www.ti.com

SN74GTLPH16912 18-BIT LVTTL-TO-GTLP UNIVERSAL BUS TRANSCEIVER

SCES288C-OCTOBER 1999-REVISED JUNE 2005

FEATURES

- Member of the Texas Instruments Widebus™
 Family
- UBT[™] Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, Clocked, and Clock-Enabled Modes
- TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes
- OEC[™] Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
- LVTTL Interfaces Are 5-V Tolerant
- Medium-Drive GTLP Outputs (50 mA)
- LVTTL Outputs (-24 mA/24 mA)
- GTLP Rise and Fall Times Designed for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
- I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion
- Bus Hold on A-Port Data Inputs
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DGG OR DGV PACKAGE (TOP VIEW)

	╌	T		<u> </u>
OEAB	7	_		CEAB
LEAB	2		55	CLKAB
A1	[]3		54] B1
GND	4		53] GND
A2	[]5		52] B2
А3			51] B3
V_{CC}	[]7		50	BIAS V _{CC}
A4	8		49] B4
A5			48] B5
A6	10		47] B6
GND			46] GND
A7	[] 12		45] B7
	13		44] B8
	[] 14] B9
A10	[] 15		42	B10
A11			41	B11
A12	_		40	B12
GND	[] 18		39	GND
A13	[] 19		38] B13
A14	20		37	B14
A15	21		36] B15
V_{CC}	22		35	V_{REF}
A16	23		34	
A17	[] 24		33] B17
GND	25		32	GND
A18	[26		31	B18
OEBA	27		30] CLKBA
LEBA	28		29	CEBA

DESCRIPTION/ORDERING INFORMATION

The SN74GTLPH16912 is a medium-drive, 18-bit UBTTM transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It allows for transparent, latched, clocked, and clock-enabled modes of data transfer. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard TTL or LVTTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The medium drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 19 Ω.

GTLP is the Texas Instruments (TITM) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH16912 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2 \text{ V}$ and $V_{REF} = 0.8 \text{ V}$) or GTLP ($V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$) signal levels.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, UBT, TI-OPC, OEC, TI are trademarks of Texas Instruments.

SCES288C-OCTOBER 1999-REVISED JUNE 2005

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 85°C	TSSOP - DGG	Tape and reel	SN74GTLPH16912GR	GTLPH16912
-40 C 10 65 C	TVSOP - DGV	Tape and reel	SN74GTLPH16912VR	GL912

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SCES288C-OCTOBER 1999-REVISED JUNE 2005

FUNCTIONAL DESCRIPTION

The SN74GTLPH16912 is a medium-drive (50-mA), 18-bit UBT transceiver containing D-type latches and D-type flip-flops for data-path operation in transparent, latched, clocked, or clock-enabled modes and can replace any of the functions shown in Table 1. Data polarity is noninverting.

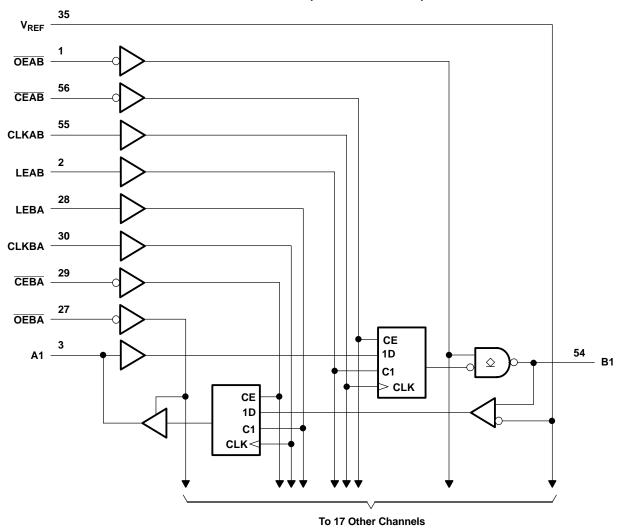
Table 1. SN74GTLPH16912 UBT Transceiver Replacement Functions

FUNCTION	8 BIT	9 BIT	10 BIT	16 BIT	18 BIT
Transceiver	'245, '623, '645	'863	'861	'16245, '16623	'16863
Buffer/driver	'241, '244, '541		'827	'16241, '16244, '16541	'16825
Latched transceiver	'543			'16543	'16472
Latch	'373, '573	'843	'841	'16373	'16843
Registered transceiver	'646, '652			'16646, '16652	'16474
Flip-flop	'374, '574		'821	'16374	
Standard UBT					'16500, '16501
Universal bus driver					'16835
Registered transceiver with clock enable	'2952			'16470, '16952	
Flip-flop with clock enable	'377	'823			'16823
Standard UBT with clock enable					'16600, '16601
SN74GT	LPH16912 UBT transce	eiver replac	es all above	functions	1

Data flow in each direction is controlled by clock enables (\overline{CEAB} and \overline{CEBA}), latch enables (LEAB and LEBA), clock (CLKAB and CLKBA), and output enables (\overline{OEAB} and \overline{OEBA}). \overline{CEAB} and \overline{OEBA} and \overline{OEAB} and \overline{OEBA} and \overline{OEBA}

For A-to-B data flow, when $\overline{\text{CEAB}}$ is low, the device operates on the low-to-high transition of CLKAB for the flip-flop and on the high-to-low transition of LEAB for the latch path, i.e., if $\overline{\text{CEAB}}$ and LEAB are low, the A data is latched, regardless of the state of CLKAB (high or low). If LEAB is high, the device is in transparent mode. When $\overline{\text{OEAB}}$ is low, the outputs are active. When $\overline{\text{OEAB}}$ is high, the outputs are in the high-impedance state.

The data flow for B to A is similar to that of A to B, except CEBA, OEBA, LEBA, and CLKBA are used.


FUNCTION TABLE(1)

		INPUTS			OUTPUT	MODE
CEAB	OEAB	LEAB	CLKAB	Α	В	MODE
Х	Н	Χ	Χ	X	Z	Isolation
L	L	L	Н	Х	B ₀ ⁽²⁾	Latabad storage of A data
L	L	L	L	X	B ₀ ⁽³⁾	Latched storage of A data
Х	L	Н	Χ	L	L	True transparent
X	L	Н	Χ	Н	Н	True transparent
L	L	L	↑	L	L	Clocked storage of A data
L	L	L	\uparrow	Н	Н	Clocked storage of A data
Н	L	L	Х	Х	B ₀ ⁽³⁾	Clock inhibit

- (1) A-to-B data flow is shown. B-to-A data flow is similar, but uses $\overline{\text{CEBA}}$, $\overline{\text{OEBA}}$, LEBA, and CLKBA. The condition when $\overline{\text{OEAB}}$ and $\overline{\text{OEBA}}$ are both low at the same time is not recommended.
- (2) Output level before the indicated steady-state input conditions were established, provided that CLKAB was high before LEAB went low
- (3) Output level before the indicated steady-state input conditions were established

LOGIC DIAGRAM (POSITIVE LOGIC)

SCES288C-OCTOBER 1999-REVISED JUNE 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V _{CC} BIAS V _{CC}	Supply voltage range		-0.5	4.6	V	
M	Input valtage range (2)	A-port and control inputs	-0.5	7	V	
VI	Input voltage range (2)	B port and V _{REF}	-0.5	4.6	V	
V	Voltage range applied to any output in the	A port	-0.5	7	V	
V _O	high-impedance or power-off state	B port	-0.5	4.6	V	
	Comment into any ordered in the law state	A port		48	A	
I _O	Current into any output in the low state	B port		100	mA	
Io	Current into any A-port output in the high state	(3)		48	mA	
	Continuous current through each V _{CC} or GND			±100	mA	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
0	Dealer and the arread increased areas (4)	DGG package		64	0000	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DGV package		48	°C/W	
T _{stg}	Storage temperature range		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating" conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

This current flows only when the output is in the high state and $V_{\rm O}$ > $V_{\rm CC}$. The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions (1)(2)(3)(4)

			MIN	NOM	MAX	UNIT	
V _{CC} BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
W	Termination voltage	GTL	1.14	1.2	1.26	V	
V_{TT}	Termination voltage	GTLP	1.35	1.5	1.65	V	
17	Defenses valtage	GTL	0.74	0.8	0.87	V	
V_{REF}	Reference voltage	GTLP	0.87	1	1.1	V	
M	lancit collana	B port			V_{TT}	V	
V _I	Input voltage	Except B port		V _{CC}	5.5	V	
\/	High level input values	B port	V _{REF} + 0.05			V	
V_{IH}	High-level input voltage	Except B port	2			V	
1/	Lave lavel innerteen	B port			V _{REF} - 0.05	V	
V_{IL}	Low-level input voltage	Except B port			0.8	V	
I _{IK}	Input clamp current				-18	mA	
I _{OH}	High-level output current	A port			-24	mA	
	Lave lavel autout aumant	A port			24	A	
I _{OL}	Low-level output current	B port			50	mA	
Δt/ΔV	Input transition rise or fall rate	Outputs enabled			10	ns/V	
$\Delta t/\Delta V_{CC}$	Power-up ramp rate	ı	20			μs/V	
T _A	Operating free-air temperature		-40		85	°C	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

(3) V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.

⁽²⁾ Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

⁽⁴⁾ V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT}. TI-OPC circuitry is enabled in the A-to-B direction and is activated when V_{TT} > 0.7 V above V_{REF}. If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current drain.

SCES288C-OCTOBER 1999-REVISED JUNE 2005

Electrical Characteristics

over recommended operating free-air temperature range for GTLP (unless otherwise noted)

PA	ARAMETER	TEST CONDITIONS		MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}		V _{CC} = 3.15 V,	$I_{I} = -18 \text{ mA}$			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	$I_{OH} = -100 \mu A$	V _{CC} - 0.2			
V_{OH}	A port	V 245 V	$I_{OH} = -12 \text{ mA}$	2.4			V
		$V_{CC} = 3.15 \text{ V}$	$I_{OH} = -24 \text{ mA}$	2			
		$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	$I_{OL} = 100 \mu A$			0.2	
	A port	V 245 V	I _{OL} = 12 mA			0.4	
		V _{CC} = 3.15 V	I _{OL} = 24 mA			0.5	
V_{OL}		V _{CC} = 3.15 V to 3.45 V,	I _{OL} = 100 μA			0.2	V
	Poort		$I_{OL} = 10 \text{ mA}$			0.2	
	B port	$V_{CC} = 3.15 \text{ V}$	$I_{OL} = 40 \text{ mA}$			0.4	
			$I_{OL} = 50 \text{ mA}$			0.55	
	A-port and		$V_I = 0$ or V_{CC}			±10	μА
I ₁ (2)	control inputs		V _I = 5.5 V			±20	
	B port		$V_I = 0 \text{ to } 1.5 \text{ V}$			±10	
I _{BHL} ⁽³⁾	A port	V _{CC} = 3.15 V,	V _I = 0.8 V	75			μΑ
I _{BHH} ⁽⁴⁾	A port	V _{CC} = 3.15 V,	V _I = 2 V	-75			μΑ
I _{BHLO} ⁽⁵⁾	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	500			μΑ
I _{BHHO} (6)	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	-500			μΑ
		$V_{CC} = 3.45 \text{ V}, I_{C} = 0,$	Outputs high			50	
I_{CC}	A or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			50	mA
		V_I (B port) = V_{TT} or GND	Outputs disabled			50	
ΔI _{CC} ⁽⁷⁾		V_{CC} = 3.45 V, One A-port or control input at V_{C} Other A-port or control inputs at V_{CC} or GND	_C – 0.6 V,			1.5	mA
C _i	Control inputs	V _I = 3.15 V or 0			4	5.5	pF
0	A port	V _O = 3.15 V or 0			7	8.5	~F
C_{io}	B port	V _O = 1.5 V or 0			8.5	9.5	pF

- All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. For I/O ports, the parameter I_I includes the off-state output leakage current. The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL}max.
- The bus-hold circuit can source at least the minimum high sustaining current at V_{IH}min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to $V_{IH}min$.
- An external driver must source at least I_{BHLO} to switch this node from low to high. An external driver must sink at least I_{BHHO} to switch this node from high to low.
- This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

Hot-Insertion Specifications for A Port

over recommended operating free-air temperature range

PARAMETER		TEST CONDITION	IS	MIN	MAX	UNIT
l _{off}	$V_{CC} = 0$,	BIAS $V_{CC} = 0$,	V_I or $V_O = 0$ to 5.5 V		10	μΑ
I _{OZPU}	$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	$V_O = 0.5 \text{ V to 3 V},$	OE = 0		±30	μΑ
l _{OZPD}	$V_{CC} = 1.5 \text{ V to } 0,$	$V_O = 0.5 \text{ V to 3 V},$	OE = 0		±30	μΑ

SCES288C-OCTOBER 1999-REVISED JUNE 2005

Live-Insertion Specifications for B Port

over recommended operating free-air temperature range

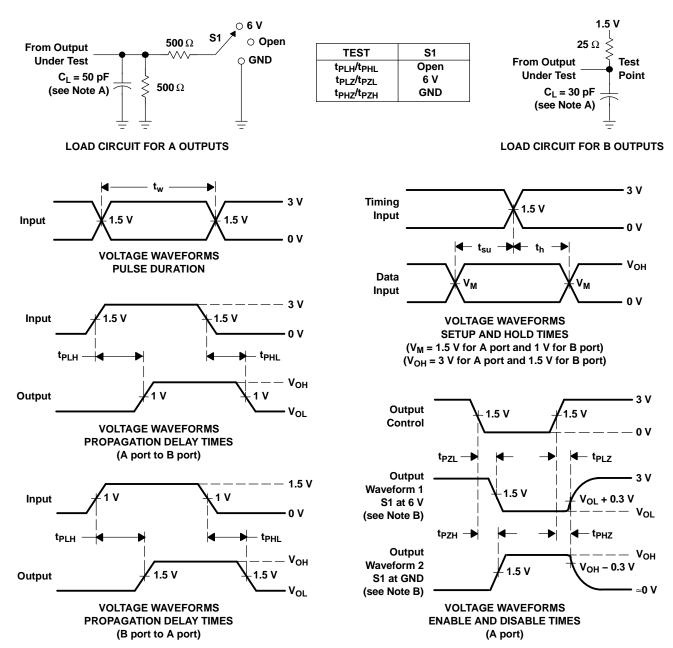
PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
I _{off}	$V_{CC} = 0$,	BIAS $V_{CC} = 0$,	V_I or $V_O = 0$ to 1.5 V		10	μΑ
I _{OZPU}	$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	BIAS $V_{CC} = 0$,	$V_O = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μΑ
I _{OZPD}	$V_{CC} = 1.5 \text{ V to } 0,$	BIAS $V_{CC} = 0$,	$V_O = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μΑ
I (DIAC \/)	$V_{CC} = 0 \text{ to } 3.15 \text{ V}$	BIAS $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	V _O (B port) = 0 to 1.5 V		5	mA
I _{CC} (BIAS V _{CC})	$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V}$	DIAS V _{CC} = 3.15 V 10 3.45 V,	V _O (Β port) = 0 to 1.5 V		10	μΑ
Vo	$V_{CC} = 0$,	BIAS $V_{CC} = 3.3 \text{ V}$,	I _O = 0	0.95	1.05	V
Io	$V_{CC} = 0$,	BIAS $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	V _O (B port) = 0.6 V	-1		μΑ

Timing Requirements

over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted)

			MIN	MAX	UNIT
f _{clock}	Clock frequency			175	MHz
	Dulas duration	LEAB or LEBA high	2.8		
t _w	Pulse duration	CLKAB or CLKBA high or low	2.8		ns
		A before CLKAB↑	1.8		
		B before CLKBA↑	1.5		
	Setup time	A before LEAB↓	1		
t _{su}		B before LEBA↓	2		ns
		CEAB before CLKAB↑	1.5		
		CEBA before CLKBA↑	1.4		
		A after CLKAB↑	0.3		
		B after CLKBA↑	0.4		
	Hald time	A after LEAB↓	1.1		
t _h	Hold time	B after LEBA↓	0.4		ns
		CEAB after CLKAB↑	1		
		CEBA after CLKBA↑	1		

SCES288C-OCTOBER 1999-REVISED JUNE 2005


over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP ⁽¹⁾	MAX	UNIT
f _{max}			175			MHz
t _{PLH}	А	В	2.1		6	
t _{PHL}	A	Б	2.1		6	ns
t _{PLH}	LEAB	В	2.2		6.3	
t _{PHL}	LEAD	D	2.2		6.3	ns
t _{PLH}	CLIVAD	В	2.2		6.5	20
t _{PHL}	CLKAB	D	2.2		6.5	
t _{en}	OEAD	В	2		6.5	20
t _{dis}	OEAB	Б	2		6.1	115
t _r	Rise time, B outp	uts (20% to 80%)		2.4		ns
t _f	Fall time, B outpo	uts (80% to 20%)		2		ns
t _{PLH}	В	۸	1.8		5.8	20
t _{PHL}	Ь	Α	1.8		5.8	ns
t _{PLH}	LEBA	А	0.4		5.3	
t _{PHL}	LEDA	A	0.4		5.3	ns
t _{PLH}	CLIVDA	٨	0.6		5.6	20
t _{PHL}	CLKBA	А	0.6		5.7	ns
t _{en}	OEBA	۸	0.3		6.2	20
t _{dis}	UEDA	А	0.3		5.9	ns

⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, $Z_O = 50~\Omega$, $t_f \approx 2~ns$, $t_f \approx 2~ns$.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCES288C-OCTOBER 1999-REVISED JUNE 2005

Distributed-Load Backplane Switching Characteristics

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

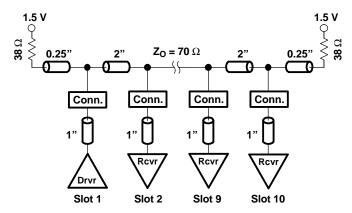


Figure 2. Medium-Drive Test Backplane

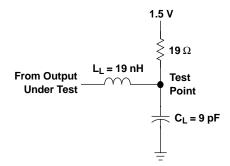


Figure 3. Medium-Drive RLC Network

SCES288C-OCTOBER 1999-REVISED JUNE 2005

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TYP ⁽¹⁾	UNIT
t _{PLH}	^	D	4.5	20
t _{PHL}	A	A B		ns
t _{PLH}	LEAB	В	4.7	ns
t _{PHL}	LEAB	В	4.7	113
t _{PLH}	CLKAB	В	4.7	ns
t _{PHL}	CLNAB	В	4.7	
t _{en}	OEAB	В	4.8	no
t _{dis}	OLAB	В	4.4	ns
t _r	Rise time, B outputs (20% to 80%)		1.2	ns
t _f	Fall time, B output	ts (80% to 20%)	2.5	ns

⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

PACKAGE OPTION ADDENDUM

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
SN74GTLPH16912GR	ACTIVE	TSSOP	DGG	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	GTLPH16912	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

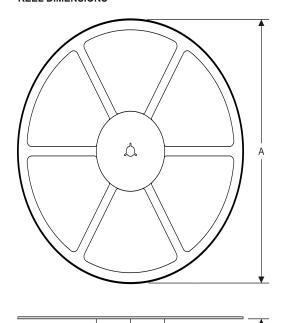
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

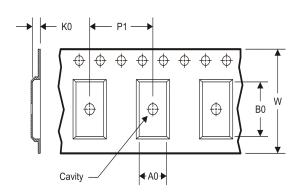
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


10-Jun-2014

PACKAGE MATERIALS INFORMATION

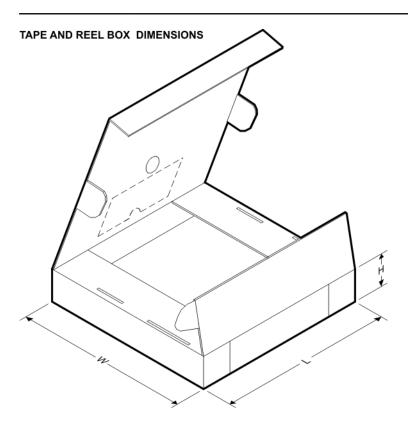

www.ti.com 14-Jul-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

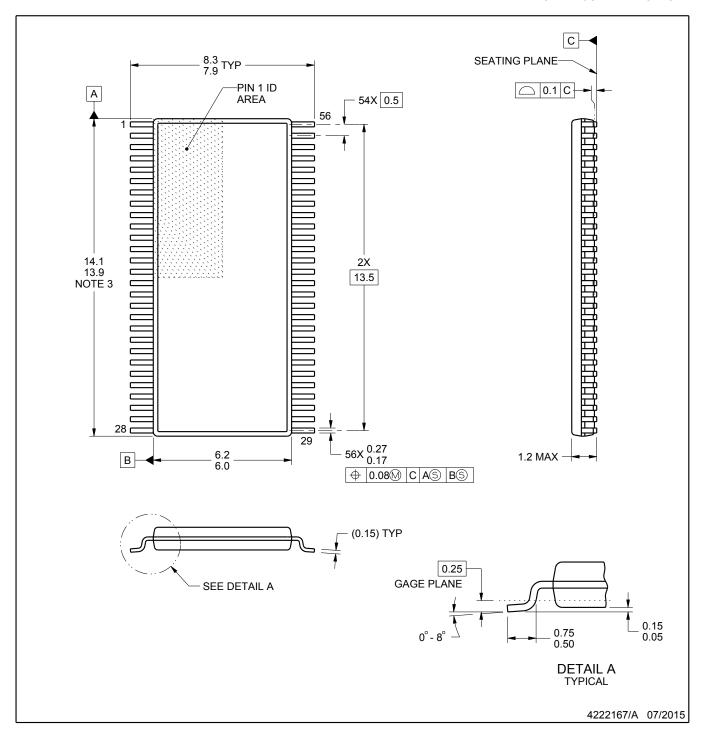

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74GTLPH16912GR	TSSOP	DGG	56	2000	330.0	24.4	8.6	15.6	1.8	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

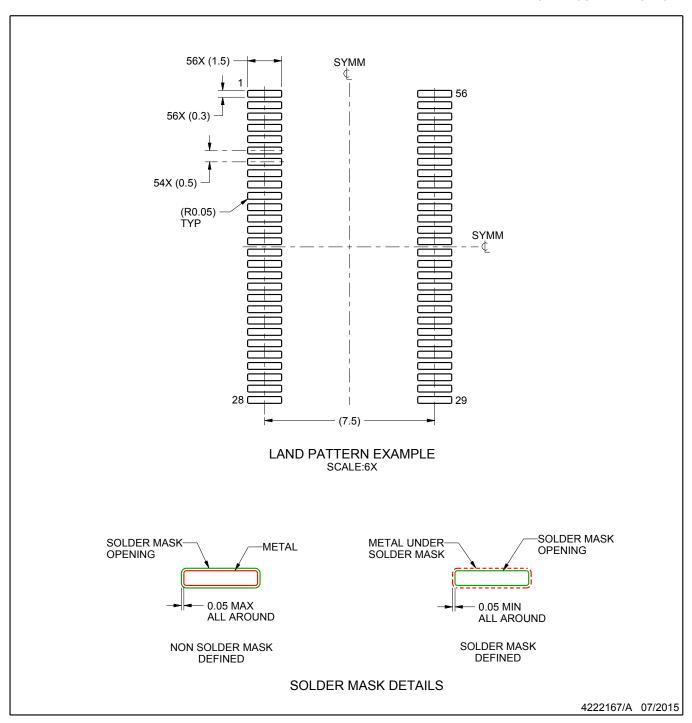


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74GTLPH16912GR	TSSOP	DGG	56	2000	367.0	367.0	45.0

SMALL OUTLINE PACKAGE

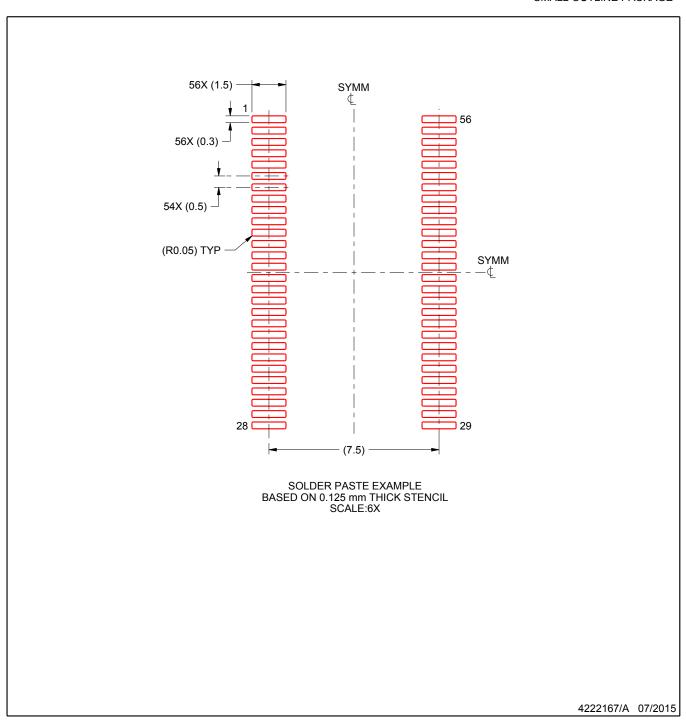
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.