUT is the same as the input clock, CLKIN.

The SN65LVDS95 requires no external components and little or no control. The data bus appears the same at the input to the transmitter and output of the receiver with data transmission transparent to the user(s). The only user intervention is the possible use of the shutdown/clear (SHTDN) active-low input to inhibit the clock and shut off the LVDS output drivers for lower power consumption. A low level on this signal clears all internal registers to a low level.

The SN65LVDS95 is characterized for operation over ambient air temperatures of -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

FUNCTIONAL BLOCK DIAGRAM

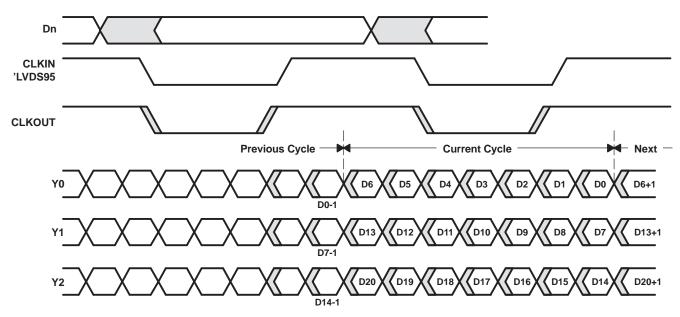
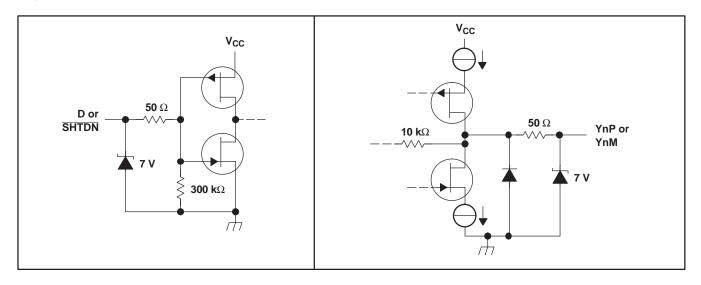



Figure 1. 'LVDS95 Load and Shift Sequences

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

			UNIT
V _{CC}	Supply voltage range ⁽²⁾		–0.5 V to 4 V
Vo	Voltage range at any output to	erminal	-0.5 V to V _{CC} + 0.5 V
V_{I}	Voltage range at any input ter	rminal	–0.5 V to 5.5 V
		Bus pins (Class 3A)	6 KV
	Electrostatic discharge (3)	Bus pins (Class 2B)	400 V
	Electrostatic discharge	All pins (Class 3A)	6 KV
		All pins (Class 2B)	200 V
	Continuous total power dissip	ation	See Dissipation Rating Table
T_A	Operating free-air temperature	e range	-40°C to 85°C
T _{stg}	Storage temperature range		−65°C to 150°C
	Lead temperature 1,6 mm (1/	16 inch) from case for 10 seconds	260°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR ⁽¹⁾	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
DGG	1316 mW	13.1 mW/°C	724 mW	526 mW

⁽¹⁾ This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	3	3.3	3.6	V
V_{IH}	High-level input voltage	2			V
V_{IL}	Low-level input voltage			8.0	V
Z_{L}	Differential load impedance	90		132	Ω
T_A	Operating free-air temperature	40		85	°C

⁽²⁾ All voltage values are with respect to the GND terminals.

⁽³⁾ This rating is measured using MIL-STD-883C Method, 3015.7.

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IT}	Input voltage threshold			1.4		V
V _{OD}	Differential steady-state output voltage magnitude		247		454	
$\Delta V_{OD} $	Change in the steady-state differential output voltage magnitude between opposite binary states	R_L = 100 Ω, See Figure 3			50	mV
V _{OC(SS)}	Steady-state common-mode output voltage	See Figure 3	1.125		1.37 5	V
$V_{OC(PP)}$	Peak-to-peak common-mode output voltage			80	150	mV
I _{IH}	High-level input current	$V_{IH} = V_{CC}$			20	μΑ
I _{IL}	Low-level input current	V _{IL} = 0 V			±10	μΑ
	Chart singuit autout aurona	V _{OY} = 0 V			±24	mA
I _{OS}	Short-circuit output current	V _{OD} = 0 V			±12	mA
l _{OZ}	High-impedance state output current	$V_O = 0 \text{ V to } V_{CC}$			±10	μΑ
		Disabled, all inputs at GND			280	μA
I _{CC(AVG)}	Quiescent current (average)	Enabled, R_L = 100 Ω (4 places), Worst-case pattern (see Figure 4), t_c = 15.38 ns		85	110	mA
Ci	Input capacitance			3		pF

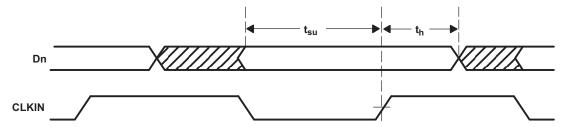
⁽¹⁾ All typical values are V_{CC} = 3.3 V, T_A = 25°C.

TIMING REQUIREMENTS

		MIN	NOM	MAX	UNIT
t _c	Input clock period	14.7	t _c	50	ns
t _w	High-level input clock pulse width duration	0.4t _c		0.6t _c	ns
t _t	Input signal transition time			5	ns
t _{su}	Data setup time, D0 through D27 before CLKIN↑ ('95) (see Figure 2)	3			ns
t _h	Data hold time, D0 through D27 after CLKIN↑ ('95) (see Figure 2)	1.5			ns

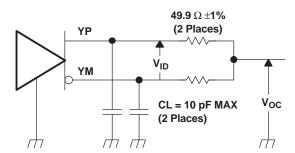
SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t ₀	Delay time, CLKOUT serial bit position 0		-0.20	0	0.20	ns
t ₁	Delay time, CLKOUT↑ serial bit position 1		1/7t _c -0.20		1/7t _c +0.20	ns
t ₂	Delay time, CLKOUT↑ serial bit position 2		2/7t _c -0.20		2/7t _c +0.20	ns
t ₃	Delay time, CLKOUT↑ serial bit position 3	$t_c = 15.38 \text{ ns } (\pm 0.2\%),$ Input clock jitter < 50 ps ⁽²⁾ ,	3/7t _c -0.20		3/7t _c +0.20	ns
t ₄	Delay time, CLKOUT↑ serial bit position 4	See Figure 5	4/7t _c -0.20		4/7t _c +0.20	ns
t ₅	Delay time, CLKOUT↑ serial bit position 5		5/7t _c -0.20		5/7t _c +0.20	ns
t ₆	Delay time, CLKOUT↑ serial bit position 6		6/7t _c -0.20		6/7t _c +0.20	ns
t _{sk(o)}	Output skew, t_n –n/7 t_c		-0.20		0.20	ns
t ₇	Delay time, CLKIN† to CLKOUT†	t_c = 15.38 ns (±0.2%), Input clock jitter < 50 ps ⁽²⁾ , See Figure 5		4.2		ns
۸4	Output clock cycle-to-cycle jitter ⁽³⁾	t_{c} = 15.38 ns + 0.75 sin(2 π 500E3t) ±0.05 ns, See Figure 6		±80		ps
$\Delta t_{C(O)}$	Output clock cycle-to-cycle jitter	t_c = 15.38 ns + 0.75 sin(2 π 2E6t) ±0.05 ns, See Figure 6		±80 ±300		ps
t _w	High-level output clock pulse duration			$4/7 t_c$		ns
t _t	Differential output voltage transition time (t _r or t _f)	See Figure 3	260	700	1500	ps
t _{en}	Enable time, SHTDN↑ to phase lock (Yn valid)	See Figure 7		1		ms
t _{dis}	Disable time, SHTDN↓ to off-state (CLKOUT low)	See Figure 8		250		ns

All typical values are $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. |Input clock jitter| is the magnitude of the change in the input clock period.

The output clock jitter is the change in the output clock period from one cycle to the next cycle observed over 15,000 cycles.



PARAMETER MEASUREMENT INFORMATION

NOTE: All input timing is defined at 1.4 V on an input signal with a 10% to 90% rise or fall time of less than 5 ns.

Figure 2. Setup and Hold Time Definition

NOTE: The lumped instrumentation capacitance for any single ended voltage measurement is less than or equal to 10 pF. When making measurements at YP or YM, the complementary output shall be similarly loaded.

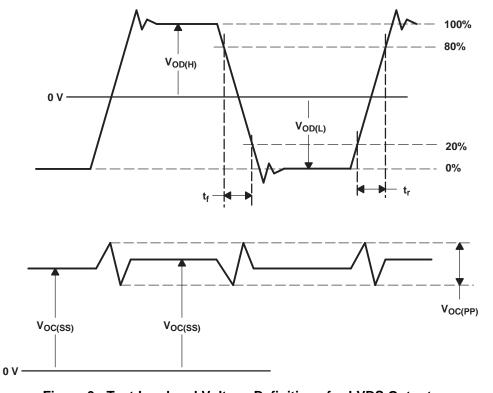
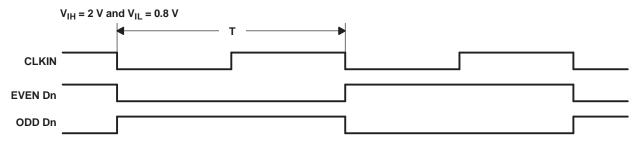



Figure 3. Test Load and Voltage Definitions for LVDS Outputs

PARAMETER MEASUREMENT INFORMATION (continued)

(1) The worst-case test pattern produces nearly the maximum switching frequency for all of the LV-TTL outputs.

Figure 4. Worst-Case Power Test Pattern

Figure 5. Timing Definitions

PARAMETER MEASUREMENT INFORMATION (continued)

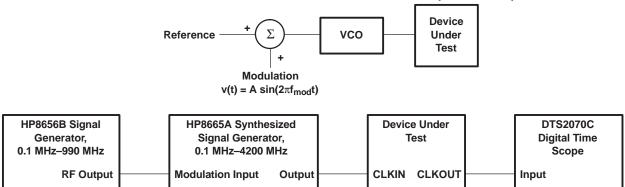


Figure 6. Clock Jitter Test Setup

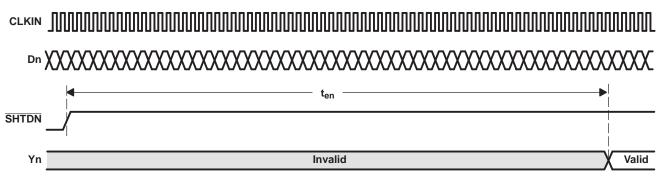


Figure 7. Enable Time Measurement Definition

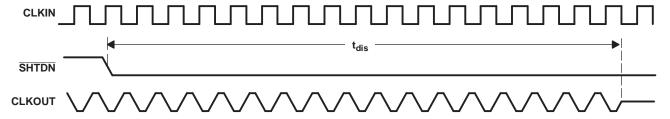
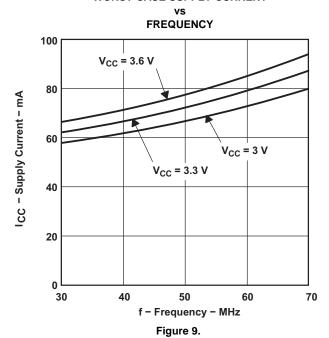



Figure 8. Disable Time Measurement Definition

TYPICAL CHARACTERISTICS

WORST-CASE SUPPLY CURRENT

APPLICATION INFORMATION

16-BIT BUS EXTENSION

In a 16-bit bus application (Figure 10), TTL data and clock coming from bus transceivers that interface the backplane bus arrive at the Tx parallel inputs of the LVDS serdes transmitter. The clock associated with the bus is also connected to the device. The on-chip PLL synchronizes this clock with the parallel data at the input. The data is then multiplexed into three different line drivers which perform the TTL to LVDS conversion. The clock is also converted to LVDS and presented to a separate driver. This synchronized LVDS data and clock at the receiver, which recovers the LVDS data and clock, performs a conversion back to TTL. Data is then demultiplexed into a parallel format. An on-chip PLL synchronizes the received clock with the parallel data, and then all are presented to the parallel output port of the receiver.

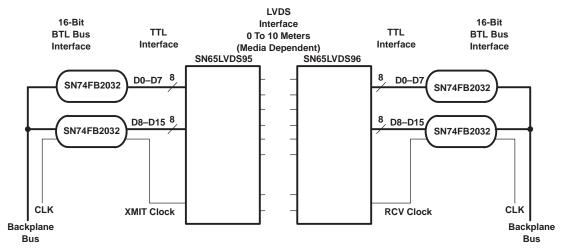


Figure 10. 16-Bit Bus Extension

16-BIT BUS EXTENSION WITH PARITY

In the previous application we did not have a checking bit that would provide assurance that the data crosses the link. If we add a parity bit to the previous example, we would have a diagram similar to the one in Figure 11. The device following the SN74FB2032 is a low cost parity generator. Each transmit-side transceiver/parity generator takes the LVTTL data from the corresponding transceiver, performs a parity calculation over the byte, and then passes the bits with its calculated parity value on the parallel input of the LVDS serdes transmitter. Again, the on-chip PLL synchronizes this transmit clock with the eighteen parallel bits (16 data + 2 parity) at the input. The synchronized LVDS data/parity and clock arrive at the receiver.

The receiver performs the conversion from LVDS to LVTTL and the transceiver/parity generator performs the parity calculations. These devices compare their corresponding input bytes with the value received on the parity bit. The transceiver/parity generator will assert its parity error output if a mismatch is detected.

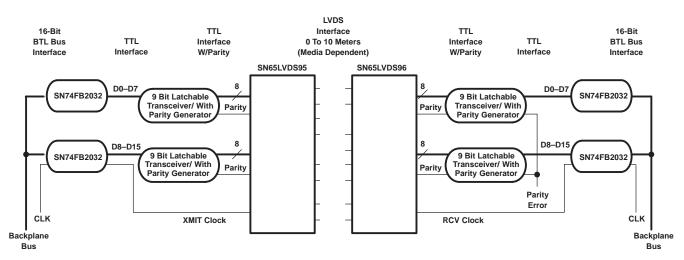


Figure 11. 16-Bit Bus Extension With Parity

LOW COST VIRTUAL BACKPLANE TRANSCEIVER

Figure 12 represents LVDS serdes in an application as a virtual backplane transceiver (VBT). The concept of a VBT can be achieved by implementing individual LVDS serdes chipsets in both directions of subsystem serialized links.

Depending on the application, the designer will face varying choices when implementing a VBT. In addition to the devices shown in Figure 12, functions such as parity and delay lines for control signals could be included. Using additional circuitry, half-duplex or full-duplex operation can be achieved by configuring the clock and control lines properly.

The designer may choose to implement an independent clock oscillator at each end of the link and then use a PLL to synchronize LVDS serdes's parallel I/O to the backplane bus. Resynchronizing FIFOs may also be required.

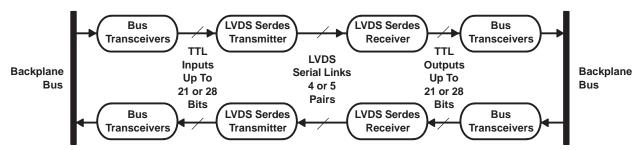


Figure 12. Virtual Backplane Transceiver

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
SN65LVDS95DGG	ACTIVE	TSSOP	DGG	48	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SN65LVDS95	Samples
SN65LVDS95DGGG4	ACTIVE	TSSOP	DGG	48	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SN65LVDS95	Samples
SN65LVDS95DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SN65LVDS95	Samples
SN65LVDS95DGGRG4	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	SN65LVDS95	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

11-Apr-2013

OTHER QUALIFIED VERSIONS OF SN65LVDS95:

Automotive: SN65LVDS95-Q1

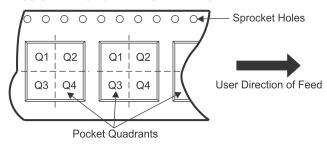
● Enhanced Product: SN65LVDS95-EP

NOTE: Qualified Version Definitions:

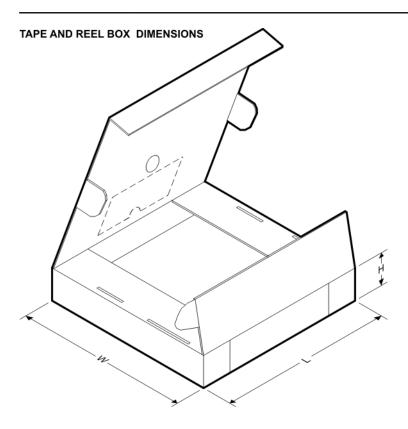
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Dec-2017


TAPE AND REEL INFORMATION

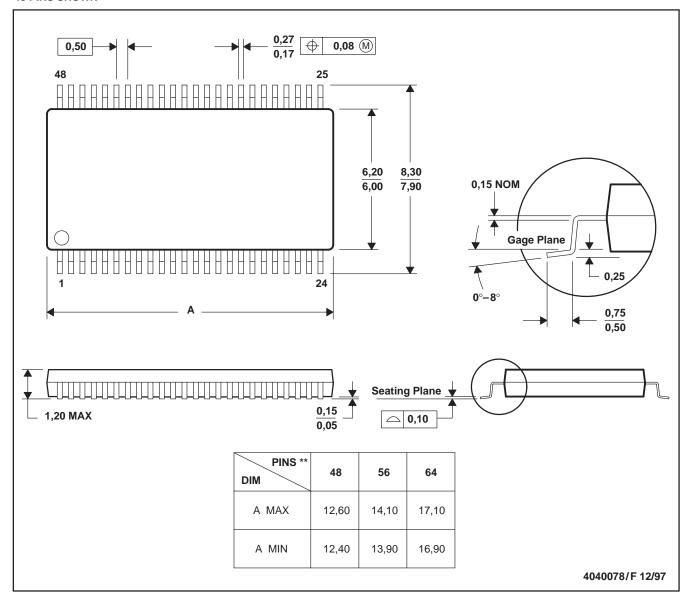
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65LVDS95DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1

www.ti.com 14-Dec-2017


*All dimensions are nominal

Device	Pevice Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65LVDS95DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.