SN54ALS569A, SN74ALS568A, SN74ALS569A SYNCHRONOUS 4-BIT UP/DOWN DECADE AND BINARY COUNTERS WITH 3-STATE OUTPUTS
 SDAS229A - APRIL 1982 - REVISED JANUARY 1995

- 3-State Q Outputs Drive Bus Lines Directly
- Counter Operation Independent of 3-State Output
- Fully Synchronous Clear, Count, and Load
- Asynchronous Clear Is Also Provided
- Fully Cascadable
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

The SN74ALS568A decade counter and 'ALS569A binary counters are programmable, count up or down, and offer both synchronous and asynchronous clearing. All synchronous functions are executed on the positive-going edge of the clock (CLK) input.
The clear function is initiated by applying a low level to either asynchronous clear ($\overline{\mathrm{ACLR}}$) or synchronous clear (SCLR). Asynchronous (direct) clearing overrides all other functions of the device, while synchronous clearing overrides only the other synchronous functions. Data is loaded from the A, B, C, and D inputs by holding load ($\overline{\mathrm{LOAD}}$) low during a positive-going clock transition. The counting function is enabled only when enable P (ENP) and enable T (ENT) are low and $\overline{\mathrm{ACLR}}$, $\overline{\mathrm{SCLR}}$, and $\overline{\mathrm{LOAD}}$ are high. The up/down (U/ $\overline{\mathrm{D}}$) input controls the direction of the count. These counters count up when U / \bar{D} is high and count down when $U / \overline{\mathrm{D}}$ is low.

A high level at the output-enable ($\overline{\mathrm{OE}}$) input forces the Q outputs into the high-impedance state, and a low level enables those outputs. Counting is independent of OE. ENT is fed forward to enable the ripple-carry output ($\overline{\mathrm{RCO}}$) to produce a low-level pulse while the count is zero (all Q outputs low) when counting down or maximum (9 or 15) when counting up. The clocked carry output ($\overline{\mathrm{CCO}}$) produces a low-level pulse for a duration equal to that of the low level of the clock when $\overline{\mathrm{RCO}}$ is low and the counter is enabled (both ENP and ENT are low); otherwise, $\overline{\mathrm{CCO}}$ is high. $\overline{\mathrm{CCO}}$ does not have the glitches commonly associated with a ripple-carry output. Cascading is normally accomplished by connecting $\overline{\mathrm{RCO}}$ or $\overline{\mathrm{CCO}}$ of the first counter to $\overline{\mathrm{ENT}}$ of the next counter. However, for very high-speed counting, $\overline{\mathrm{RCO}}$ should be used for cascading since $\overline{\mathrm{CCO}}$ does not become active until the clock returns to the low level.

The SN54ALS569A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ALS568A and SN74ALS569A are characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

function table								
INPUTS								OPERATION
$\overline{\mathrm{OE}}$	$\overline{\text { ACLR }}$	$\overline{\text { SCLR }}$	LOAD	ENT	ENP	U/̄̄	CLK	
H	X	X	X	X	X	X	X	Q outputs disabled
L	L	x	x	x	x	x	x	Asynchronous clear
L	H	L	x	x	x	x	\uparrow	Synchronous clear
L	H	H	L	x	x	x	\uparrow	Load
L	H	H	H	L	L	H	\uparrow	Count up
L	H	H	H	L	L	L	\uparrow	Count down
L	H	H	H	H	x	x	x	Inhibit count
L	H	H	H	x	H	x	x	Inhibit count

logic symbols \dagger

\dagger These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN54ALS569A, SN74ALS568A, SN74ALS569A SYNCHRONOUS 4-BIT UP/DOWN DECADE AND BINARY COUNTERS WITH 3-STATE OUTPUTS
SDAS229A - APRIL 1982 - REVISED JANUARY 1995
logic diagrams (positive logic)
SN74ALS568A

logic diagrams (positive logic) (continued)

typical load, count, and inhibit sequences

typical load, count, and inhibit sequences (continued)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

\qquad

Operating free-air temperature range, T_{A} : SN54ALS569A $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .5^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
SN74ALS568A, SN74ALS569A $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Storage temperature range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

					ALS56			$\begin{aligned} & \text { 4ALS5 } \\ & \text { 4ALS5 } \end{aligned}$		UNIT
				MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage			4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage			2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage					0.7			0.8	V
		Q outputs				-1			-2.6	
OH		$\overline{\mathrm{CCO}}$ and $\overline{\mathrm{RCO}}$				-0.4			-0.4	mA
		Q outputs				12			24	
IOL	Low-level output current	$\overline{\mathrm{CCO}}$ and $\overline{\mathrm{RCO}}$				4			8	
	Clock frequency	SN74ALS568A					0		20	
clock	Clock rrequency	'ALS569A		0		22	0		30	Mz
		$\overline{\text { ACLR }}$ or $\overline{\text { LOAD }}$		20			15			
		SN74AL S568A	CLK high				25			
${ }^{\text {tw }}$	Pulse duration	SN7ALS668	CLK low				25			ns
		'ALS569A	CLK high	20			16.5			
		ALS569A	CLK low	23			16.5			
		Data at A, B, C,		25			20			
		ENP	High	35			30			
		ENP, ENT	Low	25			20			
			Low	20			15			
$\mathrm{t}_{\text {su }}$	Setup time before CLK \uparrow	SCLR	High (inactive)	35			30			ns
			Low	20			15			
		LOAD	High (inactive)	35			30			
		U/D		35			30			
		$\overline{\overline{A C L R}}$ inactive		10			10			
th	Hold time after CLK \uparrow for	input		0			0			ns
T_{A}	Operating free-air temper			-55		125	0		70	${ }^{\circ} \mathrm{C}$

SN54ALS569A, SN74ALS568A, SN74ALS569A SYNCHRONOUS 4-BIT UP/DOWN DECADE AND BINARY COUNTERS
 WITH 3-STATE OUTPUTS
 SDAS229A - APRIL 1982 - REVISED JANUARY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54ALS569A			SN74ALS568A SN74ALS569A			UNIT		
		MIN	TYP \dagger	MAX	MIN	TYP†	MAX					
V_{IK}				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	II $=-18 \mathrm{~mA}$			-1.5			-1.5	V
V_{OH}	All outputs	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,	$1 \mathrm{OH}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			$\mathrm{V}_{\mathrm{CC}}-2$			V		
	Q outputs	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{OH}=-1 \mathrm{~mA}$	2.4	3.3							
			$\mathrm{I}^{\mathrm{OH}}=-2.6 \mathrm{~mA}$				2.4	3.2				
VOL	Q outputs	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$\mathrm{IOL}=24 \mathrm{~mA}$					0.35	0.5			
	$\overline{\mathrm{CCO}}$ and $\overline{\mathrm{RCO}}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4			
			$\mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.5			
IOZH		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IOZL		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	$\mu \mathrm{A}$		
If		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1			0.1	mA		
IIH		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IIL		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.2			-0.2	mA		
10^{\ddagger}	$\overline{\mathrm{CCO}}$ and $\overline{\mathrm{RCO}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-15		-70	-15		-70	mA		
	Q outputs			-20		-112	-30		-112			
${ }^{\text {ICC }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Outputs high		16	26		16	26	mA		
		Outputs low		20	32		20	32				
		Outputs disabled		20	32		20	32				

[^0]SDAS229A - APRIL 1982 - REVISED JANUARY 1995
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAXt } \end{aligned}$				UNIT
			SN54ALS569A		SN74ALS568A SN74ALS569A		
			MIN	MAX	MIN	MAX	
$f_{\text {max }}$	SN74ALS568A				20		MHz
	'ALS569A		22		30		
tPLH	CLK	Any Q	4	21	4	13	ns
tPHL			7	19	7	16	
tPLH	CLK	$\overline{\mathrm{RCO}}$	12	37	12	28	ns
tPHL			10	28	10	19	
tPLH	CLK	$\overline{\mathrm{CCO}}$	5	17	5	13	ns
tPHL			6	30	6	25	
tPLH	U / \bar{D}	$\overline{\mathrm{RCO}}$	9	31	9	23	ns
tPHL			9	33	9	19	
tPLH	ENT	$\overline{\mathrm{RCO}}$	6	21	6	15	ns
tPHL			4	20	4	13	
tPLH	ENT	$\overline{\mathrm{CCO}}$	5	18	5	13	ns
tPHL			9	32	9	23	
tPLH	$\overline{E N P}$	$\overline{\mathrm{CCO}}$	4	18	4	12	ns
tPHL			5	18	5	14	
tPHL	$\overline{\mathrm{ACLR}}$	Any Q	9	25	9	20	ns
tPZH	$\overline{O E}$	Any Q	6	23	6	18	ns
tpZL			6	29	6	24	
tPHZ	$\overline{\mathrm{OE}}$	Any Q	1	12	1	10	ns
tPLZ			3	29	3	13	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
D. All input pulses have the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}$, duty cycle $=50 \%$.
E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

INSTRUMENTS

PACKAGE OPTION ADDENDUM

www.ti.com
13-Jul-2022

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
83025022A	ACTIVE	LCCC	FK	20	1	Non-RoHS \& Green	SNPB	N/A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 83025022A } \\ & \text { SNJ54ALS } \\ & \text { 569AFK } \\ & \hline \end{aligned}$	Samples
8302502RA	ACTIVE	CDIP	J	20	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \hline \text { 8302502RA } \\ & \text { SNJ54ALS569AJ } \end{aligned}$	Samples
SN54ALS569AJ	ACTIVE	CDIP	J	20	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	SN54ALS569AJ	Samples
SN74ALS569ADWR	ACTIVE	SOIC	DW	20	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS569A	Samples
SN74ALS569AN	ACTIVE	PDIP	N	20	20	 Non-Green	NIPDAU	N/ A for Pkg Type	0 to 70	SN74ALS569AN	Samples
SN74ALS569ANE4	ACTIVE	PDIP	N	20	20	TBD	Call TI	Call TI	0 to 70		Samples
SNJ54ALS569AFK	ACTIVE	LCCC	FK	20	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 83025022A } \\ & \text { SNJ54ALS } \\ & \text { 569AFK } \\ & \hline \end{aligned}$	Samples
SNJ54ALS569AJ	ACTIVE	CDIP	J	20	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 8302502RA } \\ & \text { SNJ54ALS569AJ } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54ALS569A, SN74ALS569A :

- Catalog : SN74ALS569A
- Military : SN54ALS569A

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74ALS569ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALS569ADWR	SOIC	DW	20	2000	367.0	367.0	45.0

TUBE

- B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	$\mathbf{W}(\mathbf{m m})$	T ($\boldsymbol{\mu m}$)	B (mm)
83025022A	FK	LCCC	20	1	506.98	12.06	2030	NA
SN74ALS569AN	N	PDIP	20	20	506	13.97	11230	4.32
SNJ54ALS569AFK	FK	LCCC	20	1	506.98	12.06	2030	NA

FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side
5. Reference JEDEC registration MS-013.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL

SCALE:6X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 \ddagger The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

