110E

11DIR 🛮 2

11B 🛮 3

GND [] 4

10B 🛮 5

9B 🛮 6

V_{CC} $\sqrt{17}$

8BI [] 8

8BO 🛮 9

GND 1 10

7BO 🛮 11

6BI 🛮 12

6BO II 13

5BO 14

GND 15

4BO 🛮 16

4BI 🛮 17

V_{CC} ☐ 18

3BO 🛮 19

2BI 🛮 20

GND 21 2BO 22

1BO 🛮 23

1BI 🛮 24

DGG OR DL PACKAGE

(TOP VIEW)

SCBS227J - JULY 1993 - REVISED AUGUST 2003

48∏ V_{CC}BIAS

47 🛮 11A

46 10DIR

45 GND

44 **∏** 10A

43 | 9A

42 V_{CC}

41 9DIR

39 | GND

40 8A

38 🛮 7A

37 7BI

36 A

35 🛮 5A

34 GND

33 5BI

32 AA

31 V_{CC}

30 3A

29 3BI

27 2A

26 1A

25 OE

28 | GND

- Member of the Texas Instruments Widebus™ Family
- Supports the VME64 ETL Specification
- Reduced TTL-Compatible Input Threshold Range
- High-Drive Outputs (I_{OH} = -60 mA, I_{OL} = 90 mA) Support Equivalent 25-Ω Incident-Wave Switching
- V_{CC}BIAS Pin Minimizes Signal Distortion During Live Insertion
- Internal Pullup Resistor on OE Keeps
 Outputs in High-Impedance State During
 Power Up or Power Down
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Equivalent 25-Ω Series Damping Resistor on B Port
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors

description/ordering information

The SN74ABTE16246 is an 11-bit noninverting transceiver designed for asynchronous two-way communication between buses. This device has open-collector and 3-state outputs. The device

allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated. When \overline{OE} is low, the device is active.

The B port has an equivalent $25-\Omega$ series output resistor to reduce ringing. Active bus-hold inputs on the B port hold unused or floating inputs at a valid logic level.

The A port provides for the precharging of the outputs via $V_{CC}BIAS$, which establishes a voltage between 1.3 V and 1.7 V when V_{CC} is not connected.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

ORDERING INFORMATION

TA	PACK	\GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	SSOP – DL	Tube	SN74ABTE16246DL	ABTE16246
	330F - DL	Tape and reel	SN74ABTE16246DLR	AD1E10240
	TSSOP - DGG	Tape and reel	SN74ABTE16246DGGR	ABTE16246

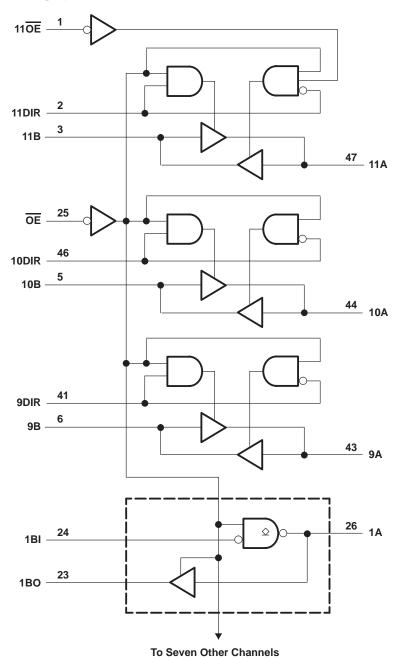
[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design quidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

TEXAS INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN74ABTE16246 11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS SCBS227J – JULY 1993 – REVISED AUGUST 2003


FUNCTION TABLE

		INPUTS			OPERATION
OE	9DIR	10DIR	11DIR	110E	OPERATION
Н	Х	Х	Х	Х	Isolation
L	Χ	Х	Х	Х	1BI–8BI data to 1A–8A bus (OC [†]), 1A–8A data to 1BO–8BO bus
L	L	Х	Х	Х	9A data to 9B bus
L	Н	X	X	X	9B data to 9A bus
L	X	L	Χ	X	10A data to 10B bus
L	X	Н	X	X	10B data to 10A bus
L	X	X	L	L	11A data to 11B bus
L	X	X	L	Н	11A, 11B isolation
L	Χ	X	Н	Χ	11B data to 11A bus

[†]OC = Open-collector outputs

logic diagram (positive logic)

SCBS227J - JULY 1993 - REVISED AUGUST 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} and V _{CC} BIAS	–0.5 V to 7 V
Input voltage range, V _I (except I/O ports) (see Note 1)	
Voltage range applied to any output in the high or power-off state, VO	–0.5 V to 5.5 V
Current into any output in the low state, IO	128 mA
Input clamp current, I_{IK} ($V_I < 0$)	–18 mA
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ _{JA} (see Note 2): DGG package	70°C/W
DL package	63°C/W
Storage temperature range, T _{sta}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			MIN	NOM	MAX	UNIT	
V _{CC} , V _{CC} BIAS	Supply voltage	4.5	5	5.5	V		
V	High-level input voltage	2			V		
VIH	High-level input voltage	Except OE	1.6			V	
VIL	OE				0.8	V	
	Low-level input voltage Except OE				1.4	·	
Vон	High-level output voltage	1A-8A	0		5.5	V	
٧ _I	Input voltage	-	0		Vcc	V	
la	High level output outront			-12	mΛ		
ЮН	High-level output current			-64	mA		
la.	Low lovel output oursent	B bus			12	mA	
IOL	Low-level output current A bus				90	IIIA	
Δt/Δν	Input transition rise or fall rate	Outputs enabled			10	ns/V	
T _A	Operating free-air temperature		-40		85	°C	

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

SN74ABTE16246 11-BIT INCIDENT-WAVE SWITCHING BUS TRANSCEIVER WITH 3-STATE AND OPEN-COLLECTOR OUTPUTS SCBS227J – JULY 1993 – REVISED AUGUST 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CC	ONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK		V _{CC} = 4.5 V,	I _I = -18 mA			-1.2	V
		V _{CC} = 5.5 V,	I _{OH} = -100 μA			V _{CC} -0.2	
	B port	Vac 45V	I _{OH} = -1 mA	2.4			
1/		V _{CC} = 4.5 V	I _{OH} = -12 mA	2			V
VOH		V _{CC} = 5.5 V,	I _{OH} = -1 mA			4.5	V
	9A-11A	V _{CC} = 4.5 V	$I_{OH} = -32 \text{ mA}$	2.4			
		VCC = 4.5 V	$I_{OH} = -64 \text{ mA}$	2			
loh	1A-8A	V _{CC} = 4.5 V,	V _{OH} = 5.5 V			20	μΑ
	Draw	Vac 45V	I _{OL} = 1 mA			0.4	
\/-·	B port	V _{CC} = 4.5 V	I _{OL} = 12 mA			0.8	V
VOL	A port	port $V_{CC} = 4.5 \text{ V}$				0.55	٧
		VCC = 4.5 V	I _{OL} = 90 mA			0.9	
V _{hys}					100		mV
		V 45V	V _I = 0.8 V	100			
I _I (hold)	B port	V _{CC} = 4.5 V	V _I = 2 V	-100			μΑ
` ,		V _{CC} = 5.5 V,	V _I = 0 to 5.5 V			±500	
1.	Control inputs	V _{CC} = 5.5 V	V: V== as CND			±1	^
l _l	A or B ports	V _{CC} = 5.5 V, OE = V _{CC}	$V_I = V_{CC}$ or GND			±20	μΑ
lozh [‡]	9A-11A	V _{CC} = 5.5 V,	V _O = 2.7 V			10	μΑ
lozL‡	9A-11A	V _{CC} = 5.5 V,	V _O = 0.5 V			-10	μΑ
1-	A port	V22 F F V	V- 25V	-50		-180	A
Ю	B port	V _{CC} = 5.5 V,	V _O = 2.5 V	-25		-90	mA
l _{off}		$V_{CC} = 0$, V_I or $V_O \le 4.5 \text{ V}$,	V _{CC} BIAS = 0			±100	μΑ
		.,	Outputs high		28	36	
ICC	A or B ports	$V_{CC} = 5.5 \text{ V}, I_{O} = 0,$ $V_{I} = V_{CC} \text{ or GND}$	Outputs low		38	48	mA
		V1 = V66 91 9115	Outputs disabled		20	32	
loop	A or B ports	V _{CC} = 5 V, C _I = 50 pF	OE high		0.02		mA/
ICCD	V OI D bolts	vCC = 3 v, CL = 50 pr	OE low		0.33		MHz
Ci	Control inputs	V _I = 2.5 V or 0.5 V			2.5	4	pF
C _{io}	I/O ports	V _O = 2.5 V or 0.5 V			4.5	8	pF

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ The parameters I_{OZH} and I_{OZL} include the input leakage current.

SCBS227J - JULY 1993 - REVISED AUGUST 2003

live-insertion specifications over recommended operating free-air temperature range

PA	RAMETER		MIN	TYP [†]	MAX	UNIT		
I _{CC} (V _{CC} BIAS)		$V_{CC} = 0 \text{ to } 4.5 \text{ V},$ $V_{CC}BIAS = 4.5 \text{ V to } 5.5 \text{ V},$ $I_{O(DC)}$		IO(DC) = 0		250	700	A
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}^{\ddagger},$	$V_{CC}BIAS = 4.5 V \text{ to } 5.5 V,$	IO(DC) = 0			20	μΑ
\/-	A port	V0	$V_{CC}BIAS = 4.5 V \text{ to } 5.5 V$	1.1	1.5	1.9	V	
Vo	A port	VCC = 0	V _{CC} BIAS = 4.75 V to 5.25 V		1.3	1.5	1.7	·
lo.	I_O A port $V_{CC} = 0$,	Vaa - 0	V00PIAS - 4 5 V	V _O = 0	-20		-100	
L 10		vCC = 0,	V _{CC} BIAS = 4.5 V	V _O = 3 V	20		100	μΑ

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V ₍	CC = 5 V A = 25°C	/, ;	MIN	MAX	UNIT
	(1141 01)	(0011 01)	MIN	TYP	MAX			
tPLH	А	В	1.5	3.1	4.2	1.5	5.2	ns
^t PHL	٨	В	1.5	3.5	4.6	1.5	5.2	113
tPLH	9B–11B	9A–11A	1.5	3	3.8	1.5	4.5	ns
^t PHL	9D-11D	9A-11A	1.5	3.2	4	1.5	4.5	115
t _{PLH} §			1.5	3.2	4	1.5	4.5	
t _{PLH} ¶	1B-8B	1A-8A	7.5	8.9	9.7	7.5	10.3	ns
t _{PHL}			1.5	3.2	4	1.5	4.5	
^t PZH	ŌĒ	9A-11A	2	4.3	5.3	2	6.2	ns
tPZL	OE	1A-11A	2	4.4	5.4	2	6.8	115
^t PZH	ŌĒ	В	2	4.3	6	2	7.1	ns
tPZL	OE	В	2	4.5	6.4	2	7.3	115
^t PHZ	ŌĒ	9A-11A	2	4.2	5.9	2	6.7	ns
t _{PLZ}	OE	1A-11A	2	3.5	4.6	2	5.1	115
^t PHZ	ŌĒ	В	2.5	4.3	6.2	2.5	7	ns
tPLZ	ĢL		2	3.6	5	2	5.5	115

Measurement point is VOL + 0.3 V.

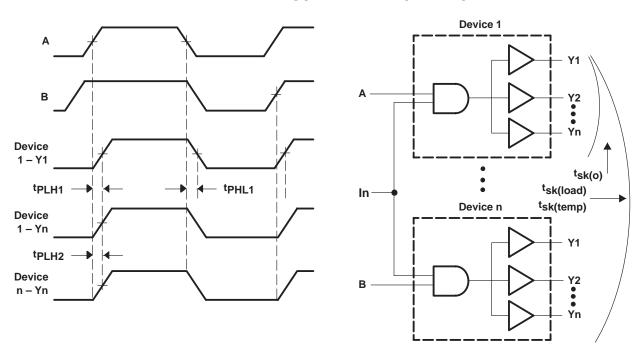
[‡] VCC - 0.5 V < VCCBIAS

[¶] Measurement point is V_{OL} + 1.5 V.

SCBS227J - JULY 1993 - REVISED AUGUST 2003

extended switching characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD		CC = 5 V A = 25°C		MIN	MAX	UNIT
	(1141-01)	(0011 01)		MIN	TYP	MAX			
^t PLH	9B–11B	9A–11A Ry = 13 Ω	Rχ = 13 Ω	1.5	3.2	4	1.5	4.8	ns
t _{PHL}	9B-11B	9A-11A	KX = 13 22	1.5	3.8	4.7	1.5	5.6	115
tPHL	1B-8B	1A-8A	Rχ = 13 Ω	1.5	3.3	4.2	1.5	4.8	ns
t _{PLH}	0D 44D	9A-11A	Dv. 26.0	1.5	3.1	4	1.5	4.6	
tPHL	9B–11B	9A-11A	$R\chi = 26 \Omega$	1.5	3.5	4.4	1.5	4.9	ns
t _{PHL}	1B–8B	1A-8A	Rχ = 26 Ω	1.5	3.1	4	1.5	4.4	ns
tPLH	0D 44D	4.4.0.4	Rχ = 56 Ω	1.5	3	3.8	1.5	4.5	— ns I
t _{PHL}	9B–11B	1A–8A		1.5	3.3	4.2	1.5	4.7	
tPHL	1B–8B	1A-8A	Rχ = 56 Ω	1.5	3	4	1.5	4.4	ns
	В	А	R _X = Open		0.1	0.6		2	
t _{sk(p)}	А	В	R _X = Open		0.4	0.8		2	ns
,	В	А	Rχ = 26 Ω		0.3	0.8		2	
	В	А	R _X = Open		0.3	0.7		1.3	
t _{sk(o)}	А	В	R _X = Open		0.7	1.1		1.3	ns
	В	А	Rχ = 26 Ω		0.5	1		1.3	
t _t †	В	А	Rχ = 26 Ω	0.5	0.8	1.5	0.5	1.5	ns
t _t ‡	А	В	R _X = Open	3.5	5.5	7.3	3.5	7.9	ns


extended output characteristics over recommended ranges of supply voltage and operating free-air temperature, C_L = 50 pF (see Figures 1 and 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	LOAD	MIN MA	X UNIT
4	А	В	V _{CC} = constant,		2	.5
^t sk(temp)	В	Α	$\Delta T_A = 20^{\circ}C$	$R_X = 56 \Omega$		4 ns
^t sk(load)	В	А	V _{CC} = constant, Temperature = constant	$R_X = 13, 26, \text{ or } 56 \Omega$		4 ns

 $^{^\}dagger$ t_t is measured between 1 V and 2 V of the output waveform. ‡ t_t is measured between 10% and 90% of the output waveform.

SCBS227J - JULY 1993 - REVISED AUGUST 2003

PARAMETER MEASUREMENT INFORMATION

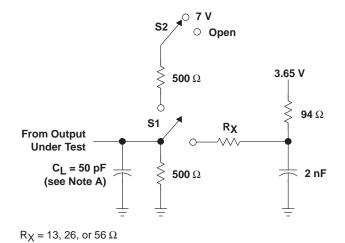
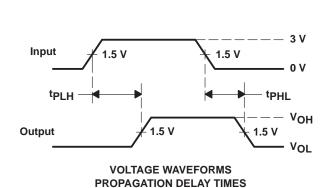
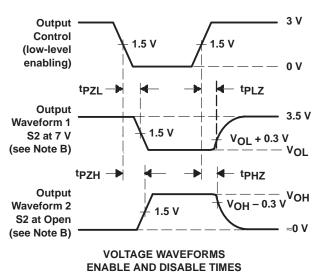

- NOTES: A. Pulse skew, $t_{sk(p)}$, is defined as the difference in propagation-delay times t_{PLH1} and t_{PHL1} on the same terminal at identical operating conditions.
 - B. Output skew, $t_{sk(0)}$, is defined as the difference in propagation delay of any two outputs of the same device switching in the same direction (e.g., $|t_{PLH1} t_{PLH2}|$).
 - C. Temperature skew, $t_{sk(temp)}$, is the output skew of two devices, both having the same value of $V_{CC} \pm 1\%$ and with package temperature differences of 20°C.
 - D. Load skew, $t_{sk(load)}$, is measured with R_X in Figure 2 at 13 Ω for one unit and 56 Ω for the other unit.

Figure 1. Voltage Waveforms for Extended Characteristics


SCBS227J - JULY 1993 - REVISED AUGUST 2003

PARAMETER MEASUREMENT INFORMATION



SWITCHING TABLE LOADS	S1	S2
tPLH/tPHL (9A-11A and B port)	Up	Open
tPLH/tPHL (1A-8A)	Up	7 V
tPLZ/tPZL	Up	7 V
t _{PHZ} /t _{PZH} (except 1A-8A)	Up	Open

EXTENDED SWITCHING TABLE LOADS	S 1	S2
tPLH/tPHL/tsk (A port)	Down	Х
tpLH/tpHL/t _{Sk} (B port) t _t (A port) (see Note E)	Up Down	Open
t _t (A port) (see Note E)	Up	Open

LOAD CIRCUIT

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq 2.5~ns$, $t_f \leq 2.5~ns$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_t is measured between 1 V and 2 V of the output waveform.
- F. t_t is measured between 10% and 90% of the output waveform.

Figure 2. Load Circuit and Voltage Waveforms

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74ABTE16246DGGR	ACTIVE	TSSOP	DGG	48	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTE16246	Samples
SN74ABTE16246DL	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTE16246	Samples
SN74ABTE16246DLG4	ACTIVE	SSOP	DL	48	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTE16246	Samples
SN74ABTE16246DLR	ACTIVE	SSOP	DL	48	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ABTE16246	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

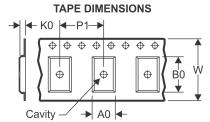
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

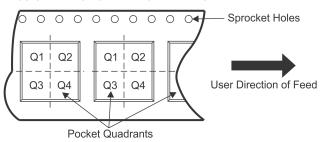
10-Jun-2014

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

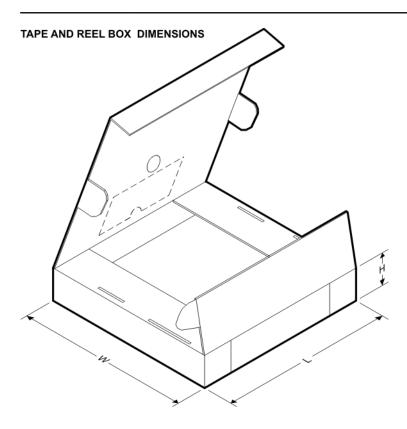
PACKAGE MATERIALS INFORMATION

www.ti.com 11-Mar-2017


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

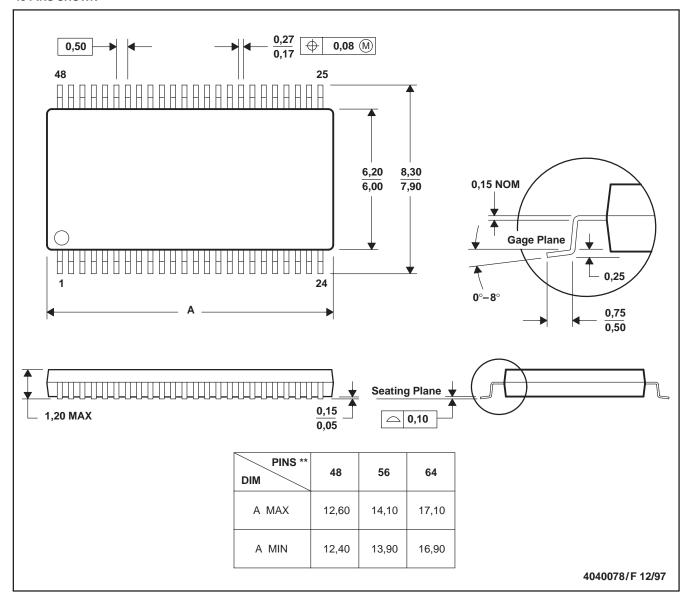


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ABTE16246DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74ABTE16246DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 11-Mar-2017


*All dimensions are nominal

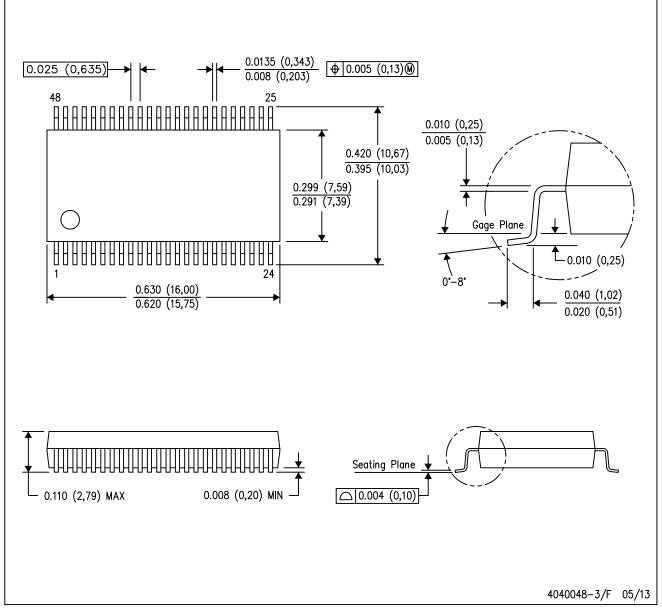
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74ABTE16246DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0	
SN74ABTE16246DLR	SSOP	DL	48	1000	367.0	367.0	55.0	

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.