

Sample &

Buy

SCLS384I-SEPTEMBER 1997-REVISED FEBRUARY 2015

SNx4LV240A Octal Inverting Buffers/Drivers With 3-State Outputs

Technical

Documents

1 Features

- 2-V to 5.5-V V_{CC} Operation
- Max t_{pd} of 6.5 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot) >2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- Support Mixed-Mode Voltage Operation on All Ports
- Latch-Up Performance Exceeds 250 mA per JESD 17
- I_{off} Supports Live Insertion, Partial Power-Down Mode, and Back Drive Protection
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Handset: Smartphone
- Network Switch
- Health and Fitness / Wearables

4 Logic Diagram (Positive Logic)

3 Description

Tools &

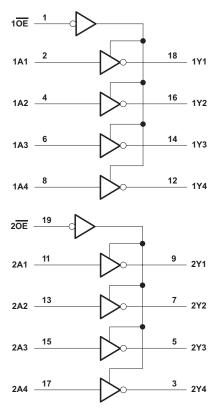
Software

These octal buffers/drivers with inverted outputs are designed for 2-V to 5.5-V V_{CC} operation.

Support &

Community

....


The 'LV240A devices are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and busoriented receivers and transmitters.

These devices are organized as two 4-bit buffers/line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes inverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

Device Information,					
PART NUMBER PACKAGE BODY SIZE (NO					
	TVSOP (14)	3.60 mm × 4.40 mm			
	SOIC (14)	8.65 mm × 3.91 mm			
LV240A	SOP (14)	10.30 mm × 5.30 mm			
	SSOP (14)	6.20 mm × 5.30 mm			
	TSSOP (14)	5.00 mm × 4.40 mm			

Device Information⁽¹⁾

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

9

1	Feat	tures 1
2	Арр	lications 1
3	Des	cription 1
4	Log	ic Diagram (Positive Logic)1
5	Rev	ision History 2
6	Pin	Configuration and Functions 3
7	Spe	cifications 4
	7.1	Absolute Maximum Ratings 4
	7.2	ESD Ratings 4
	7.3	Recommended Operating Conditions5
	7.4	Thermal Information 5
	7.5	Electrical Characteristics
	7.6	Switching Characteristics, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V} \dots 7$
	7.7	Switching Characteristics, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V} \dots 7$
	7.8	Switching Characteristics, $V_{CC} = 5 V \pm 0.5 V \dots 7$
	7.9	Noise Characteristics for SN74LV240A 8
	7.10	Operating Characteristics8
	7.11	Typical Characteristics 8
8	Para	ameter Measurement Information

5 Revision History

•

Changes from Revision H (April 2005) to Revision I

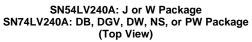
	9.2	Functional Block Diagram	10
	9.3	Feature Description	10
	9.4	Device Functional Modes	11
10	App	lication and Implementation	12
	10.1	Application Information	12
	10.2	Typical Application	12
11	Pow	er Supply Recommendations	14
12	Layo	out	14
	12.1	Layout Guidelines	14
	12.2	Layout Example	14
13	Devi	ce and Documentation Support	15
	13.1	Related Links	15
	13.2	Trademarks	15
	13.3	Electrostatic Discharge Caution	15
	13.4	Glossary	15
14		hanical, Packaging, and Orderable	
	Infor	mation	15

 Detailed Description
 10

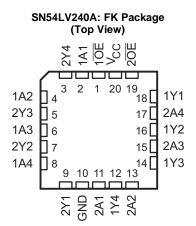
 9.1
 Overview
 10

,	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation	
	section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and	
	Mechanical, Packaging, and Orderable Information section	1
	Indeted encreting free or temperature maximum from 25°C to 125°C for SN741 V2404	5

Updated operating free-air temperature maximum from 85°C to 125°C for SN74LV240A


TEXAS INSTRUMENTS

www.ti.com


Page

6 Pin Configuration and Functions

	_		
1OE		U ₂₀]v _{cc}
1A1	2	19	20E
2Y4	3	18] 1Y1
1A2	4	17] 2A4
2Y3	5	16] 1Y2
1A3	6	15] 2A3
2Y2	7	14] 1Y3
1A4	8	13] 2A2
2Y1	9	12] 1Y4
GND	[10	11] 2A1

Pin Functions

PIN	I/O	DESCRIPTION
1	10E	Output enable 1
2	1A1	1A1 input
3	2Y4	2Y4 output
4	1A2	1A2 input
5	2Y3	2Y3 output
6	1A3	1A3 input
7	2Y2	2Y2 output
8	1A4	1A4 input
9	2Y1	2Y1 output
10	GND	Ground pin
11	2A1	2A1 input
12	1Y4	1Y4 output
13	2A2	2A2 input
14	1Y3	1Y3 output
15	2A3	2A3 input
16	1Y2	1Y2 output
17	2A4	2A4 input
18	1Y1	1Y1 output
19	20E	Output enable 2
20	VCC	Power pin

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		-0.5	7	V
VI	Input voltage ⁽²⁾		-0.5	7	V
Vo	D Voltage applied to any output in the high-impedance or power-off state ⁽²⁾		-0.5	7	V
Vo	Output voltage ^{(2) (3)}		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-20	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current	$V_{O} = 0$ to V_{CC}	-35	35	mA
	Continuous current through V_{CC} or G	ND	-70	70	mA
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value is limited to 5.5-V maximum.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V
	aloonargo	Machine model (A115-A)	200	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4

Copyright © 1997-2015, Texas Instruments Incorporated

7.3 Recommended Operating Conditions

see (1)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		2	5.5	V	
		$V_{CC} = 2 V$	1.5			
N/		V_{CC} = 2.3 to 2.7 V	V _{CC} × 0.7		V	
VIH	High-level input voltage	V _{CC} = 3 to 3.6 V	V _{CC} × 0.7		V	
		V_{CC} = 4.5 to 5.5 V	V _{CC} × 0.7			
		$V_{CC} = 2 V$		0.5		
V		V_{CC} = 2.3 to 2.7 V		$V_{CC} \times 0.3$	V	
V _{IL}	Low-level input voltage	V _{CC} = 3 to 3.6 V		$V_{CC} \times 0.3$		
		V_{CC} = 4.5 to 5.5 V		$V_{CC} \times 0.3$		
VI	Input voltage		0	5.5	V	
Vo	Output voltage	High or low state	0	V _{CC}	V	
		3-state	0	5.5		
		V _{CC} = 2 V		-50	μA	
		V_{CC} = 2.3 to 2.7 V		-2	mA	
I _{OH}	High-level output current	$V_{CC} = 3 \text{ to } 3.6 \text{ V}$		-8		
		V_{CC} = 4.5 to 5.5 V		-16		
		$V_{CC} = 2 V$		50	μA	
		V_{CC} = 2.3 to 2.7 V		2		
I _{OL}	Low-level output current	$V_{CC} = 3 \text{ to } 3.6 \text{ V}$		8	mA	
		V_{CC} = 4.5 to 5.5 V		16		
		V_{CC} = 2.3 to 2.7 V		200		
Δt/Δv	Input transition rise or fall rate	V _{CC} = 3 to 3.6 V		100	ns/V	
		V_{CC} = 4.5 to 5.5 V		20		
т	Operating free air temperature	SN54LV240A	-55	125	÷C	
T _A	Operating free-air temperature	SN74LV240A	-40	125	°C	

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, SCBA004.

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		DW	DB	DGV	NS	PW	UNIT
				20 PINS			UNIT
R _{θJA}	Junction-to-ambient thermal resistance ⁽²⁾	79.2	94.5	116.2	76.7	102.4	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	43.7	56.4	31.2	43.2	36.5	
$R_{\theta JB}$	Junction-to-board thermal resistance	47.0	49.7	57.7	44.2	53.6	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	18.6	18.5	0.9	16.8	2.4	
Ψ _{JB}	Junction-to-board characterization parameter	46.5	49.3	57.0	43.8	52.9	

For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.
 The package thermal impedance is calculated in accordance with JESD 51-7.

SN54LV240A, SN74LV240A

SCLS384I-SEPTEMBER 1997-REVISED FEBRUARY 2015

TEXAS INSTRUMENTS

www.ti.com

7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
	I _{OH} = -50 μA	2 to 5.5 V	V _{CC} – 0.1			
M	$I_{OH} = -2 \text{ mA}$	2.3 V	2			V
VOH	$I_{OH} = -8 \text{ mA}$	3 V	2.48			v
	I _{OH} = -16 mA	4.5 V	3.8			
	I _{OL} = 50 μA	2 to 5.5 V			0.1	V
	$I_{OL} = 2 \text{ mA}$	2.3 V			0.4	
	I _{OL} = 8 mA	3 V			0.44	
	I _{OL} = 16 mA	4.5 V			0.55	
I _I	$V_1 = 5.5 V \text{ or GND}$	0 to 5.5 V			±1	μA
I _{OZ}	$V_{O} = V_{CC}$ or GND	5.5 V			±5	μA
I _{CC}	$V_1 = V_{CC}$ or GND, $I_0 = 0$	5.5 V			20	μΑ
l _{off}	$V_1 \text{ or } V_0 = 0 \text{ to } 5.5 \text{ V}$	0			5	μΑ
C _i	$V_{I} = V_{CC} \text{ or } GND$	3.3 V		2.3		pF

Copyright © 1997–2015, Texas Instruments Incorporated

7.6 Switching Characteristics, $V_{cc} = 2.5 V \pm 0.2 V$

over recommended operating free-air temperature range (unless otherwise noted) (see)

DADAMETER			LOAD	T	_A = 25°C		MIN	MAX	
PARAMETER	FROM (INPUT)	TO (OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
t _{pd}	A				6.3 ⁽¹⁾	11.6 ⁽¹⁾	1 ⁽²⁾	14 ⁽²⁾	
t _{en}	OE	Y	C _L = 15 pF		8.5 ⁽¹⁾	14.6 ⁽¹⁾	1 ⁽²⁾	17 ⁽²⁾	ns
t _{dis}	OE				9.7 ⁽¹⁾	14.1 ⁽¹⁾	1 ⁽²⁾	16 ⁽²⁾	
t _{pd}	A				8.2	14.4	1	17	
t _{en}	OE	Y	0 50 - 5		10.3	17.8	1	21	
t _{dis}	OE		C _L = 50 pF		14.2	19.2	1	1 21	ns
t _{sk(o)}						2		2 ⁽³⁾	

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

(2) This note applies to SN54LV240A only: On products compliant to MIL-PRF-38535, this parameter is not production tested.

(3) Value applies for SN74LV240A only

7.7 Switching Characteristics, $V_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range (unless otherwise noted) (see)

DADAMETER			LOAD	T	_A = 25°C		RAINI		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
t _{pd}	A				4.6 ⁽¹⁾	7.5 ⁽¹⁾	1 ⁽²⁾	9 ⁽²⁾	
t _{en}	OE	Y	C _L = 15 pF		6.2 ⁽¹⁾	10.6 ⁽¹⁾	1 ⁽²⁾	12.5 ⁽²⁾	ns
t _{dis}	OE				8.3 ⁽¹⁾	12.5 ⁽¹⁾	1 ⁽²⁾	13.5 ⁽²⁾	
t _{pd}	A				5.9	11	1	12.5	
t _{en}	ŌĒ	Y	C 50 pF		7.5	14.1	1	16	
t _{dis}	OE		C _L = 50 pF		11.8	15	1	1 17	ns
t _{sk(o)}						1.5		1.5 ⁽³⁾	

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

(2) This note applies to SN54LV240A only: On products compliant to MIL-PRF-38535, this parameter is not production tested.

(3) Value applies for SN74LV240A only

7.8 Switching Characteristics, $V_{cc} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range (unless otherwise noted) (see)

				т	₄ = 25°C				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	MIN	TYP	MAX	MIN	MAX	UNIT
t _{pd}	А				3.4 ⁽¹⁾	5.5 ⁽¹⁾	1 ⁽²⁾	6.5 ⁽²⁾	
t _{en}	OE	Y	C _L = 15 pF		4.6 ⁽¹⁾	7.3 ⁽¹⁾	1 ⁽²⁾	8.5 ⁽²⁾	ns
t _{dis}	OE				7.4 ⁽¹⁾	12.2 ⁽¹⁾	1 ⁽²⁾	13.5 ⁽²⁾	
t _{pd}	A				4.4	7.5	1	8.5	
t _{en}	OE	Y	C 50 pF		5.6	9.3	1	10.5	
t _{dis}	OE		C _L = 50 pF		9.7	14.2	1	1 15.5	ns
t _{sk(o)}						1		1 ⁽³⁾	

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

(2) This note applies to SN54LV240A only: On products compliant to MIL-PRF-38535, this parameter is not production tested.

(3) This values applies for SN74LV240A only

SCLS384I-SEPTEMBER 1997-REVISED FEBRUARY 2015

www.ti.com

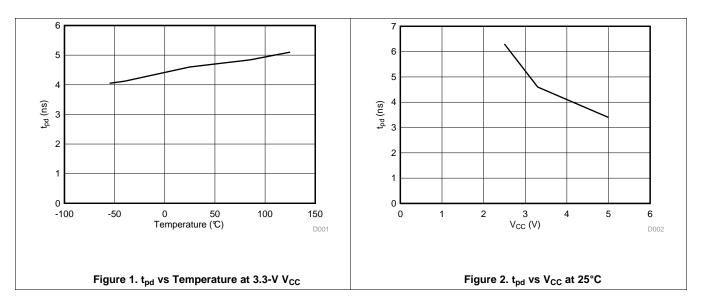
STRUMENTS

EXAS

7.9 Noise Characteristics for SN74LV240A

 V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C (see $^{(1)})$

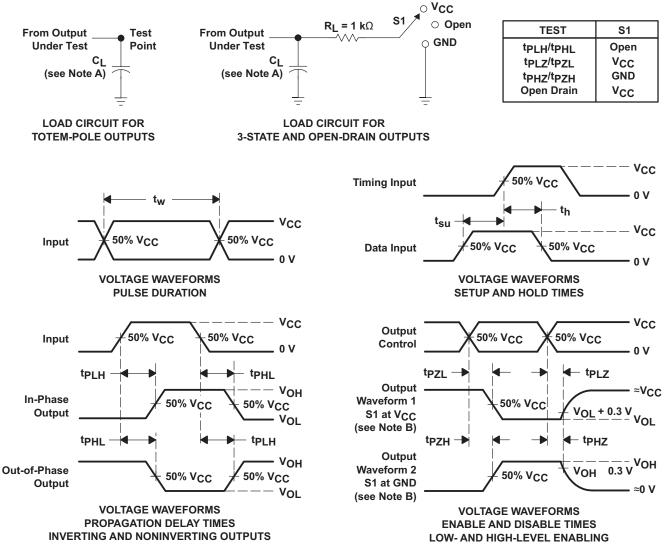
	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.56		
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.49		
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		2.82		V
V _{IH(D)}	High-level dynamic input voltage	2.31			
V _{IL(D)}	Low-level dynamic input voltage			0.99	


(1) Characteristics are for surface-mount packages only.

7.10 Operating Characteristics

$T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	Vcc	TYP	UNIT
0	Devues dissignation consultance		3.3 V	14	- 5
C _{pd} Power dissipation capa	Power dissipation capacitance	$C_{L} = 50 \text{ pF}, f = 10 \text{ MHz}$	5 V	16.4	pF


7.11 Typical Characteristics

Copyright © 1997–2015, Texas Instruments Incorporated

8 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r \leq 3 ns, t_f \leq 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and tPZH are the same as t_{en}.
- G. t_{PHL} and t_{PLH} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

TEXAS INSTRUMENTS

9 Detailed Description

9.1 Overview

These octal buffers/drivers with inverted outputs are designed for 2-V to 5.5-V V_{CC} operation.

The 'LV240A devices are designed specifically to improve both the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

These devices are organized as two 4-bit buffers/line drivers with separate output-enable (\overline{OE}) inputs. When \overline{OE} is low, the device passes inverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

9.2 Functional Block Diagram

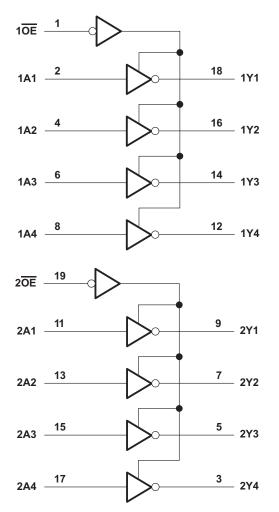


Figure 4. Logic Diagram (Positive Logic)

9.3 Feature Description

- Wide operating voltage range operates from 2-V to 5.5-V operation
- Allow down voltage translation inputs accept voltages to 5.5 V
- I_{off} feature allows voltages on the inputs and outputs when V_{CC} is 0 V

Copyright © 1997-2015, Texas Instruments Incorporated

9.4 Device Functional Modes

Table 1. Function Table (Each Buffer)

INP	OUTPUT	
OE	Α	Y
L	Н	L
L	L	Н
Н	Х	Z

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The SN74LV240A is a low-drive CMOS device that can be used for a multitude of bus interface type applications where the data needs to be retained or latched. It can produce 8 mA of drive current at 3.3 V making it ideal for driving multiple outputs and low-noise applications. The inputs are 5.5-V tolerant allowing it to translate down to V_{CC} .

10.2 Typical Application

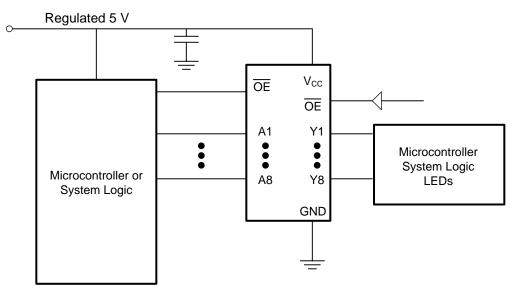


Figure 5. Typical Application Schematic

10.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

10.2.2 Detailed Design Procedure

- 1. Recommended input conditions
 - Rise time and fall time specifications see ($\Delta t/\Delta V$) in *Recommended Operating Conditions*.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in *Recommended Operating Conditions*.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}
- 2. Recommend output conditions
 - Load currents should not exceed 35 mA per output and 70 mA total for the part
 - Outputs should not be pulled above V_{CC}

Typical Application (continued)

10.2.3 Application Curve

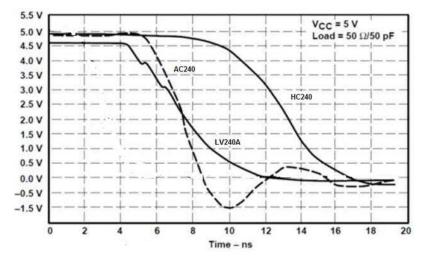


Figure 6. Switching Characteristics Comparison

11 Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in *Recommended Operating Conditions*.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends 0.1 μ F and if there are multiple V_{CC} terminals, then TI recommends .01 μ F or .022 μ F for each power terminal. It is okay to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

12 Layout

12.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient. It is generally okay to float outputs unless the part is a transceiver. If the transceiver has an output enable pin it will disable the outputs section of the part when asserted. This does not disable the input section of the IOs so they cannot float when disabled.

12.2 Layout Example

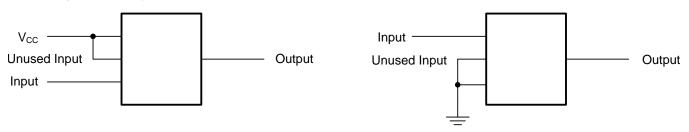


Figure 7. Layout Recommendation

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54LV240A	Click here	Click here	Click here	Click here	Click here
SN74LV240A	Click here	Click here	Click here	Click here	Click here

Table 2. Related Links

13.2 Trademarks

All trademarks are the property of their respective owners.

13.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74LV240ADBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV240A	Samples
SN74LV240ADBRE4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV240A	Samples
SN74LV240ADBRG4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV240A	Samples
SN74LV240ADGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV240A	Samples
SN74LV240ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV240A	Samples
SN74LV240ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV240A	Samples
SN74LV240ANSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	74LV240A	Samples
SN74LV240APW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV240A	Samples
SN74LV240APWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV240A	Samples
SN74LV240APWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 125	LV240A	Samples
SN74LV240APWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV240A	Samples
SN74LV240APWT	ACTIVE	TSSOP	PW	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV240A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

PACKAGE OPTION ADDENDUM

17-Mar-2017

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and package die adhesive used between the die and package die adhesive used between the die adhesive used between the die and package die

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

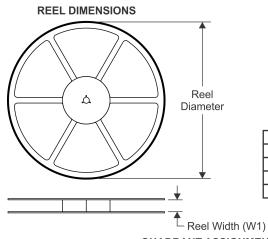
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

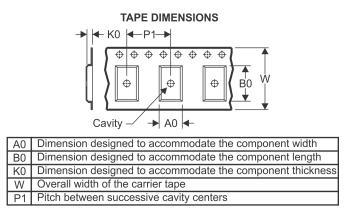
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

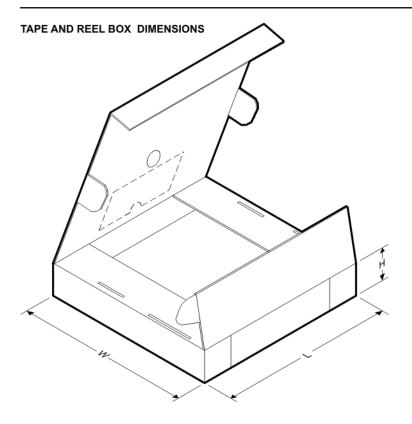

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV240ADBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74LV240ADGVR	TVSOP	DGV	20	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV240ADWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74LV240ANSR	SO	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1
SN74LV240APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74LV240APWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74LV240APWT	TSSOP	PW	20	250	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

6-May-2017

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV240ADBR	SSOP	DB	20	2000	367.0	367.0	38.0
SN74LV240ADGVR	TVSOP	DGV	20	2000	367.0	367.0	35.0
SN74LV240ADWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74LV240ANSR	SO	NS	20	2000	367.0	367.0	45.0
SN74LV240APWR	TSSOP	PW	20	2000	364.0	364.0	27.0
SN74LV240APWR	TSSOP	PW	20	2000	367.0	367.0	38.0
SN74LV240APWT	TSSOP	PW	20	250	367.0	367.0	38.0

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

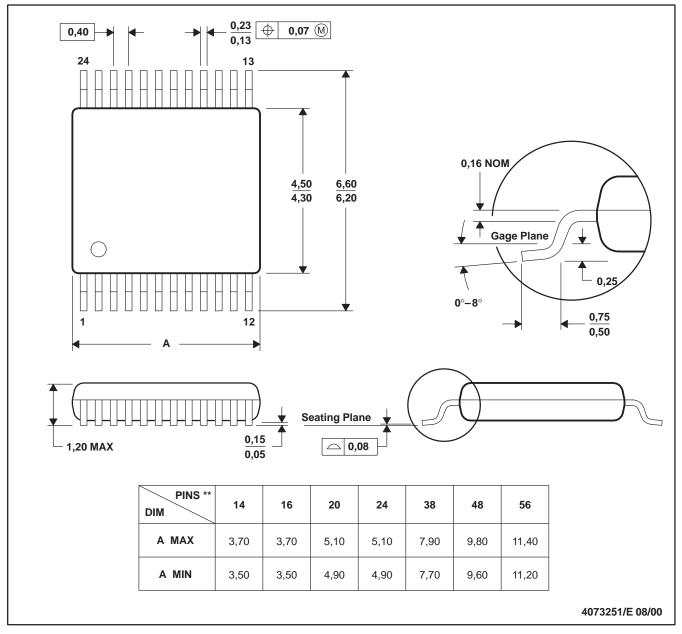
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

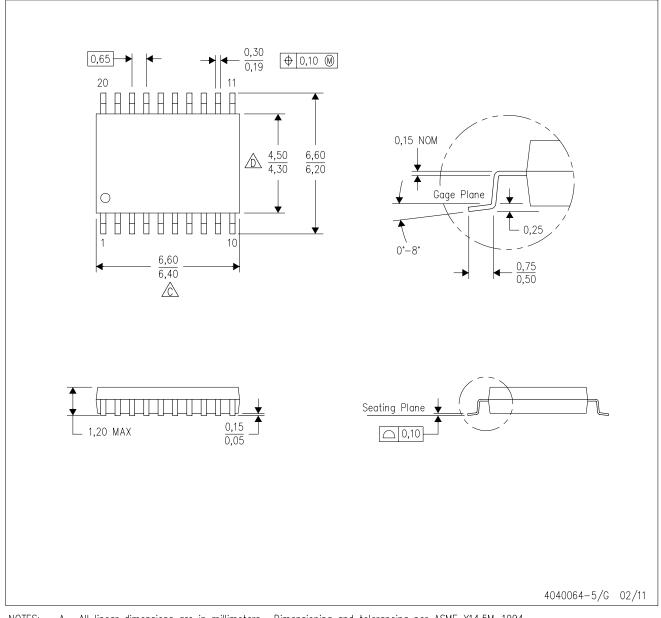
MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

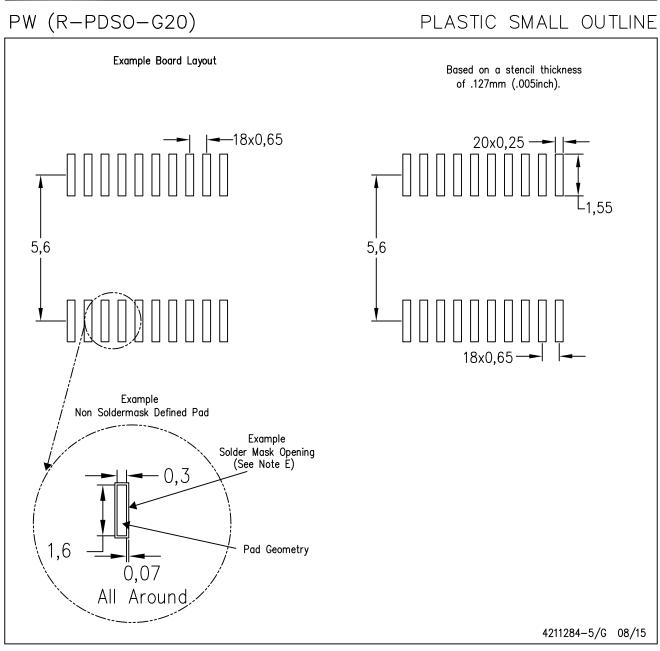
14/16/20/56 Pins – MO-194

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

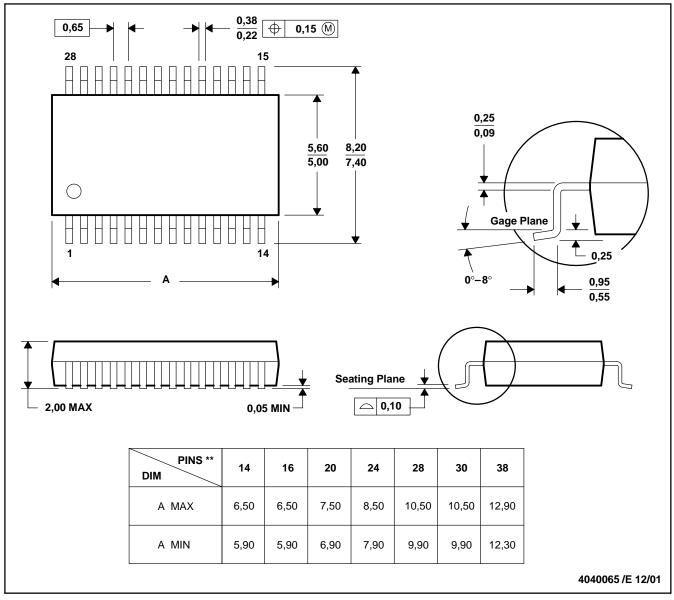
Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

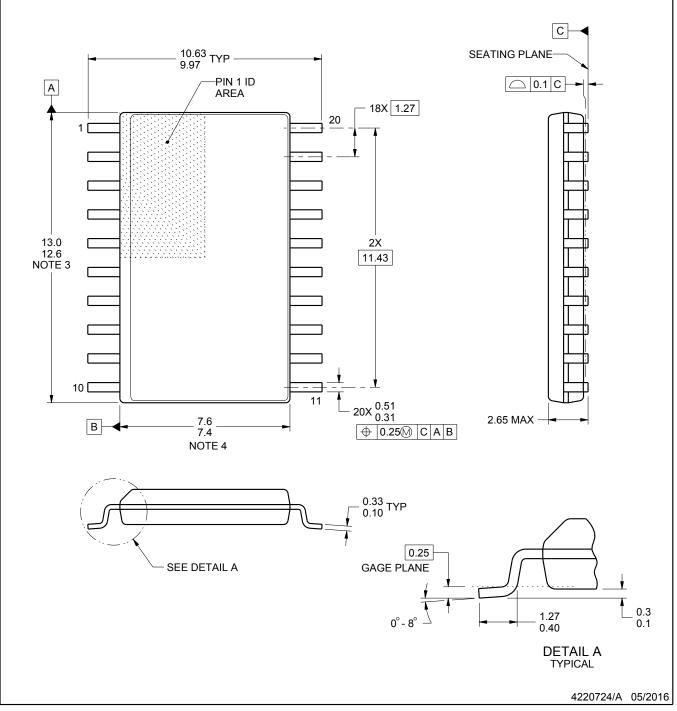
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150


DW0020A

PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

DW0020A

EXAMPLE BOARD LAYOUT

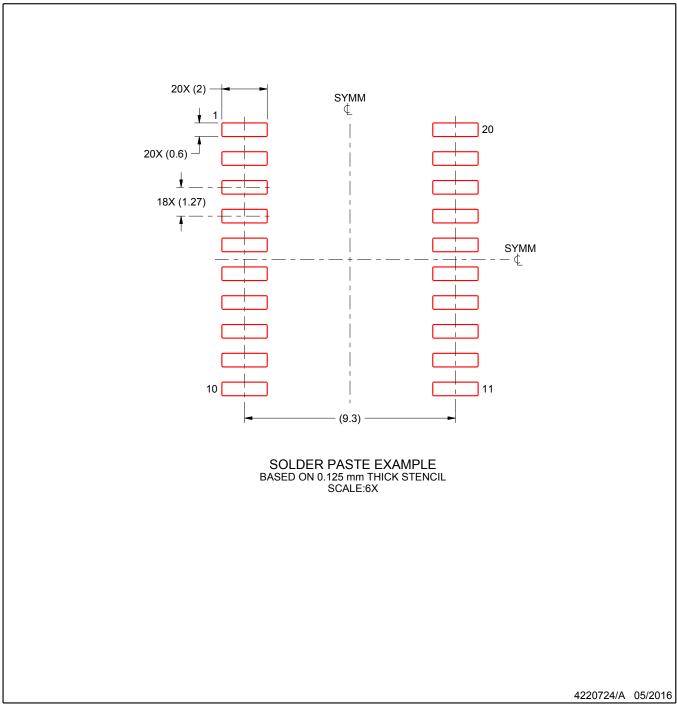
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0020A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated