SCES476 - AUGUST 2003

- Member of the Texas Instruments Widebus+™ Family
- Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- I_{off} Supports Partial-Power-Down Mode Operation
- Sub 1-V Operable
- Max t_{pd} of 2.8 ns at 1.8 V
- Low Power Consumption, 40-μA Max I_{CC}

- ±8-mA Output Drive at 1.8 V
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This 32-bit edge-triggered D-type flip-flop is operational at 0.8-V to 2.7-V V_{CC} , but is designed specifically for 1.65-V to 1.95-V V_{CC} operation.

The SN74AUCH32374 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. It can be used as four 8-bit flip-flops, two 16-bit flip-flops, or one 32-bit flip-flop. On the positive transition of the clock (CLK) input, the Q outputs of the flip-flop take on the logic levels set up at the data (D) inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

ORDERING INFORMATION

TA	PACKAC	∋E†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	LFBGA – GKE	Tape and reel	SN74AUCH32374GKER	MK374

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus+ is a trademark of Texas Instruments.

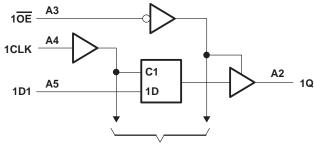
SN74AUCH32374 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

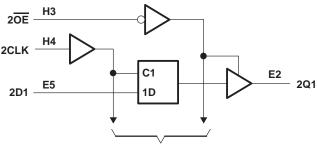
SCES476 - AUGUST 2003

GKE PACKAGE (TOP VIEW)

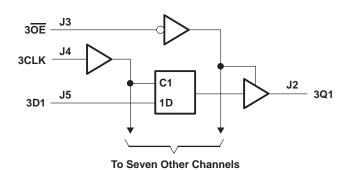
	_	1	2	3	4	5	6
Α	/	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\circ
В		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
С		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
D		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Е		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
F		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
G		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Н		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
J		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
K		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
L		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
M		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
N		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Р		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
R		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Т		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	\						

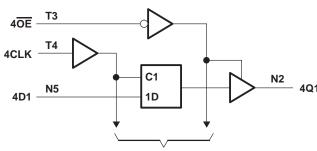
terminal assignments


	1	2	3	4	5	6
Α	1Q2	1Q1	1OE	1CLK	1D1	1D2
В	1Q4	1Q3	GND	GND	1D3	1D4
С	1Q6	1Q5	Vcc	Vcc	1D5	1D6
D	1Q8	1Q7	GND	GND	1D7	1D8
Ε	2Q2	2Q1	GND	GND	2D1	2D2
F	2Q4	2Q3	Vcc	Vcc	2D3	2D4
G	2Q6	2Q5	GND	GND	2D5	2D6
Н	2Q7	2Q8	2OE	2CLK	2D8	2D7
J	3Q2	3Q1	3OE	3CLK	3D1	3D2
K	3Q4	3Q3	GND	GND	3D3	3D4
L	3Q6	3Q5	Vcc	Vcc	3D5	3D6
M	3Q8	3Q7	GND	GND	3D7	3D8
N	4Q2	4Q1	GND	GND	4D1	4D2
Р	4Q4	4Q3	Vcc	Vcc	4D3	4D4
R	4Q6	4Q5	GND	GND	4D5	4D6
Т	4Q7	4Q8	40E	4CLK	4D8	4D7


FUNCTION TABLE (each flip-flop)

	INPUTS		OUTPUT
OE	CLK	D	Q
L	↑	Н	Н
L	\uparrow	L	L
L	H or L	Χ	Q_0
Н	Χ	Χ	Z


SCES476 - AUGUST 2003


logic diagram (positive logic)

To Seven Other Channels To Seven Other Channels

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 3.6 V
Input voltage range, V _I (see Note 1)	–0.5 V to 3.6 V
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1)	–0.5 V to 3.6 V
Output voltage range, V _O (see Note 1)–0.5	$5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	±20 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 2)	40°C/W
Storage temperature range, T _{stq}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74AUCH32374 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

SCES476 - AUGUST 2003

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
Vcc	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	Vcc		
\vee_{IH}	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	0.65 × V _{CC}		V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		0.35 × V _{CC}	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	
٧ _I	Input voltage		0	3.6	V
	Output and to me	Active state	0	VCC	V
VO	Output voltage	3-state	0	3.6	V
		V _{CC} = 0.8 V		-0.7	
		V _{CC} = 1.1 V		-3	
lOH	ligh-level output current	V _{CC} = 1.4 V		-5	mA
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
lOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
Δt/Δν	Input transition rise or fall rate	•		20	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES476 - AUGUST 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

VOH	PA	RAMETER	TEST CONDI	TIONS	v _{cc}	MIN	TYP [†]	MAX	UNIT
VOH			I _{OH} = -100 μA		0.8 V to 2.7 V	V _{CC} -0.	.1		
VOH			$I_{OH} = -0.7 \text{ mA}$		0.8 V		0.55		
IOH = -5 mA	.,		$I_{OH} = -3 \text{ mA}$		1.1 V	0.8			.,
IOH = -9 mA	vОН		$I_{OH} = -5 \text{ mA}$		1.4 V	1			V
$VOL \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			$I_{OH} = -8 \text{ mA}$		1.65 V	1.2			
VOL OL = 0.7 mA			$I_{OH} = -9 \text{ mA}$		2.3 V	1.8			
VOL IOL = 3 mA			$I_{OL} = 100 \mu A$		0.8 V to 2.7 V			0.2	
VOL I _{OL} = 5 mA			$I_{OL} = 0.7 \text{ mA}$		0.8 V		0.25		
IOL = 5 mA	.,		I _{OL} = 3 mA		1.1 V			0.3	.,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VOL		I _{OL} = 5 mA		1.4 V			0.4	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			I _{OL} = 8 mA		1.65 V			0.45	
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $			I _{OL} = 9 mA		2.3 V			0.6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lį	All inputs	V _I = V _{CC} or GND		0 to 2.7 V			±5	μА
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _I = 0.35 V		1.1 V	10			
$ V_{\parallel} = 0.57 \text{ V} 1.65 \text{ V} 2.0 \text{ V} 1.65 \text{ V} 2.0 \text{ V} 1.07 \text{ V} 1.07 \text{ V} 1.07 \text{ V} 1.65 \text{ V} -20 \text{ V} 1.4 \text{ V} -15 \text{ V} 1.65 \text{ V} -20 \text{ V} 1.07 \text{ V} 1.65 \text{ V} -20 \text{ V} 1.65 \text{ V} 1.25 \text{ I} 1.65 \text{ V} 1.25 \text{ I} 1.65 \text{ V} 1.75 \text{ I} 1.65 \text{ V} 1.75 \text{ I} 1.65 \text{ V} -175 \text{ I} 1.65 \text{ V} -125 \text{ I} 1.65 \text{ V} -125 \text{ I} 1.65 \text{ V} -175 \text{ I} 1.65 \text{ V} -175 \text{ I} 1.65 \text{ V} -175 \text{ I} 1.95 V$. +		V _I = 0.47 V		1.4 V	15			
$I_{BHH} \S = \begin{bmatrix} V_{I} = 0.8 \ V \\ V_{I} = 0.9 \ V \\ V_{I} = 1.07 \ V \\ V_{I} = 1.07 \ V \\ V_{I} = 1.7 \ V \\ \end{bmatrix} = 0 \text{ to V}_{CC} $ $I_{BHLO} \P = \begin{bmatrix} 1.3 \ V \\ 1.25 \\ 1.95 \ V \\ 1.75 \\ 2.7 \ V \\ 1.95 \ $	IBHL+	I _{BHL} ‡	V _I = 0.57 V		1.65 V	20			μΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _I = 0.7 V		2.3 V	40			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _I = 0.8 V		1.1 V	-5			
$V_{\parallel} = 1.07 V $			V _I = 0.9 V	1.4 V	-15				
$I_{BHLO} \P \\ V_{I} = 0 \text{ to V}_{CC} \\ \\ I_{O} V_{I} = 0 \text{ to V}_{CC} \\$	IBHHa		V _I = 1.07 V	1.65 V	-20			μΑ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _I = 1.7 V	2.3 V	-40				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.3 V	75			
$I_{BHHO}^{\#} \begin{array}{c} I_{.95 \text{ V}} & I_{75} \\ \hline \\ 2.7 \text{ V} & 275 \\ \hline \\ 1.3 \text{ V} & -75 \\ \hline \\ 1.6 \text{ V} & -125 \\ \hline \\ 1.95 \text{ V} & -175 \\ \hline \\ 2.7 \text{ V} & -275 \\ \hline \\ I_{OZ} & V_{O} = V_{CC} \text{ or GND} \\ \hline \end{array} \begin{array}{c} I_{OS} \text{ V} & 0 & 0 & 0.00 \\ \hline \\ I_{OS} & V_{O} = V_{CC} \text{ or GND} \\ \hline \end{array}$		a	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.6 V	125			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IBHLO	11	$\Lambda I = 0$ to ΛCC		1.95 V	175			μΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					2.7 V	275			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1.3 V	-75			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		#	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.6 V	-125			
Ioff V_I or $V_O = 2.7$ V 0 ±10 μA IOZ $V_O = V_{CC}$ or GND 2.7 V ±10 μA	'ВННО"		$\Lambda^{I} = 0$ to Λ^{CC}		1.95 V	-175			μΑ
IOZ $VO = VCC$ or GND 2.7 V ± 10 μA					2.7 V	-275			
I_{OZ} $V_{O} = V_{CC}$ or GND 2.7 V ± 10 μA	l _{off}		V _I or V _O = 2.7 V		0			±10	μΑ
$V_{1} = V_{2} \circ g \circ GND$ $I_{2} = 0$ $0.9 \lor t_{2} \circ 2.7 \lor$ 40	IOZ		$V_O = V_{CC}$ or GND		2.7 V			±10	μΑ
$[V] = VCC \text{ of GND}, \qquad [V] = V \qquad [V.6 \text{ of GND}], \qquad [V] = V \qquad [V.6 \text{ of GND}], \qquad $	Icc		$V_I = V_{CC}$ or GND,	IO = 0	0.8 V to 2.7 V			40	μΑ
C_i $V_I = V_{CC}$ or GND 2.5 V 3 pF			$V_I = V_{CC}$ or GND		2.5 V		3		рF
C_{O} $V_{O} = V_{CC}$ or GND 2.5 V 5 pF	Со		$V_O = V_{CC}$ or GND		2.5 V		5		pF

 $[\]uparrow$ All typical values are at T_A = 25°C.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

An external driver must source at least I_{BHLO} to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

SN74AUCH32374 32-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS

SCES476 - AUGUST 2003

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

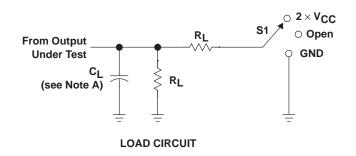
			$V_{CC} = 0.8 \text{ V}$ $V_{CC} = 1.2 \text{ V}$ $\pm 0.1 \text{ V}$		V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		UNIT
		TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency	85		250		250		250		250	MHz
t _W	Pulse duration, CLK high or low	5.9	1.9		1.9		1.9		1.9		ns
t _{su}	Setup time, data before CLK↑	1.4	1.2		0.7		0.6		0.6		ns
th	Hold time, data after CLK↑	0.1	0.4		0.4		0.4		0.4		ns

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

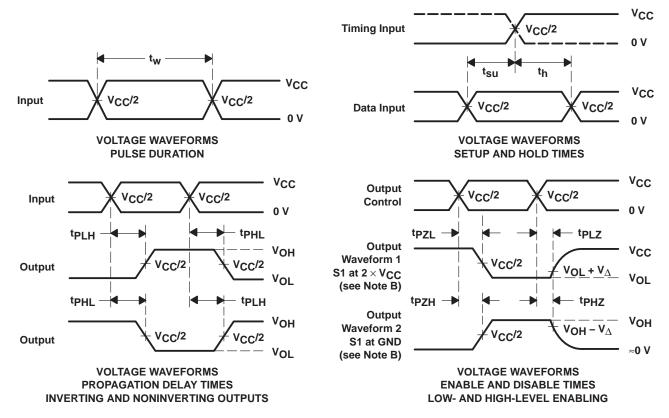
PARAMETER	FROM	_	V _{CC} = 0.8 V	V _{CC} =	: 1.2 V :1 V	V _{CC} =	= 1.5 V .1 V		C = 1.8 0.15 V		V _{CC} =		UNIT
	(INPUT)	(OUTPUT)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
fmax			85	250		250		250			250		MHz
t _{pd}	CLK	Q	7.3	1	4.5	0.8	2.9	0.7	1.5	2.8	0.7	2.2	ns
t _{en}	ŌĒ	Q	7	1.2	5.3	0.8	3.6	0.8	1.5	2.9	0.7	2.2	ns
^t dis	ŌĒ	Q	8.2	2	7.1	1	4.8	1.4	2.7	4.5	0.5	2.2	ns

operating characteristics, $T_A = 25^{\circ}C^{\dagger}$

	PARAMETER	?	TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT	
			CONDITIONS	TYP	TYP	TYP	TYP	TYP		
C _{pd} ‡ (each output)	Power dissipation capacitance	Outputs enabled, 1 output switching	$\begin{array}{l} 1 f_{data} = 5 \text{ MHz} \\ 1 f_{Clk} = 10 \text{ MHz} \\ \underline{1 f_{Out}} = 5 \text{ MHz} \\ \overline{OE} = \text{GND} \\ C_L = 0 \text{ pF} \end{array}$	24	24	24.1	26.2	31.2	pF	
C _{pd} (Z)	Power dissipation capacitance	Outputs disabled, 1 clock and 1 data switching	$\begin{array}{c} 1 f_{data} = 5 \text{ MHz} \\ 1 f_{Clk} = 10 \text{ MHz} \\ f_{out} = \text{not} \\ \hline \text{Switching} \\ \hline \text{OE} = \text{V}_{CC} \\ \text{C}_{L} = 0 \text{ pF} \end{array}$	7.5	7.5	8	9.4	13.2	pF	
C _{pd} § (each clock)	Power dissipation capacitance	Outputs disabled, clock only switching	$\begin{array}{l} 1 f_{data} = 0 \text{ MHz} \\ 1 f_{Clk} = 10 \text{ MHz} \\ f_{out} = \text{not} \\ \hline \text{switching} \\ \hline \overline{\text{OE}} = \text{V}_{CC} \\ C_L = 0 \text{ pF} \end{array}$	13.8	13.8	14	14.7	17.5	pF	


[†] Total device C_{pd} for multiple (n) outputs switching and (y) clocks inputs switching = {n * C_{pd} (each output)} + {y * C_{pd} (each clock)}.

[‡]C_{Dd} (each output) is the C_{Dd} for each data bit (input and output circuitry) as it operates at 5 MHz (Note: the clock is operating at 10 MHz in this test, but its I_{CC} component has been subtracted out).


[§] C_{pd} (each clock) is the C_{pd} for the clock circuitry only as it operates at 10 MHz.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	2×V _{CC}
tPHZ/tPZH	GND

CL	RL	v_{\wedge}
15 pF	2 kΩ	0.1 V
15 pF	2 k Ω	0.1 V
15 pF	2 k Ω	0.1 V
30 pF	1 k Ω	0.15 V
30 pF	500 Ω	0.15 V
	15 pF 15 pF 15 pF 30 pF	15 pF 2 kΩ 15 pF 2 kΩ 15 pF 2 kΩ 30 pF 1 kΩ

- NOTES: A. C_I includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, slew rate \geq 1 V/ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpZL and tpZH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.
 - H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	U	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74AUCH32374ZKER	ACTIVE	LFBGA	ZKE	96	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	MK374	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

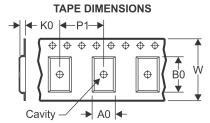
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

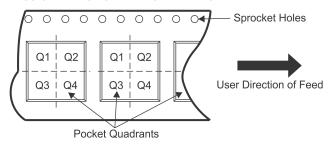
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


17-Mar-2017

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Apr-2014


TAPE AND REEL INFORMATION

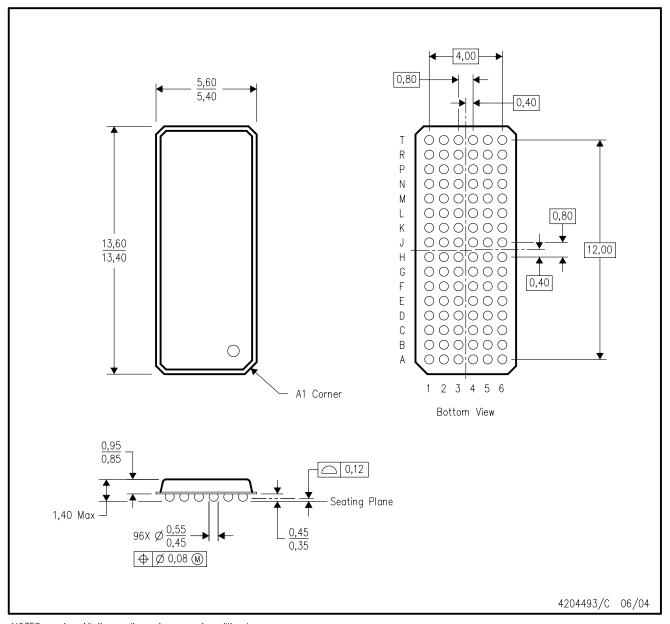
A0	<u> </u>
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUCH32374ZKER	LFBGA	ZKE	96	1000	330.0	24.4	5.7	13.7	2.0	8.0	24.0	Q1

www.ti.com 30-Apr-2014



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74AUCH32374ZKER	LFBGA	ZKE	96	1000	336.6	336.6	41.3	

ZKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-205 variation CC.
- D. This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.