

SN74LVC1GX04

SCES581D-JULY 2004-REVISED OCTOBER 2015

SN74LVC1GX04 Crystal Oscillator Driver

Technical

Documents

Sample &

Buv

1 Features

- Available in Texas Instruments NanoStar[™] and NanoFree[™] Packages
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- One Unbuffered Inverter (SN74LVC1GU04) and One Buffered Inverter (SN74LVC1G04)
- Suitable for Commonly Used Clock Frequencies:
 - 15 kHz, 3.58 MHz, 4.43 MHz, 13 MHz, 25 MHz, 26 MHz, 27 MHz, 28 MHz
- Maximum t_{pd} of 2.4 ns at 3.3 V
- Low Power Consumption, 10-µA Maximum I_{CC}
- ±24-mA Output Drive at 3.3 V
- Ioff Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Crystal Oscillators
- Clock Generation

3 Description

Tools &

Software

The SN74LVC1GX04 device is designed for 1.65-V to 5.5-V V_{CC} operation. This device incorporates the SN74LVC1GU04 (inverter with unbuffered output) and the SN74LVC1G04 (inverter) functions into a single device. The LVC1GX04 is optimized for use in crystal oscillator applications.

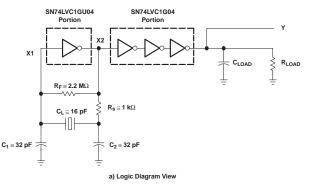
Support &

Community

20

X1 and X2 can be connected to a crystal or resonator in oscillator applications. The device provides an additional buffered inverter (Y) for signal conditioning (see Figure 5). The additional buffered inverter improves the signal quality of the crystal oscillator output by making it rail to rail.

NanoStar and NanoFree package technology is a major breakthrough in IC packaging concepts, using the die as the package.


This device is fully specified for partial-power-down applications using I_{off} (Y output only). The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74LVC1GX04DB V	SOT-23 (6)	2.90 mm × 1.60 mm
SN74LVC1GX04DC K	SC70 (6)	2.00 mm × 1.25 mm
SN74LVC1GX04DR L	SOT (6)	1.60 mm × 1.20 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

SN74LVC1GX04 includes both dotted portions

. .

Table of Contents

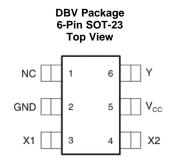
9

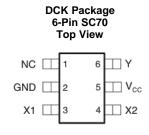
1	reat	ures
2	Арр	lications1
3	Des	cription 1
4	Rev	ision History2
5	Pin	Configuration and Functions 3
6	Spe	cifications
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 5
	6.5	Electrical Characteristics 5
	6.6	Switching Characteristics, SN74LVC1GX046
	6.7	Switching Characteristics, SN74LVC1GX046
	6.8	Switching Characteristics, SN74LVC1GX046
	6.9	Operating Characteristics 6
	6.10	Typical Characteristics 7
7	Para	ameter Measurement Information
8	Deta	ailed Description 10
		-

4 Revision History

Changes from Revision C (December 2013) to Revision D

Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device


- EXAS STRUMENTS www.ti.com 8.1 Overview 10 Functional Block Diagram 10 8.2 Feature Description...... 10 8.3 Device Functional Modes...... 10 8.4 Application and Implementation 11 Application Information..... 11 9.1 9.2 Typical Application 11 10 Power Supply Recommendations 14 11 Layout...... 15 11.1 Layout Guidelines 15 11.2 Layout Example 15 12 Device and Documentation Support 16 Documentation Support 16 12.1 Community Resources...... 16 12.2 12.3 Trademarks 16 12.4 Electrostatic Discharge Caution 16
- 12.5 Glossary 16 Mechanical, Packaging, and Orderable 13 Information 16


Page

Copyright © 2004–2015, Texas Instruments Incorporated

5 Pin Configuration and Functions

DRL Package 6-Pin SOT Top View								
NC 🗆	1	6	ΡY					
GND 🗆	2	5	□ V _{cc}					
X1 🗆	3	4	□ X2					

See mechanical drawings for dimensions.

NC - No internal connection.

Pin Functions

PIN		1/0	DESCRIPTION		
NAME	NO.	I/O	DESCRIPTION		
GND	2	_	Ground		
NC	1	-	No internal connection		
VCC	5	-	Supply power		
X1	3	I	Amplifier input		
X2	4	0	Amplifier output		
Y	6	0	Main output to other logic		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		-0.5	6.5	V
VI	Input voltage ⁽²⁾		-0.5	6.5	V
Vo	Voltage applied to Y output in the high-impedance or	power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage applied to any output in the high or low state ^{(2) (3)}		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
lo	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the recommended operating conditions table.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	
V _(ESD)	discharge Charged-device model (CDM), per AEC Q100-011	Charged-device model (CDM), per AEC Q100-011	±1000	v

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
		Operating	1.65	5.5	
V_{CC}	Supply voltage	Data retention only	1.5		V
		Crystal oscillator use	2		
VIH	High-level input voltage	V _{CC} = 1.65 V to 5.5 V	0.75 × V _{CC}		V
VIL	Low-level input voltage	V _{CC} = 1.65 V to 5.5 V		$0.25 \times V_{CC}$	V
VI	Input voltage		0	5.5	V
	Outrout welte an	X2, Y	0	V _{CC}	V
Vo	Output voltage	Y output only, Power-down mode, $V_{CC} = 0 V$	0	5.5	v
		V _{CC} = 1.65 V		-4	
		V _{CC} = 2.3 V		-8	
I _{OH}	High-level output current	ligh-level output current $V_{CC} = 3 V$		-16	mA
				-24	
		$V_{CC} = 4.5 V$		-32	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V	8		
I _{OL}	Low-level output current	<u> </u>		16	mA
		$V_{CC} = 3 V$		24	
1		V _{CC} = 4.5 V		32	

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Recommended Operating Conditions⁽¹⁾ (continued)

			MIN	MAX	UNIT
	V_{CC} = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V		20		
Δt/Δv	$\Delta t/\Delta v$ Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		10	ns/V
		$V_{CC} = 5 V \pm 0.5 V$		10	
T _A	Operating free-air temperature		-40	125	°C

6.4 Thermal Information

		SN74LVC1GX04			
	THERMAL METRIC ⁽¹⁾	DBV (SOT-23)	DCK (SC70)	DRL (SOT)	UNIT
		6 PINS	6 PINS	6 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	165	259	142	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARA	METER		TEST CONDITIONS	i	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{он}		I _{OH} = −100 μA			1.65 V to 5.5 V	V _{CC} - 0.1			
		$I_{OH} = -4 \text{ mA}$			1.65 V	1.2			
	$I_{OH} = -8 \text{ mA}$	V ₁ = 5.5 V or GND	T _A = -40°C to 125°C	2.3 V	1.9			V	
		I _{OH} = -16 mA	v ₁ = 5.5 v or GND	$T_A = -40 \text{ C to } 125 \text{ C}$	3 V	2.4			v
		$I_{OH} = -24 \text{ mA}$			3 V	2.3			
		$I_{OH} = -32 \text{ mA}$			4.5 V	3.8			
	I _{OL} = 100 μA			1.65 V to 5.5 V			0.1		
		$I_{OL} = 4 \text{ mA}$	V ₁ = 5.5 V or GND	$T_A = -40^{\circ}C$ to $125^{\circ}C$	1.65 V			0.45	
		I _{OL} = 8 mA			2.3 V			0.3	
V		I _{OL} = 16 mA		$T_A = -40^{\circ}C$ to $125^{\circ}C$	3 V			0.4	V
V _{OL}		1 04 mA		$T_A = -40^{\circ}C$ to $85^{\circ}C$	- 3 V			0.55	v
		$I_{OL} = 24 \text{ mA}$		$T_A = -40^{\circ}C$ to $125^{\circ}C$	3 V			0.63	
		1 30 m A		$T_A = -40^{\circ}C$ to $85^{\circ}C$	- 4.5 V			0.55	
		I _{OL} = 32 mA		$T_A = -40^{\circ}C$ to $125^{\circ}C$	4.5 V			0.7	
I _I	X1	$V_1 = 5.5 \text{ V or GND}$	$T_{A} = -40^{\circ}C$ to 125°C	;	0 to 5.5 V			±5	μA
I _{off}	X1, Y	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	$T_{A} = -40^{\circ}C$ to 125°C	;	0			±10	μA
I _{CC}		$V_{I} = 5.5 \text{ V or GND}, I_{O} = 0$	$T_{A} = -40^{\circ}C$ to 125°C	:	1.65 V to 5.5 V			10	μA
Ci		$V_{I} = V_{CC}$ or GND			3.3 V		7		pF

(1) All typical values are at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}C$.

SN74LVC1GX04

SCES581D-JULY 2004-REVISED OCTOBER 2015

www.ti.com

TRUMENTS

XAS

6.6 Switching Characteristics, SN74LVC1GX04

over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEMPERATURE	V _{cc}	MIN	MAX	UNIT
				$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	1	4	
		X2	–40°C to 85°C	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.8	2.6	
	X1	Y ⁽¹⁾	-40 C 10 85 C	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.6	2.4	
				$V_{CC} = 5 V \pm 0.5 V$	0.5	2	
t _{pd}				$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	3.5	10	ns
				$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	2.2	6	
			–40°C to 85°C	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2	5	
				$V_{CC} = 5 V \pm 0.5 V$	1.5	3.5	

(1) X2 – no external load

6.7 Switching Characteristics, SN74LVC1GX04

over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ or 50 pF (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEMPERATURE	V _{cc}	MIN	МАХ	UNIT
				$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	1.1	7	
		×2	10°C to 95°C	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.8	4	
	X1 –	Y ⁽¹⁾	–40°C to 85°C	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.8	3.7	
				$V_{CC} = 5 V \pm 0.5 V$	0.8	3	
t _{pd}			–40°C to 85°C	$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	3.8	18	ns
				$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	2	7.4	
				$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2	7.8	
				$V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$	2	5	

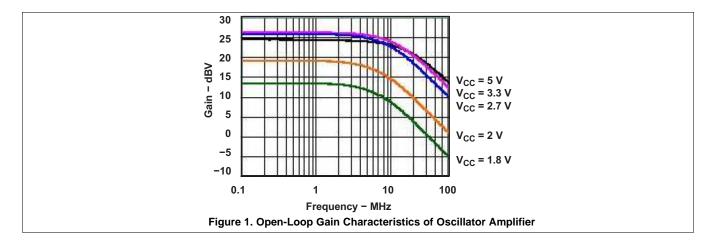
(1) X2 - no external load

6.8 Switching Characteristics, SN74LVC1GX04

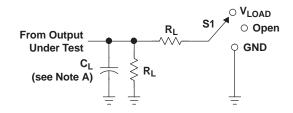
over recommended operating free-air temperature range, C_L = 30 pF or 50 pF (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEMPERATURE	V _{cc}	MIN	МАХ	UNIT
				$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	1.1	8	
t _{pd} X1	X2	–40°C to 125°C	$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	0.8	5		
			$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.8	4.3		
	VA			$V_{CC} = 5 V \pm 0.5 V$	0.8	3.5	
	×1	Y ⁽¹⁾	1020 / 10520	$V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$	3.8	20	ns
				$V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$	2	8.4	
		I V	–40°C to 125°C	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2	8.8	
				$V_{CC} = 5 V \pm 0.5 V$	2	5.5	

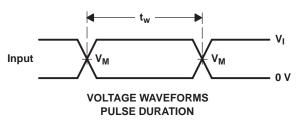
(1) X2 - no external load

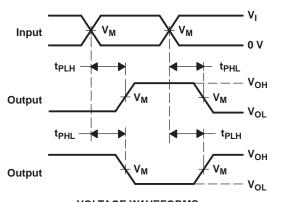

6.9 **Operating Characteristics**

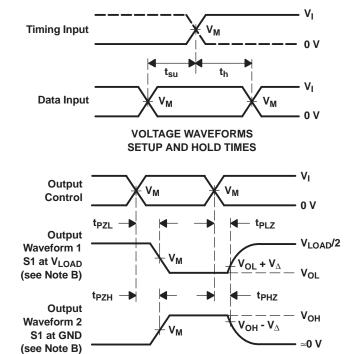
 $T_A = 25^{\circ}C$


	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT
			V _{CC} = 1.8 V	22	
	C _{pd} Power dissipation capacitance		$V_{CC} = 2.5 V$	22	- 5
C _{pd}		f = 10 MHz	V _{CC} = 3.3 V	24	pF
			$V_{CC} = 5 V$	35	

6.10 Typical Characteristics


7 Parameter Measurement Information




LOAD CIRCUIT

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

N N	INI	INPUTS				-	
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	RL	V_{Δ}
$1.8~V\pm0.15~V$	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	15 pF	1 Μ Ω	0.15 V
$\textbf{2.5 V} \pm \textbf{0.2 V}$	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	15 pF	1 Μ Ω	0.15 V
3.3 V \pm 0.3 V	3 V	≤2.5 ns	1.5 V	6 V	15 pF	1 Μ Ω	0.3 V
5 V \pm 0.5 V	V _{CC}	≤2.5 ns	V _{CC} /2	$2 \times V_{CC}$	15 pF	1 Μ Ω	0.3 V

VOLTAGE WAVEFORMS

ENABLE AND DISABLE TIMES

LOW- AND HIGH-LEVEL ENABLING

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_L includes probe and jig capacitance.

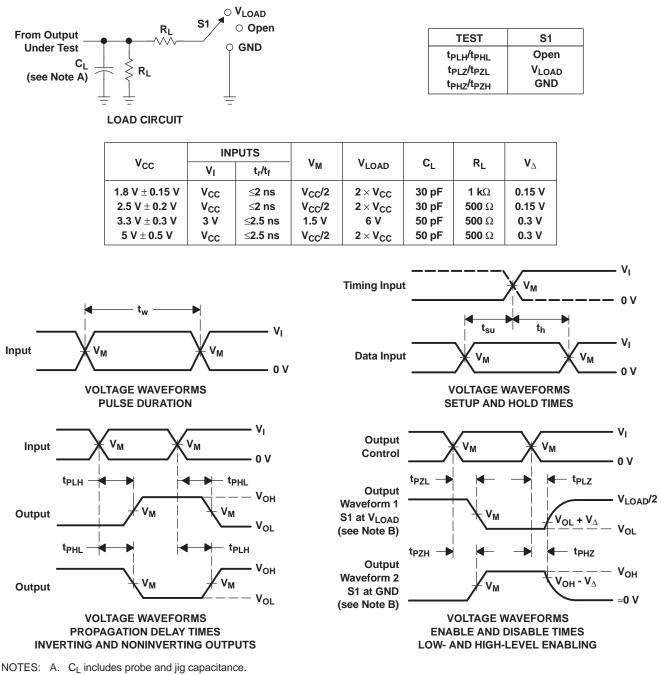

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms

8

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SN74LVC1GX04 is optimized for creating a crystal oscillator circuit with a buffered square-wave output. This device is fully specified for partial-power-down applications using I_{off} (Y output only). The I_{off} circuitry disables the outputs, preventing damaging current back-flow through the device when it is powered down.

8.2 Functional Block Diagram

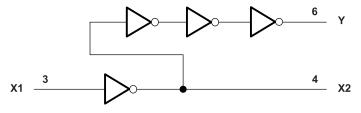


Figure 4. Logic Diagram (Positive Logic)

8.3 Feature Description

The first inverter is used as a linear amplifier for crystal oscillator.

The last three inverters ensure a fast edge square-wave at the Y output.

8.4 Device Functional Modes

The only intended device use is to generate a square-wave output using a crystal to set the operating frequency.

INPUT X1	OUTPUTS					
	X2	Y				
Н	L	Н				
L	Н	L				

Table 1. Function Table

9 Application and Implementation

NOTE

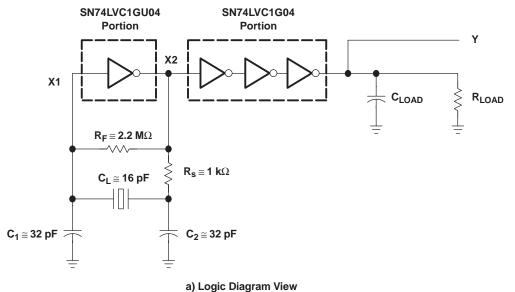
Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LVC1GX04 contains a buffered and unbuffered inverter for the specific purpose of creating a crystal oscillator and driver with limited external components.

9.2 Typical Application

Figure 5 shows a typical application of the SN74LVC1GX04 in a Pierce oscillator circuit. The buffered inverter (SN74LVC1G04 portion) produces a rail-to-rail voltage waveform. The recommended load for the crystal shown in this example is 16 pF. The value of the recommended load (C_L) can be found in the crystal manufacturer's data sheet.


Values of C_1 and C_2 are chosen to calculate C_L in Equation 1 where $C_1 \equiv C_2$.

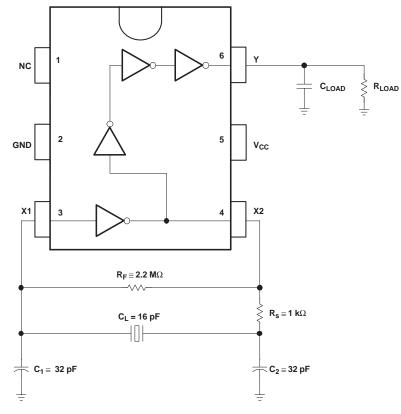
$$C_{L} = \frac{C_{1}C_{2}}{C_{1} + C_{2}}$$
(1)

 R_s is the current-limiting resistor, and the value depends on the maximum power dissipation of the crystal. Generally, the recommended value of R_s is specified in the crystal manufacturer's data sheet and, usually, this value is approximately equal to the reactance of C_2 at resonance frequency, that is seen in Equation 2.

$$R_s = X_{C_a}$$

 R_F is the feedback resistor that is used to bias the inverter in the linear region of operation. Usually, the value is chosen to be within 1 M Ω to 10 M Ω .

. _ _


Figure 5. Oscillator Circuit

(2)

TEXAS INSTRUMENTS

www.ti.com

Typical Application (continued)

b) Oscillator Circuit in DBV or DCK Pinout

Figure 6. Oscillator Circuit (Continued)

9.2.1 Design Requirements

The open-loop gain of the unbuffered inverter decreases as power-supply voltage decreases. This decreases the closed-loop gain of the oscillator circuit. The value of R_s can be decreased to increase the closed-loop gain, while maintaining the power dissipation of the crystal within the maximum limit.

 R_s and C_2 form a low-pass filter and reduce spurious oscillations. Component values can be adjusted, based on the desired cutoff frequency.

 C_2 can be increased over C_1 to increase the phase shift and help in start-up of the oscillator. Increasing C_2 may affect the duty cycle of the output voltage.

At high frequency, phase shift due to R_s becomes significant. In this case, R_s can be replaced by a capacitor to reduce the phase shift.

9.2.2 Detailed Design Procedure

After the selection of proper component values, the oscillator circuit should be tested using these components. To ensure that the oscillator circuit performs within the *Recommended Operating Conditions*⁽¹⁾, follow these steps:

- 1. Without a crystal, the oscillator circuit should not oscillate. To check this, the crystal can be replaced by its equivalent parallel-resonant resistance.
- 2. When the power-supply voltage drops, the closed-loop gain of the oscillator circuit reduces. Ensure that the circuit oscillates at the appropriate frequency at the lowest V_{CC} and highest V_{CC} .
- 3. Ensure that the duty cycle, start-up time, and frequency drift over time is within the system requirements.
- All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Typical Application (continued)

9.2.3 Application Curve

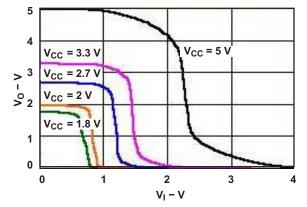


Figure 7. V_0 vs V_1 Characteristics of Oscillator Amplifier

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in *Recommended Operating Conditions*⁽¹⁾ table.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1- μ F capacitor is recommended. If there are multiple V_{CC} terminals then 0.01- μ F or 0.022- μ F capacitors are recommended for each power terminal. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. Multiple bypass capacitors may be paralleled to reject different frequencies of noise. The bypass capacitor should be installed as close to the power terminal as possible for the best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 8 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient.

11.2 Layout Example

Figure 8. Layout Diagram

TEXAS INSTRUMENTS

www.ti.com

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation, see the following: Implications of Slow or Floating CMOS Inputs, SCBA004

12.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.3 Trademarks

NanoStar, NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

4-May-2017

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
74LVC1GX04DBVTG4	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CX45 ~ CX4R)	Samples
74LVC1GX04DCKRE4	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(D25 ~ D2K ~ D2R)	Samples
74LVC1GX04DCKTG4	ACTIVE	SC70	DCK	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(D25 ~ D2R)	Samples
SN74LVC1GX04DBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CX45 ~ CX4R)	Samples
SN74LVC1GX04DBVT	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(CX45 ~ CX4R)	Samples
SN74LVC1GX04DCKR	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(D25 ~ D2K ~ D2R)	Samples
SN74LVC1GX04DCKT	ACTIVE	SC70	DCK	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(D25 ~ D2R)	Samples
SN74LVC1GX04DRLR	ACTIVE	SOT-5X3	DRL	6	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(D27 ~ D2R)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

4-May-2017

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

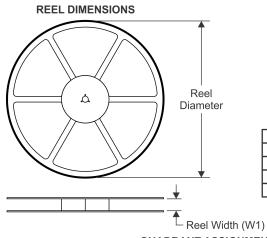
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

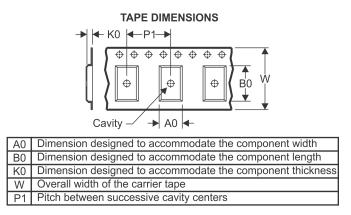
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC1GX04 :

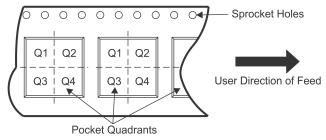
Enhanced Product: SN74LVC1GX04-EP

NOTE: Qualified Version Definitions:


• Enhanced Product - Supports Defense, Aerospace and Medical Applications

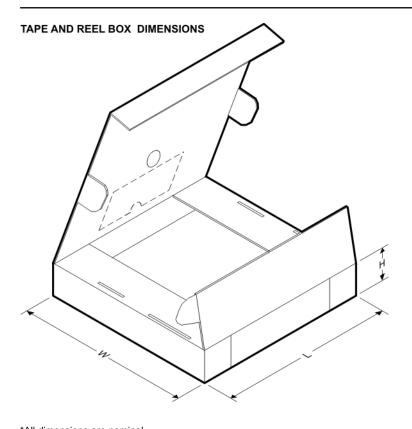

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

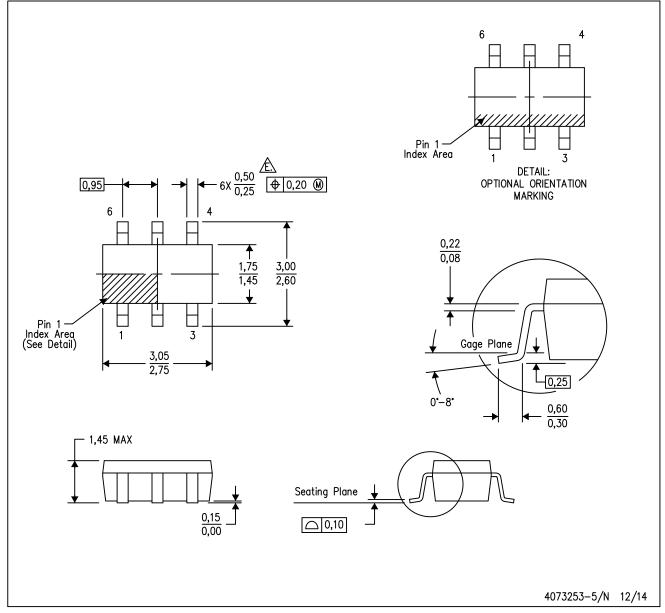
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1GX04DBVR	SOT-23	DBV	6	3000	178.0	9.2	3.3	3.23	1.55	4.0	8.0	Q3
SN74LVC1GX04DBVR	SOT-23	DBV	6	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1GX04DBVT	SOT-23	DBV	6	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74LVC1GX04DBVT	SOT-23	DBV	6	250	178.0	9.2	3.3	3.23	1.55	4.0	8.0	Q3
SN74LVC1GX04DCKR	SC70	DCK	6	3000	180.0	9.2	2.3	2.55	1.2	4.0	8.0	Q3
SN74LVC1GX04DCKR	SC70	DCK	6	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1GX04DCKT	SC70	DCK	6	250	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74LVC1GX04DCKT	SC70	DCK	6	250	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74LVC1GX04DRLR	SOT-5X3	DRL	6	4000	180.0	9.5	1.78	1.78	0.69	4.0	8.0	Q3
SN74LVC1GX04DRLR	SOT-5X3	DRL	6	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3

TEXAS INSTRUMENTS

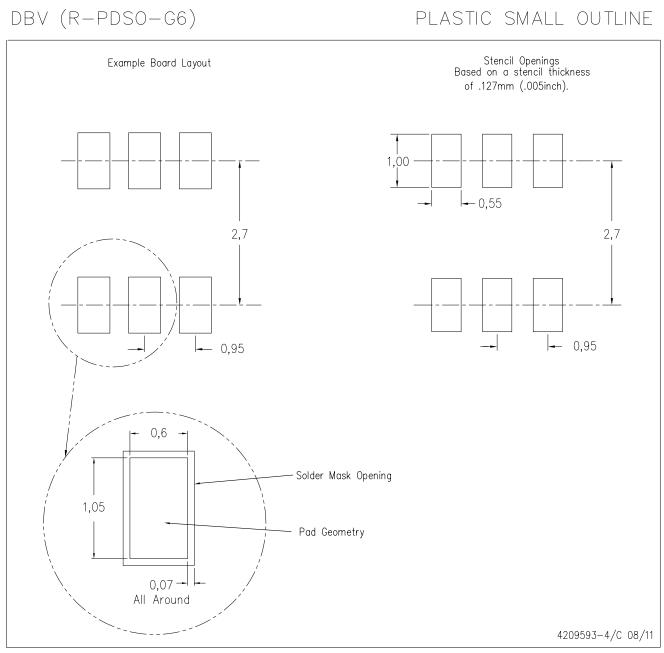
www.ti.com

PACKAGE MATERIALS INFORMATION


3-Aug-2017

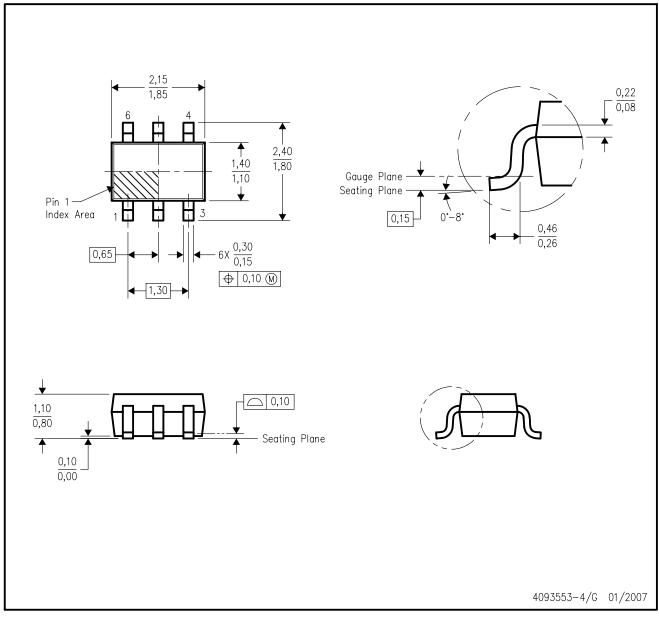
*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1GX04DBVR	SOT-23	DBV	6	3000	180.0	180.0	18.0
SN74LVC1GX04DBVR	SOT-23	DBV	6	3000	202.0	201.0	28.0
SN74LVC1GX04DBVT	SOT-23	DBV	6	250	202.0	201.0	28.0
SN74LVC1GX04DBVT	SOT-23	DBV	6	250	180.0	180.0	18.0
SN74LVC1GX04DCKR	SC70	DCK	6	3000	205.0	200.0	33.0
SN74LVC1GX04DCKR	SC70	DCK	6	3000	180.0	180.0	18.0
SN74LVC1GX04DCKT	SC70	DCK	6	250	202.0	201.0	28.0
SN74LVC1GX04DCKT	SC70	DCK	6	250	180.0	180.0	18.0
SN74LVC1GX04DRLR	SOT-5X3	DRL	6	4000	184.0	184.0	19.0
SN74LVC1GX04DRLR	SOT-5X3	DRL	6	4000	202.0	201.0	28.0

DBV (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE

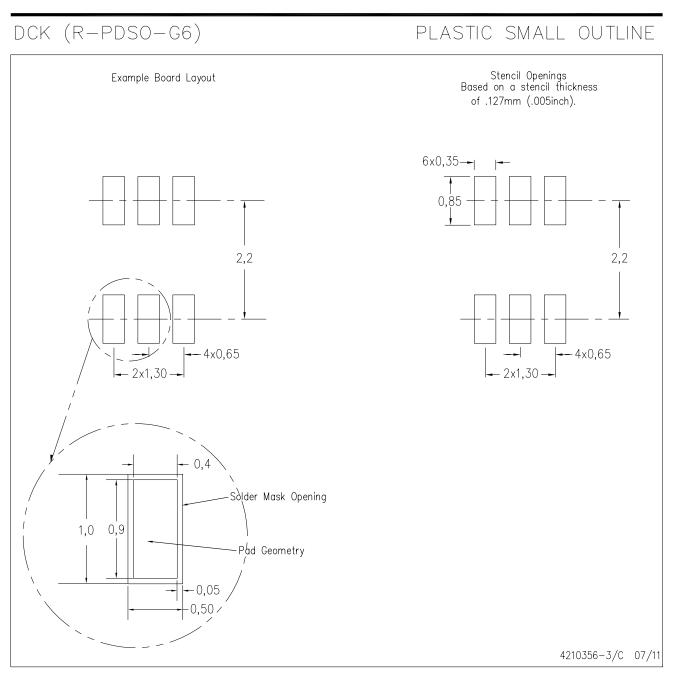
- NOTES:
 - A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
 - E Falls within JEDEC MO-178 Variation AB, except minimum lead width.

LAND PATTERN DATA


NOTES:

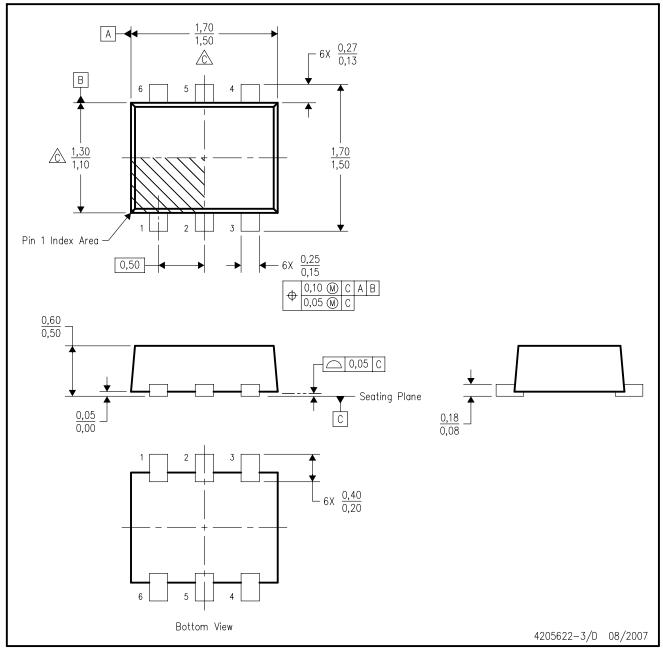
- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCK (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AB.

LAND PATTERN DATA


NOTES:

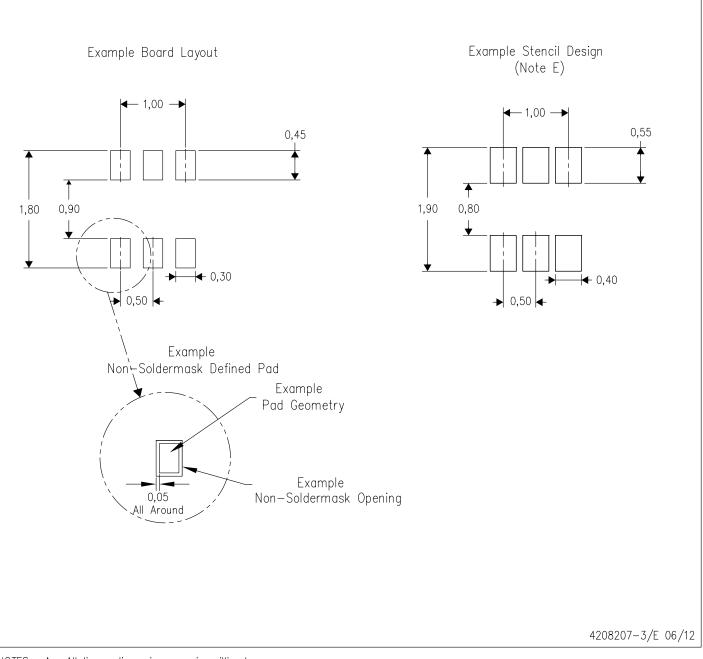
- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DRL (R-PDSO-N6)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. B. This drawing is subject to change without notice.


🖄 Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.

D. JEDEC package registration is pending.

DRL (R-PDSO-N6)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated