

SN74AUC1G125

SCES382L -MARCH 2002-REVISED JUNE 2017

SN74AUC1G125 Single Bus Buffer Gate With 3-State Output

Features

- Latch-Up Performance Exceeds 100 mA Per JESD 78. Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- Available in the Texas Instruments NanoFree™ Package
- Optimized for 1.8-V Operation and Is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- Ioff Supports Partial Power Down Mode and Back **Drive Protection**
- Sub-1-V Operable
- Max t_{pd} of 2.5 ns at 1.8 V
- Low Power Consumption, 10-µA Maximum I_{CC}
- ±8-mA Output Drive at 1.8 V

Applications

- **AV Receiver**
- Audio Dock: Portable
- Blu-Ray Player and Home Theater
- Embedded PC
- MP3 Player/Recorder (Portable Audio)
- Personal Digital Assistant (PDA)
- Power: Telecom/Server AC/DC Supply: Single Controller: Analog and Digital
- Solid State Drive (SSD): Client and Enterprise
- TV: LCD/Digital and High-Definition (HDTV)
- Tablet: Enterprise
- Video Analytics: Server
- Wireless Headset, Keyboard, and Mouse

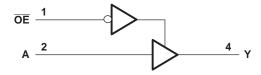
3 Description

This bus buffer gate is operational at 0.8-V to 2.7-V V_{CC}, but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUC1G125 device is a single line driver with a 3-state output. The output is disabled when the output-enable (OE) input is high.

To ensure the high-impedance state during power up or power down, OE should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.


This device is fully specified for partial-power-down applications using $I_{\rm off}$. The $I_{\rm off}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Device Information⁽¹⁾

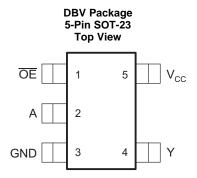
PART NUMBER	RT NUMBER PACKAGE			
SN74AUC1G125DBV	SOT-23 (5)	2.90 mm × 1.60 mm		
SN74AUC1G125DCK	SC70 (5)	2.00 mm x 1.25 mm		
SN74AUC1G125YZP	DSBGA (5)	1.75 mm × 1.25 mm		

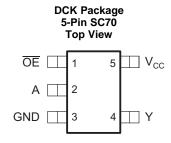
(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

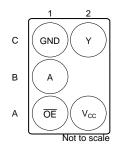
Table of Contents

1	Features 1	6.8 Operating Characteristics	6
2	Applications 1	7 Parameter Measurement Information	7
3	Description 1	8 Detailed Description	8
4	Revision History2	8.1 Functional Block Diagram	8
5	Pin Configuration and Functions	8.2 Device Functional Modes	8
6	Specifications4	9 Device and Documentation Support	9
•	6.1 Absolute Maximum Ratings	9.1 Documentation Support	9
	6.2 ESD Ratings	9.2 Receiving Notification of Documentation Updates	9
	6.3 Recommended Operating Conditions	9.3 Community Resources	9
	6.4 Thermal Information	9.4 Trademarks	9
	6.5 Electrical Characteristics	9.5 Electrostatic Discharge Caution	9
	6.6 Switching Characteristics: C ₁ = 15 pF	9.6 Glossary	9
	6.7 Switching Characteristics: C _L = 30 pF	10 Mechanical, Packaging, and Orderable Information	9


4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	Deleted DRY package throughout data sheet	Page
•	Deleted DRY package throughout data sheet	1
•	section, Device Functional Modes, Device and Documentation Support section, and Mechanical, Packaging, and	1
•		1



5 Pin Configuration and Functions

NC – No internal connection
See mechanical drawings for dimensions.

Pin Functions

	PIN		1/0	DESCRIPTION			
NAME	DBV, DCK	YZP	I/O	DESCRIPTION			
Α	2	B1	I	Logic input			
GND	3	C1	_	Ground			
ŌĒ	1	A1	I	Active-low output enable			
V _{CC}	5	A2	_	Positive supply			
Υ	4	C2	0	Output			

Product Folder Links: SN74AUC1G125

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		-0.5	3.6	V
VI	Input voltage ⁽²⁾			3.6	V
Vo	Voltage range applied to any output in the high-impedance or power-off state $^{(2)}$			3.6	V
Vo	Output voltage range ⁽²⁾	-0.5	V _{CC} + 0.5	V	
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±20	mA
	Continuous current through V _{CC} or GND			±100	mA
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	1000	V
		Machine Model (A115-A)	200	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

See (1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	V _{CC}		
V_{IH}	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	0.65 × V _{CC}		V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		
		V _{CC} = 0.8 V		0	
V_{IL}	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	
V_{I}	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
I_{OH}	High-level output current	V _{CC} = 1.4 V		- 5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
I _{OL}	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See Implications of Slow or Floating CMOS Inputs, SCBA004.

Product Folder Links: SN74AUC1G125

²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions (continued)

See (1)

			MIN	MAX	UNIT
		$V_{CC} = 0.8 \text{ V to } 1.6 \text{ V}$		20	
$\Delta t/\Delta v$	Input transition rise or fall rate	V _{CC} = 1.65 V to 1.95 V		10	ns/V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		3	
T _A	Operating free-air temperature		-40	85	°C

6.4 Thermal Information

			SN74AUC1G125					
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	DCK (SC70)	YZP (DSBGA)	UNIT			
		5 PINS	5 PINS	5 PINS				
$R_{\theta JA}$	Junction-to-ambient thermal resistance	206	252	132	°C/W			

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETE	ER	TEST CO	NDITIONS		V _{CC}	MIN	TYP ⁽¹⁾	MAX	UNIT	
		I _{OH} = -100 μA			0.8 V to 2.7 V	V _{CC} - 0.1				
		$I_{OH} = -0.7 \text{ mA}$			0.8 V		0.55			
V _{OH}	$I_{OH} = -3 \text{ mA}$			1.1 V	0.8			V		
	$I_{OH} = -5 \text{ mA}$			1.4 V	1			V		
		$I_{OH} = -8 \text{ mA}$			1.65 V	1.2				
		$I_{OH} = -9 \text{ mA}$			2.3 V	1.8				
		$I_{OL} = 100 \mu A$			0.8 V to 2.7 V			0.2		
V		$I_{OL} = 0.7 \text{ mA}$			0.8 V		0.25			
	$I_{OL} = 3 \text{ mA}$			1.1 V			0.3	.3 _V		
V _{OL}		I _{OL} = 5 mA			1.4 V			0.4	V	
		$I_{OL} = 8 \text{ mA}$			1.65 V			0.45		
		$I_{OL} = 9 \text{ mA}$			2.3 V			0.6		
I _I A or \overline{OE}	E input	$V_I = V_{CC}$ or GND			0 to 2.7 V			±5	μΑ	
l _{off}		V_I or $V_O = 2.7 V$			0			±10	μΑ	
l _{OZ}		$V_O = V_{CC}$ or GND			2.7 V			±10	μΑ	
I _{CC}		$V_I = V_{CC}$ or GND,	I _O = 0		0.8 V to 2.7 V			10	μΑ	
C _I		$V_I = V_{CC}$ or GND			2.5 V		2.5		pF	
Co		$V_O = V_{CC}$ or GND			2.5 V		5.5		pF	

⁽¹⁾ All typical values are at $T_A = 25$ °C.

6.6 Switching Characteristics: $C_L = 15 pF$

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER		FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.		V _{CC} = ± 0.			_C = 1.8 : 0.15 V		V _{CC} = ± 0.		UNIT
	(INPUT)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX		
	t _{pd}	Α	Υ	4.7	0.8	3.6	0.4	2.3	0.6	1	1.5	0.5	1.3	ns
	t _{en}	ŌĒ	Υ	5.4	0.7	4.1	0.5	2.6	0.6	1.1	1.8	0.5	1.4	ns
	t _{dis}	ŌĒ	Υ	4.8	1.4	4.3	1.4	4	1.5	2.2	2.9	0.9	2.2	ns

Product Folder Links: SN74AUC1G125

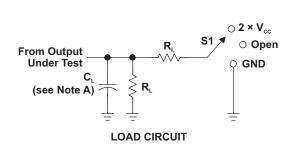
6.7 Switching Characteristics: $C_L = 30 pF$

over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	TO	V _C	_C = 1.8 : 0.15 \	, ,	V _{CC} = ± 0.	2.5 V 2 V	UNIT
	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	
t_{pd}	Α	Υ	0.7	1.5	2.5	0.9	1.7	ns
t _{en}	ŌE	Υ	1	1.6	2.6	1.1	1.9	ns
t _{dis}	ŌE	Υ	1.8	2.2	3.1	8.0	1.7	ns

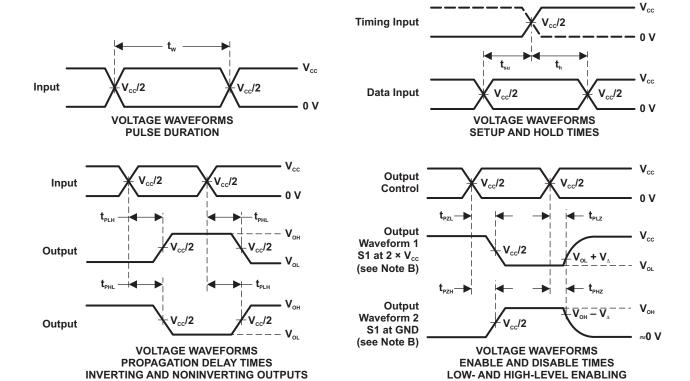
6.8 Operating Characteristics

 $T_A = 25$ °C


PARAMETER		TEST CONDITIONS	V _{CC} = 0.8 V TYP	V _{CC} = 1.2 V TYP	V _{CC} = 1.5 V TYP	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	UNIT	
C _{pd}	Power dissipation capacitance	Outputs enabled	f 40 MHz	14	14	14	15	16	~F
		Outputs disabled	f = 10 MHz	1.5	1.5	1.5	2	2.5	pF

Submit Documentation Feedback

Copyright © 2002–2017, Texas Instruments Incorporated



Parameter Measurement Information

TEST	S1
t _{PLH} /t _{PHL}	Open
t_{PLZ}/t_{PZL}	2 × V _{cc}
t _{PHZ} /t _{PZH}	GND

V _{cc}	C _L	R _L	V _Δ
0.8 V	15 pF	2 k Ω	0.1 V
1.2 V ± 0.1 V	15 pF	2 k Ω	0.1 V
1.5 V ± 0.1 V	15 pF	2 k Ω	0.1 V
1.8 V ± 0.15 V	15 pF	2 k Ω	0.15 V
2.5 V ± 0.2 V	15 pF	2 kΩ	0.15 V
1.8 V ± 0.15 V	30 pF	1 k Ω	0.15 V
2.5 V ± 0.2 V	30 pF	500 Ω	0.15 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: $PRR \le 10 \text{ MHz}$, $Z_{\circ} = 50 \Omega$,
- slew rate ≥ 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. $t_{\mbox{\tiny PLZ}}$ and $t_{\mbox{\tiny PHZ}}$ are the same as $t_{\mbox{\tiny dis}}.$
- F. $\,t_{\mbox{\tiny PZL}}$ and $t_{\mbox{\tiny PZH}}$ are the same as $t_{\mbox{\tiny en}}.$
- G. t_{PLH} and t_{PHL} are the same as t_{pol}

Figure 1. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

8 Detailed Description

8.1 Functional Block Diagram

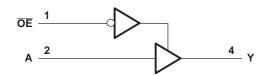


Figure 2. Logic Diagram (Positive Logic)

8.2 Device Functional Modes

Table 1 lists the functional modes of the SN74AUC1G125.

Table 1. Function Table

INP	UTS	OUTPUT
ŌĒ	Α	Y
L	Н	Н
L	L	L
Н	X	Z

Submit Documentation Feedback

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation see the following:

Implications of Slow or Floating CMOS Inputs, SCBA004

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

9.4 Trademarks

NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Draduat Folder Links, CN744116

Copyright © 2002-2017, Texas Instruments Incorporated

8-May-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
74AUC1G125DBVRE4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	U25R	Samples
74AUC1G125DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	U25R	Samples
74AUC1G125DCKRE4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(UM5 ~ UMF ~ UMR)	Samples
74AUC1G125DCKRG4	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(UM5 ~ UMF ~ UMR)	Samples
SN74AUC1G125DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	U25R	Samples
SN74AUC1G125DCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(UM5 ~ UMF ~ UMR)	Samples
SN74AUC1G125YZPR	ACTIVE	DSBGA	YZP	5	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	UMN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

8-May-2017

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

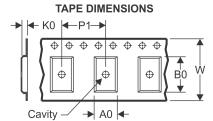
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74AUC1G125:

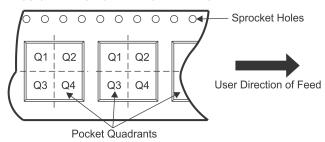
● Enhanced Product: SN74AUC1G125-EP

NOTE: Qualified Version Definitions:

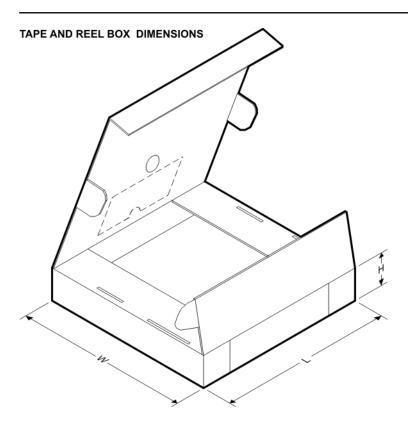

• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017


TAPE AND REEL INFORMATION

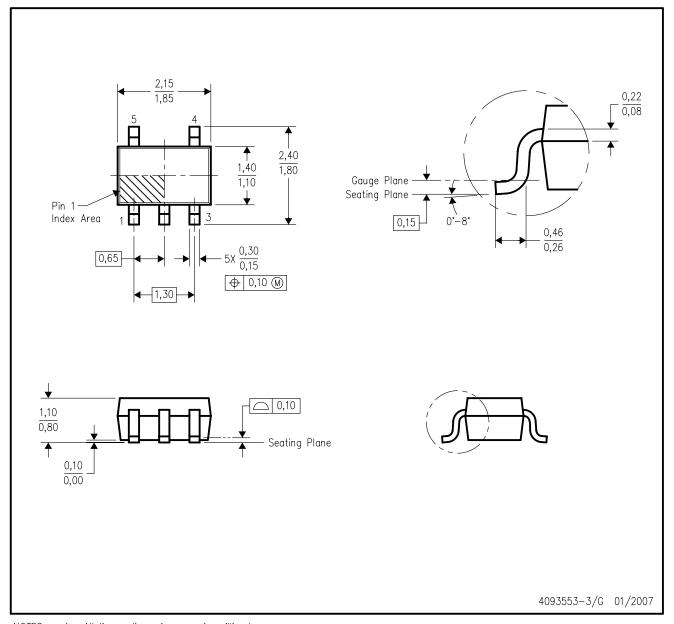
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUC1G125DBVR	SOT-23	DBV	5	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AUC1G125DCKR	SC70	DCK	5	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74AUC1G125DCKR	SC70	DCK	5	3000	180.0	8.4	2.47	2.3	1.25	4.0	8.0	Q3
SN74AUC1G125DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74AUC1G125YZPR	DSBGA	YZP	5	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

www.ti.com 3-Aug-2017

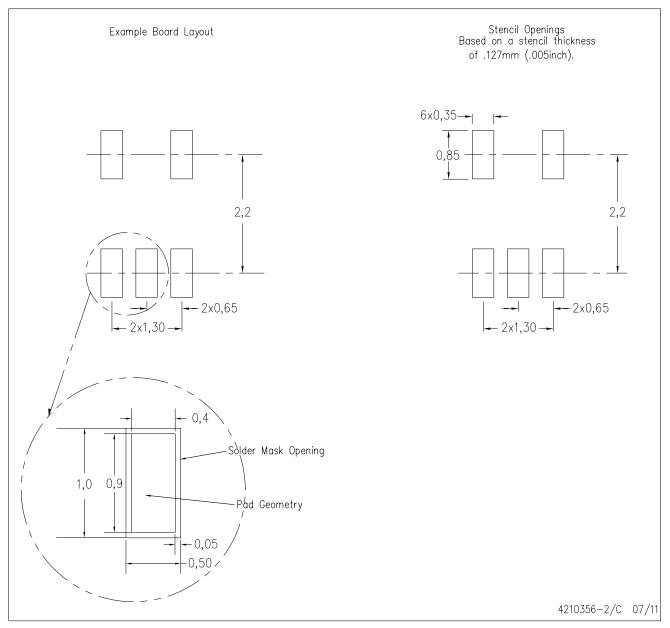


*All dimensions are nominal

All difficultions are norminal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUC1G125DBVR	SOT-23	DBV	5	3000	202.0	201.0	28.0
SN74AUC1G125DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
SN74AUC1G125DCKR	SC70	DCK	5	3000	202.0	201.0	28.0
SN74AUC1G125DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
SN74AUC1G125YZPR	DSBGA	YZP	5	3000	220.0	220.0	35.0

DCK (R-PDSO-G5)

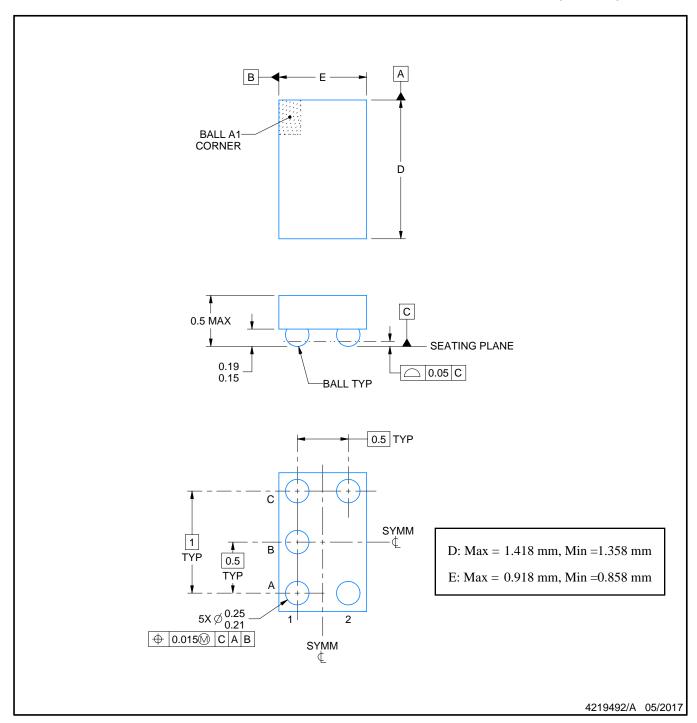
PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

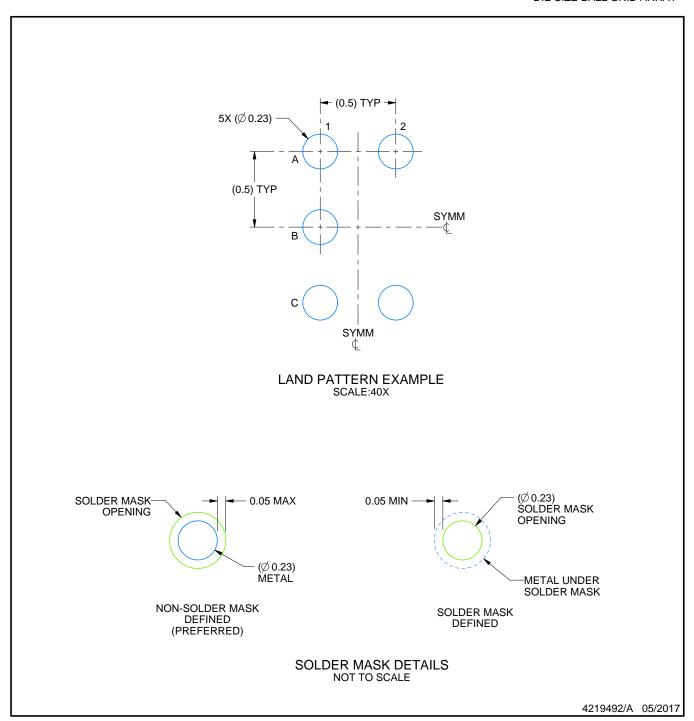
DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

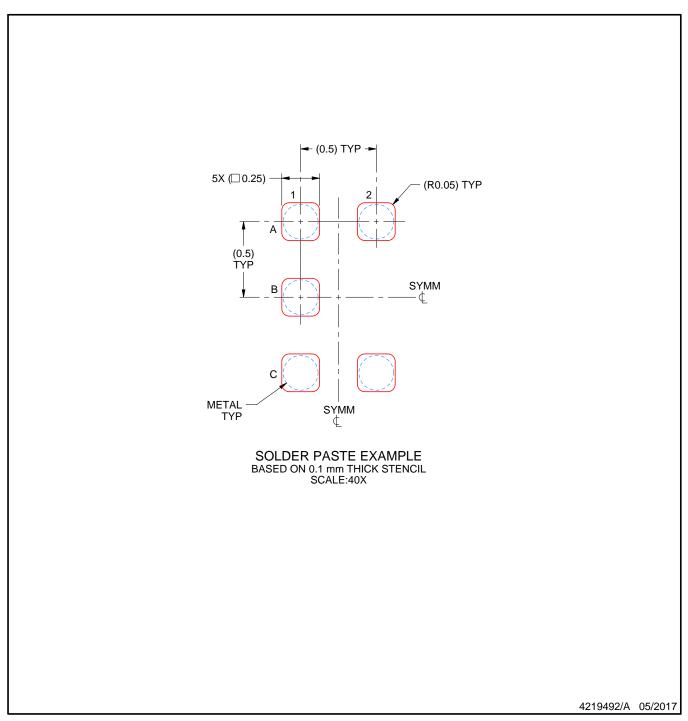
DIE SIZE BALL GRID ARRAY



NOTES:

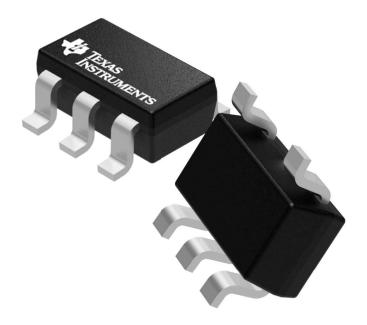
- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

DIE SIZE BALL GRID ARRAY



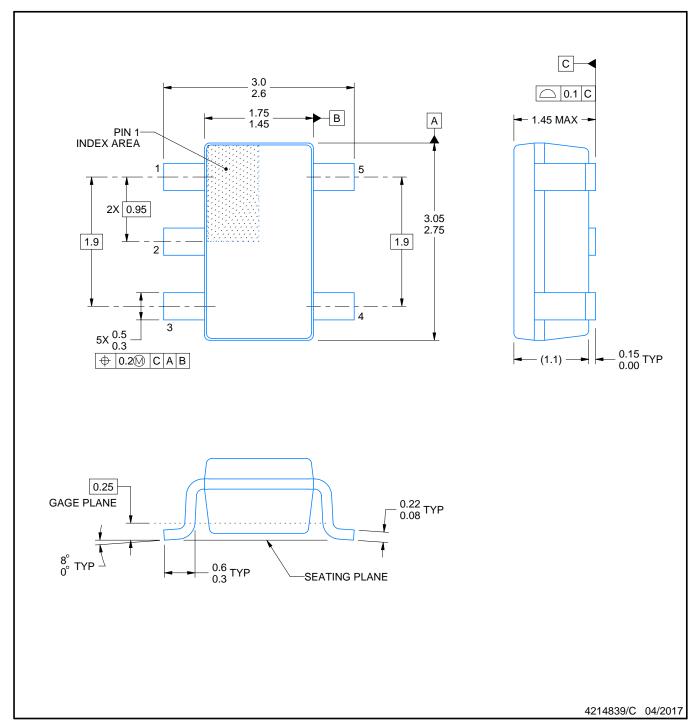
NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).


DIE SIZE BALL GRID ARRAY

NOTES: (continued)

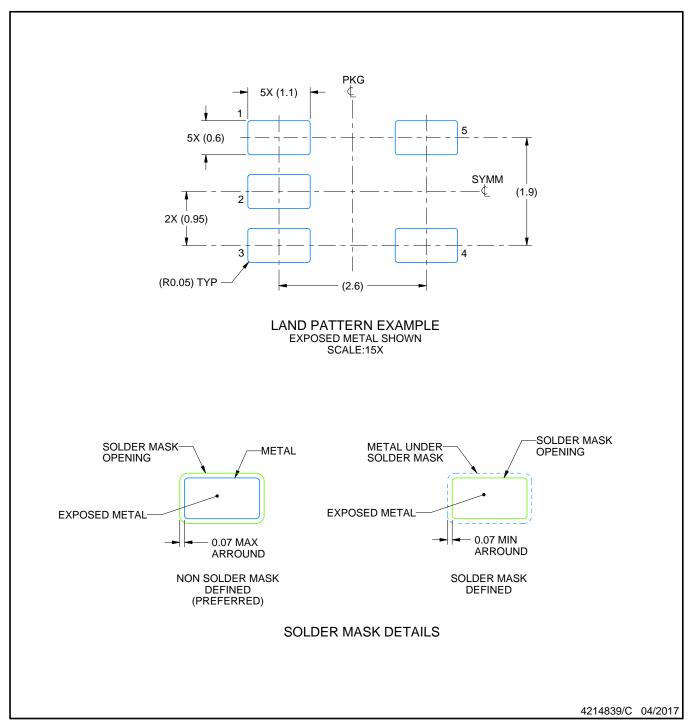
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4073253/P

SMALL OUTLINE TRANSISTOR

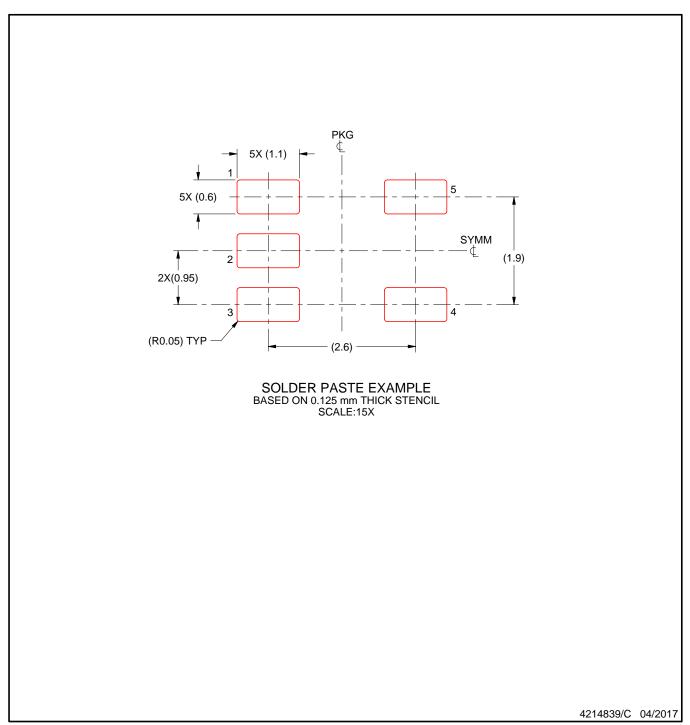
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. Reference JEDEC MO-178.

SMALL OUTLINE TRANSISTOR



NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.