

SN54LV594A, SN74LV594A

SCLS413J - APRIL 2005-REVISED MARCH 2015

SNx4LV594A 8-Bit Shift Registers With Output Registers

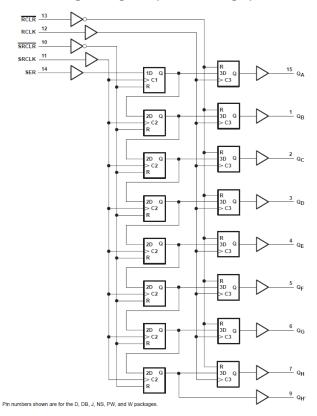
Features

- 2-V to 5.5-V V_{CC} Operation
- Maximum tpd of 6.5 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}, \text{TA} = 25^{\circ}\text{C}$
- Support Mixed-Mode Voltage Operation on All **Ports**
- 8-Bit Serial-In, Parallel-Out Shift Registers With
- Independent Direct Overriding Clears on Shift and Storage Registers
- Independent Clocks for Shift and Storage Registers
- Latch-up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

- ECG Electrocardiograms
- Storage Servers
- EPOS, ECR, and Cash Drawers
- Servers and High-Performance Computing

3 Description


The SN74LV594A devices are 8-bit shift registers designed for 2-V to 5.5-V V_{CC} operation.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	SSOP (16)	6.20 mm × 5.30 mm
SN74LV594A	SOIC (16)	9.90 mm × 3.91 mm
	TSSOP (16)	5.00 mm × 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

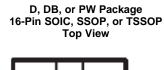
Logic Diagram (Positive Logic)

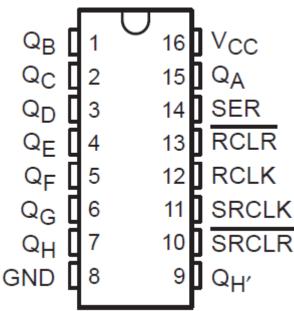
Table of Contents

1	Features 1	7	Parameter Measurement Information	11
2	Applications 1	8	Detailed Description	12
3	Description 1		8.1 Overview	12
4	Revision History2		8.2 Functional Block Diagram	13
5	Pin Configuration and Functions3		8.3 Feature Description	14
6	Specifications4		8.4 Device Functional Modes	14
•	6.1 Absolute Maximum Ratings	9	Application and Implementation	15
	6.2 ESD Ratings 4		9.1 Application Information	15
	6.3 Recommended Operating Conditions		9.2 Typical Application	15
	6.4 Thermal Information	10	Power Supply Recommendations	17
	6.5 Electrical Characteristics	11	Layout	17
	6.6 Switching Characteristics: V _{CC} = 2.5 V ± 0.2 V 6		11.1 Layout Guidelines	17
	6.7 Switching Characteristics: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V} \dots 7$		11.2 Layout Example	17
	6.8 Switching Characteristics: $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V} \dots 7$	12	Device and Documentation Support	18
	6.9 Timing Requirements: $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V} \dots 8$		12.1 Trademarks	
	6.10 Timing Requirements: V _{CC} = 3.3 V ± 0.3 V 8		12.2 Electrostatic Discharge Caution	18
	6.11 Timing Requirements: V _{CC} = 5 V ± 0.5 V		12.3 Glossary	18
	6.12 Noise Characteristics	13	Mechanical, Packaging, and Orderable Information	18
	6.14 Typical Characteristics			

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Revision I (April 2005) to Revision J


Page

Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

5 Pin Configuration and Functions

Pin Functions

	PIN	1/0	DECORPORTION
NO.	NAME	I/O	DESCRIPTION
1	Q_{B}	0	Output B
2	Q_{C}	0	Output C
3	Q_D	0	Output D
4	Q_{E}	0	Output E
5	Q_{F}	0	Output F
6	Q_{G}	0	Output G
7	Q_H	0	Output H
8	GND	_	Ground pin
9	$Q_{H'}$	0	Q _H inverted
10	SRCLR	1	Serial clear
11	SRCLK	1	Serial clock
12	RCLK	1	Storage clock
13	RCLR	I	Storage clear
14	SER	I	Serial input
15	Q _A	0	Output A
16	Vcc	-	Power pin

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	7	V
VI	Input voltage ⁽²⁾		-0.5	7	V
Vo	Voltage range applied to any output in the high-impeda	ince or power-off state (2)	-0.5	7	V
Vo	Output voltage (2)(3)		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0	-20		mA
I _{OK}	Output clamp current	V _O < 0	-50		mA
Io	Continuous output current	$V_O = 0$ to V_{CC}	-25	25	mA
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The value is limited to 5.5 V maximum.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			SN54LV5	94A ⁽²⁾	SN74L\	/594A	
			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		2	5.5	2	5.5	V
		V _{CC} = 2 V	1.5		1.5		
\ /	Liber level beaut veltere	V _{CC} = 2.3 V to 2.7 V	V _{CC} × 0.7		$V_{CC} \times 0.7$		V
V_{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	V _{CC} × 0.7		$V_{CC} \times 0.7$		V
		V _{CC} = 4.5 V to 5.5 V	V _{CC} × 0.7		$V_{CC} \times 0.7$		
		V _{CC} = 2 V		0.5		0.5	
\ /	Law lawal law it waltawa	V _{CC} = 2.3 V to 2.7 V		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	V
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	V
		V _{CC} = 4.5 V to 5.5 V		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	
V_{I}	Input voltage	•	0	5.5	0	5.5	V
Vo	Output voltage		0	V _{CC}	0	V_{CC}	V
v _O		V _{CC} = 2 V		-50		-50	μA
	Ulab lavalianut avanant	V _{CC} = 2.3 V to 2.7 V		-2		-2	
I _{OH}	High-level input current	V _{CC} = 3 V to 3.6 V		6		6	mA
		V _{CC} = 4.5 V to 5.5 V		-12		-12	
		V _{CC} = 2 V		50		50	μA
	Laurence autout aumant	V _{CC} = 2.3 V to 2.7 V		2		2	
l _{OL}	Low-level output current	V _{CC} = 3 V to 3.6 V		6		6	mA
		V _{CC} = 4.5 V to 5.5 V		12		12	
				200		200	
Δt/Δν	Input transition rise or fall re $V_{CC} = 4.5 \text{ V}$ to 5.5 V	ate $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V } V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		100		100	ns/V
	VUC - 7.0 V 10 0.0 V	CC = 4.5 V to 5.5 V		20		20	
T _A	Operating free-air temperat	ture	-55	125	-40	125	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report *Implications of Slow or Floating CMOS Inputs*, SCBA004.

6.4 Thermal Information

			SN74LV594A						
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DB (SSOP)	PW (TSSOP)	UNIT				
		16 PINS	16 PINS	16 PINS					
$R_{\theta JA}$	Junction-to-ambient thermal resistance	80.2	97.8	106.1					
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	40.3	48.1	40.8					
$R_{\theta JB}$	Junction-to-board thermal resistance	38	48.5	51.1	°C/W				
ΨЈТ	Junction-to-top characterization parameter	9	10	3.8					
ψ_{JB}	Junction-to-board characterization parameter	37.7	47.9	50.6					

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ Product Preview

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	vcc	SN54	LV594A			LV594A TO 85°0		SN74LV594A -40°C TO 125°C			
	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
	$I_{OH} = -50 \ \mu A$	2 V to 5.5 V	V _{CC} - 0.1			V _{CC} - 0.1			V _{CC} - 0.1			
V	I _{OH} = -2 μA	2.3 V	2			2			2			V
V _{OH}	$I_{OH} = -6 \mu A$	3 V	2.48			2.48			2.48			V
	$I_{OH} = -12 \mu A$	4.5 V	3.8			3.8			3.8			
	$I_{OH} = -50 \mu A$	2 V to 5.5 V			0.1			0.1			0.1	
	$I_{OH} = -2 \mu A$	2.3 V			0.4			0.4			0.4	V
V _{OL}	I _{OH} = -6 μA	3 V			0.44			0.44			0.44	V
	$I_{OH} = -12 \mu A$	4.5 V			0.55			0.55			0.55	
I _I	V _I = 5.5 V or GND	0 to 5.5 V			±1			±1			±1	μA
I _{cc}	$V_I = V_{CC}$ of GND, $I_O = 0$	5.5 V			20			20			20	μA
I _{off}	V_I or $V_O = 0$ to 5.5 V	0			5			5			5	μA
Ci	$V_I = V_{CC}$ or GND	3.3 V		3.5			3.5					pF

6.6 Switching Characteristics: $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V (unless otherwise noted). See Figure 1.

PARAMETER	FROM (INPUT)	TO	LOAD	1	Γ _A = 25°0	3	SN54lv	/594A	SN74LV -40°C TO		SN74LV5 -40°C TO		UNIT		
	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
			C _L = 15 pF	65 ⁽¹⁾	80 ⁽¹⁾		45 ⁽¹⁾		45		35		MHz		
f _{max}			C _L = 50 pF	60	70		40		40		30		IVITZ		
t _{PLH}		0 0			6.4 ⁽¹⁾	10.6 ⁽¹⁾	1 ⁽¹⁾	11.1(1	1	11.1	1	12.5			
t _{PHL}	SRCLK	$Q_A - Q_H$			6.3 ⁽¹⁾	10.4 ⁽¹⁾	1 ⁽¹⁾	11.1(1	1	11.1	1	12.5			
t _{PLH}		Q _H ,	C 45 75		7.4 ⁽¹⁾	12.1 ⁽¹⁾	1 ⁽¹⁾	12.8(1	1	12.8	1	15			
t _{PHL}			C _L = 15 pF		7.2 ⁽¹⁾	11.6 ⁽¹⁾	1 ⁽¹⁾	12.8(1	1	12.8	1	15	ns		
	RCLK	$Q_A - Q_H$			7.9 ⁽¹⁾	12.7 ⁽¹⁾	1 ⁽¹⁾	13.6(1	1	13.6	1	15.5			
t _{PHL}		Q _H ,			7.4 ⁽¹⁾	11.9 ⁽¹⁾	1 ⁽¹⁾	13.1 ⁽¹	1	13.1	1	15.5			
t _{PLH}		0 0			9.5	14.1	1	14.6	1	14.6	1	17			
t _{PHL}	SRCLR	$Q_A - Q_H$			10.8	15.5	1	17.2	1	17.2	1	19.5			
t _{PLH}		JONOLIN	JINOLIN		C 50 7 5		10.6	15.7	1	16.5	1	16.5	1	18.5	
t _{PHL}		Q _H '	$C_L = 50 \text{ pF}$		11.3	16.1	1	18.6	1	18.6	1	20.5	ns		
	RCLR	$Q_A - Q_H$			12.1	17.4	1	19	1	19	1	21			
t _{PHL}		Q _H			11.6	16.5	1	18.6	1	18.6	1	20.6			

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

6.7 Switching Characteristics: $V_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted). See Figure 1.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T	_{\(\)} = 25°C		SN54L	.V594A	SN74LV -40°C TO		SN74LV5 –40°C TO		UNIT	
	(INFOT)	(OUTFUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
			C _L = 15 pF	80 ⁽¹⁾	120 ⁽¹⁾		70 ⁽¹⁾		70		60		MHz	
f _{max}			C _L = 50 pF	55	105		50		50		40		IVITZ	
t _{PLH}		0 0			4.6 ⁽¹⁾	8 ⁽¹⁾	1 ⁽¹⁾	8.5 ⁽¹⁾	1	8.5	1	10.5		
t _{PHL}	SRCLK	K Q _A – Q _H			4.9 ⁽¹⁾	8.2 ⁽¹⁾	1 ⁽¹⁾	8.8(1)	1	8.8	1	10.5		
t _{PLH}		0	0 45 -5		5.4 ⁽¹⁾	9.1 ⁽¹⁾	1 ⁽¹⁾	9.7 ⁽¹⁾	1	9.7	1	11.5		
t _{PHL}			Q _H ,	C _L = 15 pF		5.5 ⁽¹⁾	9.2 ⁽¹⁾	1 ⁽¹⁾	9.9 ⁽¹⁾	1	9.9	1	11.6	ns
	RCLK	$Q_A - Q_H$			6 ⁽¹⁾	9.8 ⁽¹⁾	1 ⁽¹⁾	10.6 ⁽¹⁾	1	10.6	1	12.1		
t _{PHL}		Q _H '			5.6 ⁽¹⁾	9.2 ⁽¹⁾	1 ⁽¹⁾	10 ⁽¹⁾	1	10	1	12		
t _{PLH}		0 0					1	11.1	1	11.1	1	12.5		
t _{PHL}	SRCLR	$Q_A - Q_H$					1	13.1	1	13.1	1	15		
t _{PLH}		0	0 50 - 5				1	12.4	1	12.4	1	14		
t _{PHL}		Q _H ,	$C_L = 50 pF$				1	13.9	1	13.9	1	15.5	ns	
t _{PHL}	RCLR	$Q_A - Q_H$					1	14.4	1	14.4	1	16.1	-	
		Q _H					1	14	1	14	1	16		

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

6.8 Switching Characteristics: $V_{CC} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted). See Figure 1.

PARAMETER	FROM (INPUT)	TO	LOAD	Т,	₄ = 25°C		SN54L	V594A	SN74LV -40°C TO		SN74LV59 -40°C TO 1		UNIT											
	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX														
			C _L = 15 pF	135 ⁽¹⁾	170 ⁽¹⁾		115 ⁽¹⁾		115		105		MHz											
f _{max}			C _L = 50 pF	120	140		95		95		85		IVITZ											
t _{PLH}		0 0			3.3 ⁽¹⁾	6.2 ⁽¹⁾	1 ⁽¹⁾	6.5 ⁽¹⁾	1	6.5	1	8												
t _{PHL}	SRCLK	$Q_A - Q_H$			3.7 ⁽¹⁾	6.5 ⁽¹⁾	1 ⁽¹⁾	6.9 ⁽¹⁾	1	6.9	1	8.5												
t _{PLH}		0	C ₁ = 15 pF		3.7 ⁽¹⁾	6.8 ⁽¹⁾	1 ⁽¹⁾	7.2 ⁽¹⁾	1	7.2	1	8.5												
t _{PHL}			Q _H	C _L = 13 μι		4.1 ⁽¹⁾	7.2 ⁽¹⁾	1 ⁽¹⁾	7.6 ⁽¹⁾	1	7.6	1	9	ns										
	RCLK	$Q_A - Q_H$			4.5 ⁽¹⁾	7.6 ⁽¹⁾	1 ⁽¹⁾	8.2 ⁽¹⁾	1	8.2	1	9.5												
t _{PHL}		Q _H			4.1 ⁽¹⁾	7.1 ⁽¹⁾	1 ⁽¹⁾	7.6 ⁽¹⁾	1	7.6	1	9												
t _{PLH}													0 0			4.9	7.8	1	8.3	1	8.3	1	9.6	
t _{PHL}	SRCLR	$Q_A - Q_H$			5.8	8.9	1	9.7	1	9.7	1	11												
t _{PLH}		0	0 50 5		5.5	8.6	1	9.1	1	9.1	1	10.5												
t _{PHL}		Q _H '	$C_L = 50 \text{ pF}$		6	9.2	1	10.1	1	10.1	1	11.5	ns											
	RCLR	$Q_A - Q_H$			6.6	10	1	10.7	1	10.7	1	12												
PHL		Q _H '			6	9.2	1	10.1	1	10.1	1	11.5												

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

6.9 Timing Requirements: $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V. See Figure 1.

			T _A = 2	5°C	SN54LV	594A	SN74LV -40°C TO		SN74LV5 -40°C TO 1		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Pulse duration	RCLK or SRCLK high or low	7		7.5		7.5		8.5		20
t _w	Pulse duration	RCKR or SCRCLR low	6		6.5		6.5		7.5		ns
		SER before SRCLK↑	5.5		5.5		5.5		6		
		SRCLK↑ before RCLK↑	8		9		9		10		
t _{su}	Setup time	SCRCLR low before RCLK↑(1)	8.5		9.5		9.5		10.5		ns
*su	Cotap time	SRCLR high (inactive) before SRCLK↑	6		6.8		6.8		7.5		110
		RCLK high (inactive) before RCLK↑	6.7		7.6		7.6		8.5		
t _h	Hold time	SER after SRCLK↑	1.5		1.5		1.5		2		ns

⁽¹⁾ This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

6.10 Timing Requirements: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V. See Figure 1.

			T _A = 2	5°C	SN54LV	594A	SN74LV5 -40°C TO		SN74LV5 -40°C TO 1		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Dules duration	RCLK or SRCLK high or low	5.5		5.5		5.5		6.5		
t _w	Pulse duration	RCKR or SCRCLR low	5		5		5		6		ns
		SER before SRCLK↑	3.5		3.5		3.5		4		
		SRCLK↑ before RCLK↑	8		8.5		8.5		9.5		
t _{su}	Setup time	SCRCLR low before RCLK↑ ⁽¹⁾	8		9		9		10		ns
*Su	Cotup time	SRCLR high (inactive) before SRCLK↑	4.2		4.8		4.8		5.5		
		RCLK high (inactive) before RCLK↑	4.6		5.3		5.3		6		
t _h	Hold time	SER after SRCLK↑	1.5		1.5		1.5		2		ns

⁽¹⁾ This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

6.11 Timing Requirements: $V_{cc} = 5 \text{ V} \pm 0.5 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V. See Figure 1.

			T _A = 2	5°C	SN54LV	594A	SN74LV5 -40°C TO		SN74LV59 -40°C TO 1		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Dulas duration	RCLK or SRCLK high or low	5		5		5		6		20
t _w	Pulse duration	RCKR or SCRCLR low	5.2		5.2		5.2		6.2		ns
		SER before SRCLK↑	3		3		3		3.5		
		SRCLK↑ before RCLK↑	5		5		5		6		
t _{su}	Setup time	SCRCLR low before RCLK↑ ⁽¹⁾	5		5		5		5.5		ns
*su	Octup time	SRCLR high (inactive) before SRCLK↑	2.9		3.3		3.3		4		110
		RCLK high (inactive) before RCLK↑	3.2		3.7		3.7		4.5		
t _h	Hold time	SER after SRCLK↑	2		2		2		2.5		ns

⁽¹⁾ This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

6.12 Noise Characteristics⁽¹⁾

over operating free-air temperature range (unless otherwise noted), $V_{CC} = 3.3 \text{ V}$, $C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$

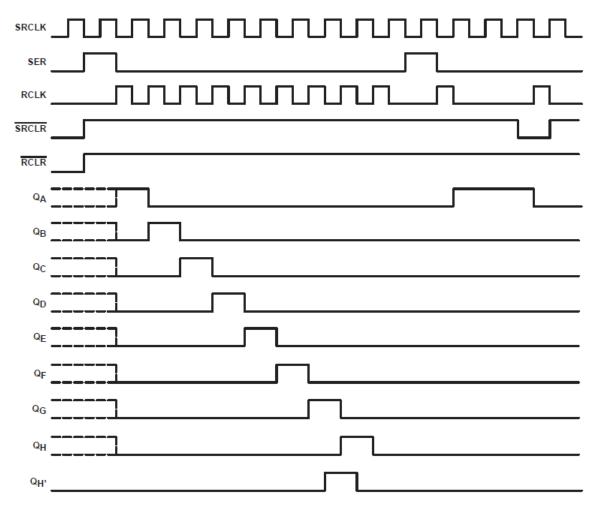
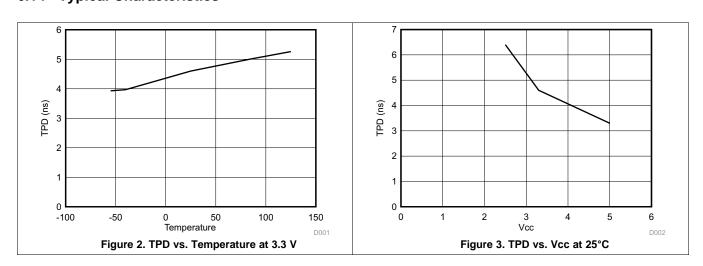
	PARAMETER	MIN	TYP	MAX	TINU
$V_{OL(P)}$	Quiet output, maximum dynamic V _{OL}		0.5	0.8	٧
$V_{OL(V)}$	Quiet output, minimum dynamic V _{OL}		-0.1	-0.8	٧
$V_{OH(V)}$	Quiet output, minimum dynamic V _{OH}		2.8		٧
$V_{IH(V)}$	High-level dynamic input voltage	2.31			٧
$V_{IL(V)}$	Low-level dynamic input voltage			0.99	V

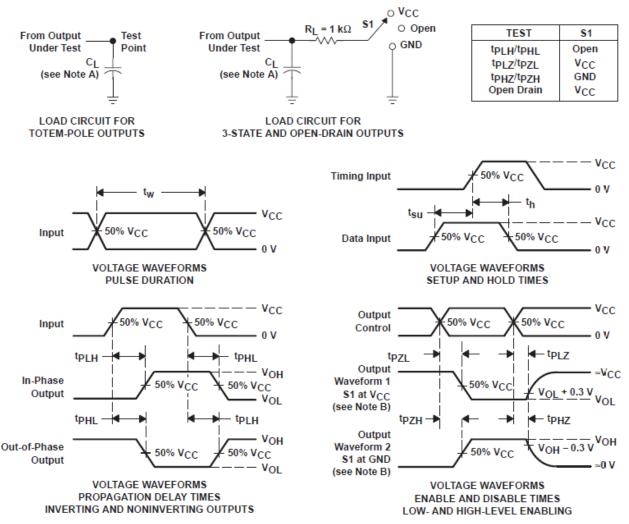
⁽¹⁾ Characteristics are for surface-mount packages only.

6.13 Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC}	TYP	UNIT
_	Davies dissipation associtance	(40.141	3.3 V	93	
C_{pd}	Power dissipation capacitance	f = 10 MHz	5 V	112	pF


Figure 1. Timing Diagram

6.14 Typical Characteristics

7 Parameter Measurement Information

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: $PRR \le 1 \text{ MHz}$, $Z_O = 50 \Omega$, $t_f \le 3 \text{ ns}$, $t_f \le 3 \text{ ns}$.
 - D. The outputs are measured one at a time, with one input transition per measurement.
 - E. tpl z and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpHL and tpLH are the same as tpd.
 - All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SN74LV594A devices are 8-bit shift registers designed for 2-V to 5.5-V V_{CC} operation.

These devices contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks (RCLK, SRCLK) and direct overriding clear (RCLR, SRCLR) inputs are provided on the shift and storage registers. A serial output $(Q_{H'})$ is provided for cascading purposes. The shift-register (SRCLK) and storage-register (RCLK) clocks are positive-edge triggered. If the clocks are tied together, the shift register always is one clock pulse ahead of the storage register.

8.2 Functional Block Diagram

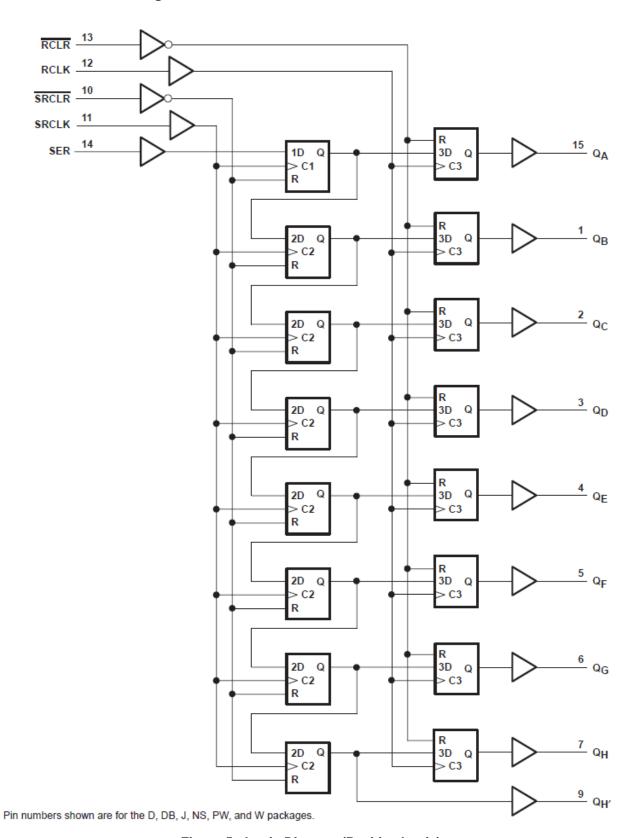


Figure 5. Logic Diagram (Positive Logic)

8.3 Feature Description

The device's wide operating range allows it to be used in a variety of systems that use different logic levels. The low propagation delay allows fast switching and higher speeds of operation. In addition, the low ground bounce stabilizes the performance of non-switching outputs while another output is switching.

8.4 Device Functional Modes

Table 1. Function Table

		INPUTS			FUNCTION
SER	SRCLK	SRCLR	RCLK	RCLR	FUNCTION
Х	X	L	X	X	Shift register is cleared.
L	1	Н	X	X	First stage of shift register goes low. Other stages store the data of previous stage, repectively.
Н	1	Н	Х	Х	First stage of shift register goes high. Other stages store the data of previous stage, respectively.
L	1	Н	Х	Х	Shift register state is not changed.
X	X	X	X	L	Storage register is cleared.
Х	X	X	↑	Н	Shift register data is stored in the storage register.
Х	X	X		Н	Storage register state is not changed.

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LV594A is a low drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs.

9.2 Typical Application

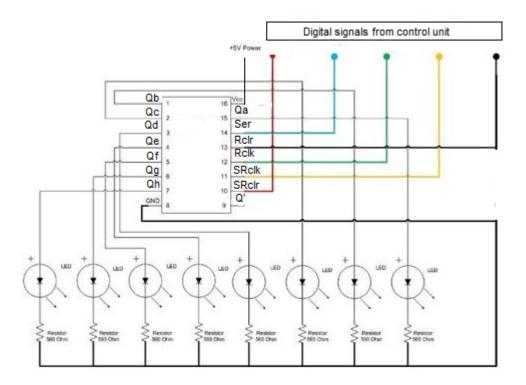


Figure 6. Typical Application Schematic

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so consider routing and load conditions to prevent ringing.

Typical Application (continued)

9.2.2 Detailed Design Procedure

- · Recommended input conditions:
 - Rise time and fall time specs. See $(\Delta t/\Delta V)$ in *Recommended Operating Conditions*.
 - Specified high and low levels. See (V_{IH} and V_{IL}) in *Recommended Operating Conditions*.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- · Recommended output conditions:
 - Load currents should not exceed 25 mA per output and 50 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

9.2.3 Application Curves

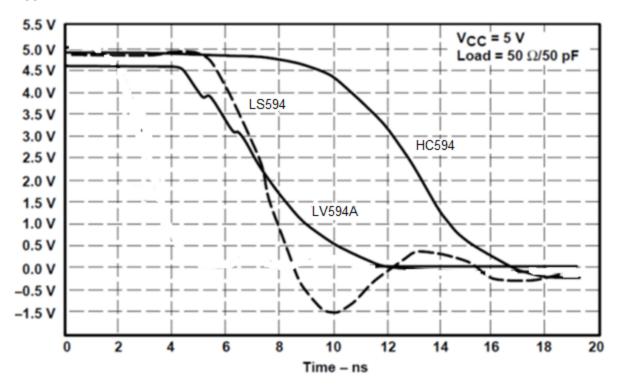


Figure 7. Switching Characteristics Comparison

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor and if there are multiple V_{CC} terminals then TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power terminal. Multiple bypass capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close as possible to the power terminal for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only three of the four buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient. Floating outputs is generally acceptable, unless the part is a transceiver. If the transceiver has an output enable pin it will disable the outputs section of the part when asserted. This will not disable the input section of the I.O's so they also cannot float when disabled.

11.2 Layout Example

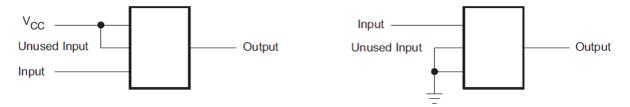


Figure 8. Layout Example

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

5-Mar-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74LV594AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples
SN74LV594ADBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples
SN74LV594ADE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples
SN74LV594ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples
SN74LV594ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Sample
SN74LV594ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Sample
SN74LV594APW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples
SN74LV594APWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Sample
SN74LV594APWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 125	LV594A	Sample
SN74LV594APWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Sample
SN74LV594APWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Sample
SN74LV594APWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Sample
SN74LV594APWTG4	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV594A	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

5-Mar-2015

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

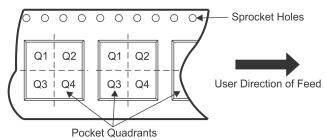
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

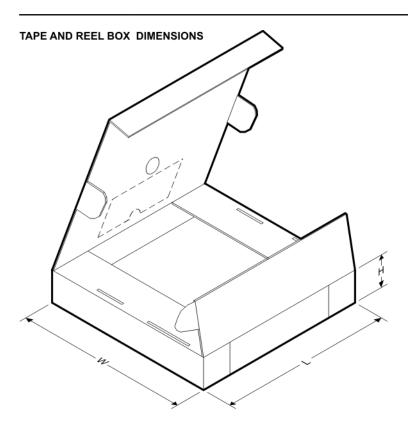
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 14-Feb-2015


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV594ADBR	SSOP	DB	16	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
SN74LV594ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV594APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV594APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV594APWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV594APWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

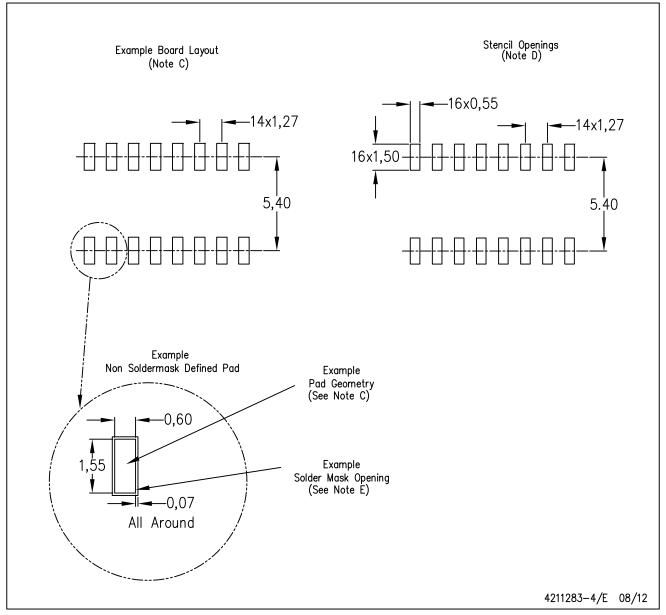
www.ti.com 14-Feb-2015

*All dimensions are nominal

All difficultions are norminal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV594ADBR	SSOP	DB	16	2000	367.0	367.0	38.0
SN74LV594ADR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LV594APWR	TSSOP	PW	16	2000	364.0	364.0	27.0
SN74LV594APWR	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74LV594APWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74LV594APWT	TSSOP	PW	16	250	367.0	367.0	35.0

D (R-PDS0-G16)

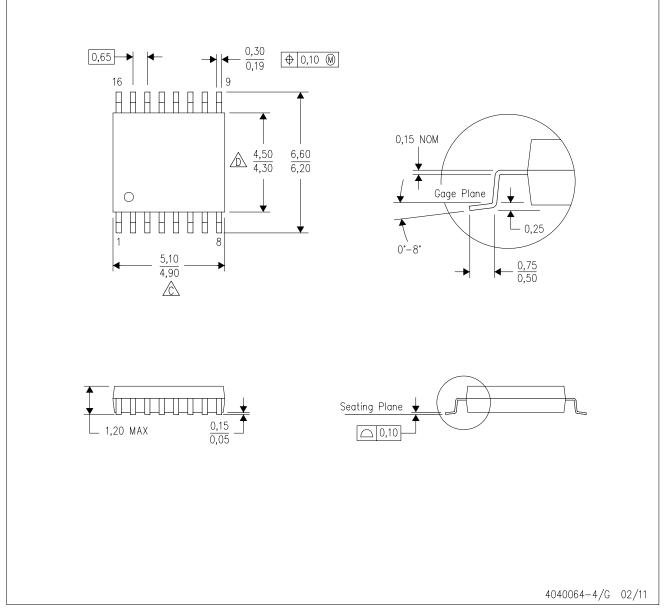
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

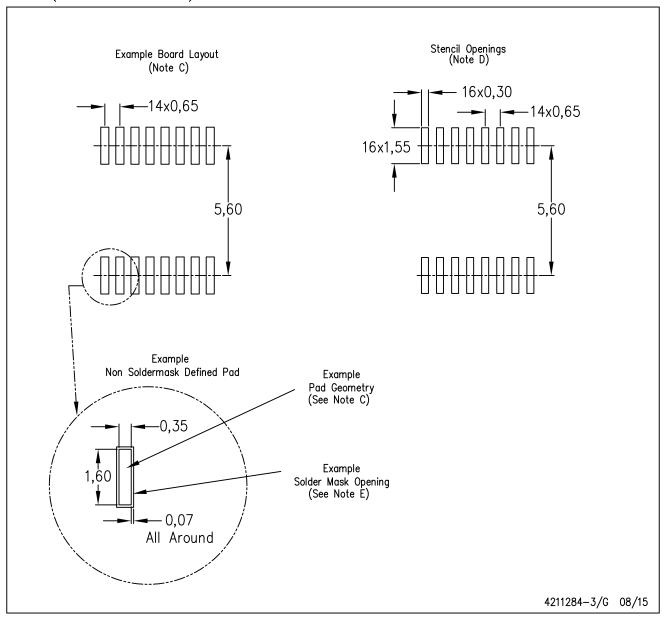
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

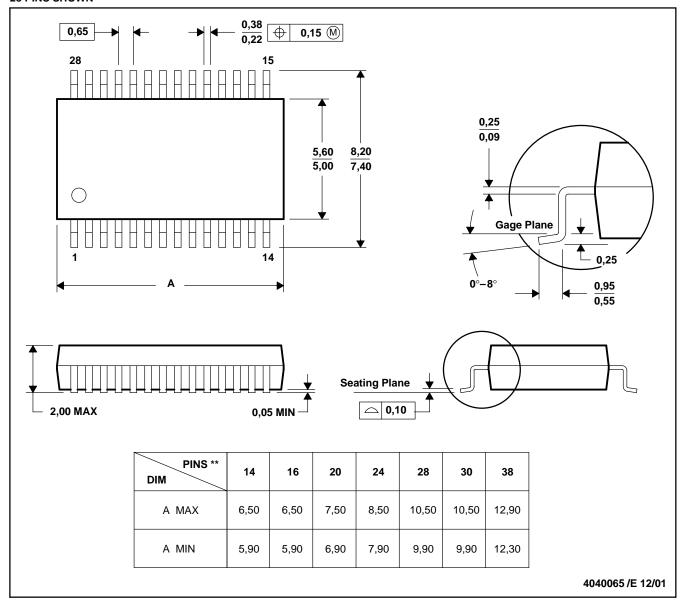
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.