

Sample &

Buy

TCA6408 SCPS151D - FEBRUARY 2007 - REVISED JUNE 2014

TCA6408 Low-Voltage 8-BIT I²C and SMBus I/O Expander With Interrupt Output, Reset, and Configuration Registers

Technical

Documents

Not Recommended for New Designs

Features 1

- Operating Power-Supply Voltage Range of 1.65 V to 5.5 V
- Allows Bidirectional Voltage-Level Translation and **GPIO Expansion Between**
 - 1.8-V SCL/SDA and 1.8-V, 2.5-V, 3.3-V, or 5-V P Port
 - 2.5-V SCL/SDA and 1.8-V, 2.5-V, 3.3-V, or 5-V P Port
 - 3.3-V SCL/SDA and 1.8-V, 2.5-V, 3.3-V, or 5-V P Port
 - 5-V SCL/SDA and 1.8-V, 2.5-V, 3.3-V, or 5-V P Port
- I²C to Parallel Port Expander
- Low Standby Current Consumption of 1 µA
- Schmitt-Trigger Action Allows Slow Input Transition and Better Switching Noise Immunity at the SCL and SDA Inputs
 - V_{hvs} = 0.18 V Typ at 1.8 V
 - V_{hvs} = 0.25 V Typ at 2.5 V
 - V_{hys} = 0.33 V Typ at 3.3 V
 - V_{hvs} = 0.5 V Typ at 5 V
- 5-V Tolerant I/O Ports
- Active-Low Reset (RESET) Input
- Open-Drain Active-Low Interrupt (INT) Output
- 400-kHz Fast I²C Bus
- Input/Output Configuration Register
- Polarity Inversion Register
- Internal Power-On Reset
- Power Up With All Channels Configured as Inputs
- No Glitch On Power Up

Noise Filter on SCL/SDA Inputs ٠

Tools &

Software

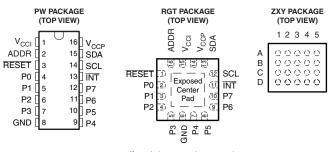
Latched Outputs With High-Current Drive ٠ Maximum Capability for Directly Driving LEDs

Support &

Community

....

- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)


2 Description

This 8-bit I/O expander for the two-line bidirectional bus (I²C) is designed to provide general-purpose remote I/O expansion for most microcontroller families via the I²C interface [serial clock (SCL) and serial data (SDA)].

The major benefit of this device is its wide V_{CC} range. It can operate from 1.65-V to 5.5-V on the P-port side and on the SDA/SCL side. This allows the TCA6408 to interface with next-generation microprocessors and microcontrollers on the SDA/SCL side, where supply levels are dropping down to conserve power. In contrast to the dropping power supplies of microprocessors and microcontrollers, some PCB components such as LEDs remain at a 5-V power supply.

PART NUMBER	PACKAGE	BODY SIZE (NOM)					
	TSSOP (16)	5.00 mm × 4.40 mm					
TCA6408	QFN (16)	3.00 mm × 3.00 mm					
	BGA (20)	2.50 mm × 3.00 mm					

(1) For all available packages, see the orderable addendum at the end of the datasheet.

If used, the exposed center pad must be connected as a secondary ground or left electrically open.

Table of Contents

1	Feat	ures 1
2	Des	cription 1
3	Rev	ision History2
4	Des	cription (Continued) 3
5	Pin	Configuration and Functions 4
6	Spe	cifications5
	6.1	Absolute Maximum Ratings5
	6.2	Handling Ratings5
	6.3	Recommended Operating Conditions 5
	6.4	Electrical Characteristics 6
	6.5	I ² C Interface Timing Requirements7
	6.6	Reset Timing Requirements7
	6.7	Switching Characteristics 7

	6 9	Typical Characteristics	0
		51	
7	Para	meter Measurement Information	11
8	Deta	iled Description	15
	8.1	Functional Block Diagram	15
	8.2	Device Functional Modes	17
	8.3	Programming	19
9	Appl	ication And Implementation	25
	9.1	Typical Application	25
10	Devi	ce and Documentation Support	27
	10.1	Trademarks	27
	10.2	Electrostatic Discharge Caution	27
	10.3	Glossary	27
11	Mec	hanical, Packaging, and Orderable	
	Infor	mation	27

3 Revision History

CI	hanges from Revision C (June 2007) to Revision D P	Page
•	Added RESET Errata section	. 17
•	Added Interrupt Errata section	. 18

4 **Description (Continued)**

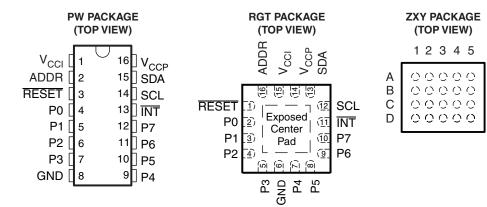
The bidirectional voltage-level translation in the TCA6408 is provided through $V_{CC | I}$. $V_{CC | I}$ should be connected to the V_{CC} of the external SCL/SDA lines. This indicates the V_{CC} level of the I²C bus to the TCA6408. The voltage level on the P port of the TCA6408 is determined by V_{CCP} .

The TCA6408 consists of one 8-bit Configuration (input or output selection), Input, Output, and Polarity Inversion (active high) Register. At power on, the I/Os are configured as inputs. However, the system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each input or output is kept in the corresponding Input or Output Register. The polarity of the Input Port Register can be inverted with the Polarity Inversion Register. All registers can be read by the system master.

The system master can reset the TCA6408 in the event of a timeout or other improper operation by asserting a low in the RESET input. The power-on reset puts the registers in their default state and initializes the I²C/SMBus state machine. The RESET pin causes the same reset/initialization to occur without depowering the part.

The TCA6408 open-drain interrupt (INT) output is activated when any input state differs from its corresponding Input Port Register state and is used to indicate to the system master that an input state has changed.

INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C bus. Thus, the TCA6408 can remain a simple slave device.


The device P-port outputs have high-current sink capabilities for directly driving LEDs while consuming low device current.

One hardware pin (ADDR) can be used to program and vary the fixed I²C address and allow up to two devices to share the same I²C bus or SMBus.

Texas Instruments

www.ti.com

5 Pin Configuration and Functions

If used, the exposed center pad must be connected as a secondary ground or left electrically open.

Pin Functions

	P	IN				
NAME	TSSOP (PW)	QFN (RGT)	BGA (ZXY)	DESCRIPTION		
V _{CCI}	1	15	B5	Supply voltage of I^2C bus. Connect directly to the V _{CC} of the external I^2C master. Provides voltage level translation.		
ADDR	2	16	A5	Address input. Connect directly to V _{CCP} or ground.		
RESET	3	1	A4	Active-low reset input. Connect to V_{CCP} through a pullup resistor, if no active connection is used.		
P0	4	2	B3	P-port input/output (push-pull design structure). At power on, P0 is configured as an input.		
P1	5	3	A3	P-port input/output (push-pull design structure). At power on, P1 is configured an input.		
P2	6	4	A2	P-port input/output (push-pull design structure). At power on, P2 is configure an input.		
P3	7	5	A1	P-port input/output (push-pull design structure). At power on, P3 is configured as an input.		
GND	8	6	B1	Ground		
P4	9	7	C1	P-port input/output (push-pull design structure). At power on, P4 is configured as an input.		
P5	10	8	D1	P-port input/output (push-pull design structure). At power on, P5 is configured as an input.		
P6	11	9	D2	P-port input/output (push-pull design structure). At power on, P6 is configured as an input.		
P7	12	10	D3	P-port input/output (push-pull design structure). At power on, P7 is configured as an input.		
INT	13	11	C3	Interrupt output. Connect to V _{CCI} through a pullup resistor.		
SCL	14	12	D4	Serial clock bus. Connect to V _{CCI} through a pullup resistor.		
SDA	15	13	D5	Serial data bus. Connect to V_{CCI} through a pullup resistor.		
V _{CCP}	16	14	C5	Supply voltage of TCA6408 for P port.		
N.C.	-	_	B2, C2, B4, C4	No internal connection		

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V _{CCI}	Supply voltage range			-0.5	6.5	V
V _{CCP}	Supply voltage range			-0.5	6.5	V
VI	Input voltage range ⁽²⁾			-0.5	6.5	V
Vo	Output voltage range ⁽²⁾			-0.5	6.5	V
I _{IK}	Input clamp current	ADDR, RESET, SCL	V ₁ < 0		±20	mA
I _{OK}	Output clamp current	INT	V _O < 0		±20	mA
	Insut/outsut closes ourrest	P Port	$V_O < 0$ or $V_O > V_{CCP}$		±20	mA
I _{IOK}	Input/output clamp current	SDA	$V_O < 0$ or $V_O > V_{CCI}$		±20	mA
	Continuous output low current	P Port	$V_O = 0$ to V_{CCP}		50	~ ^
I _{OL}	Continuous output low current	SDA, ĪNT	$V_0 = 0$ to V_{CCI}		25	mA
I _{OH}	Continuous output high current	P Port	$V_{O} = 0$ to V_{CCP}		50	mA
	Continuous current through GND				200	
I _{CC}	Continuous current through V_{CCP}				160	mA
	Continuous current through V_{CCI}		10			
			PW package		108	
θ_{JA}	Package thermal impedance ⁽³⁾	RGT package			53	°C/W
			ZXY package		193	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The package thermal impedance is calculated in accordance with JESD 51-7.

6.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	rage temperature range		150	°C
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	0	2000	V
V _(ESD)		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	0	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

			MIN	MAX	UNIT	
V _{CCI}	Supply voltage		1.65	5.5	V	
V _{CCP}	Supply voltage		1.65	5.5	V	
V	Lich lovel input veltege	SCL, SDA	0.7 × V _{CCI}	5.5	V	
V _{IH}	High-level input voltage	ADDR, P7–P0, RESET	0.7 × V _{CCP}	5.5	V	
		SCL, SDA	-0.5	$0.3 \times V_{CCI}$		
VIL	Low-level input voltage	ADDR, P7–P0, RESET	-0.5	$0.3 \times V_{CCP}$	V	
I _{OH}	High-level output current	P7–P0		10	mA	
I _{OL}	Low-level output current	P7–P0		25	mA	
T _A	Operating free-air temperature		-40	85	°C	

TCA6408

SCPS151D-FEBRUARY 2007-REVISED JUNE 2014

www.ti.com

6.4 Electrical Characteristics

over recommended operating free-air temperature range, $V_{CCI} = 1.65$ V to 5.5 V (unless otherwise noted)

	PARAMETER	2	TEST CONDITIONS	V _{CCP}	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	Input diode	clamp voltage	I _I = -18 mA	1.65 V to 5.5 V	-1.2			V
V _{POR}	Power-on re	eset voltage ⁽²⁾	$V_I = V_{CCP}$ or GND, $I_O = 0$	1.65 V to 5.5 V		1	1.4	V
				1.65 V	1.2			
				2.3 V	1.8			
			$I_{OH} = -8 \text{ mA}$	3 V	2.6			
	P-port high-	level output		4.5 V	4.1			
V _{OH}	voltage			1.65 V	1.1			V
			10 10 1	2.3 V	1.7			
			I _{OH} = -10 mA	3 V	2.5			
				4.5 V	4.0			
				1.65 V			0.45	
				2.3 V			0.25	
			I _{OL} = 8 mA	3 V			0.25	
	P-port low-le	evel output		4.5 V			0.2	
V _{OL}	voltage	·		1.65 V			0.6	V
			1 10 1	2.3 V			0.3	
			I _{OL} = 10 mA	3 V			0.25	
				4.5 V			0.2	
	SDA		V 04V	1.65 V to 5.5 V	3			m 1
OL	INT		V _{OL} = 0.4 V	1.65 V to 5.5 V	3	15		mA
	SCL, SDA		$V_I = V_{CCI}$ or GND	1.65 V to 5.5 V			±0.1	μA
I	ADDR, RESET		$V_I = V_{CCP}$ or GND	1.05 V 10 5.5 V			±0.1	μ, ,
н	P port		$V_I = V_{CCP}$	1.65 V to 5.5 V			1	μA
IL	P port		V _I = GND	1.05 V 10 5.5 V			1	μA
			V_{I} on SDA = V_{CCI} or GND,	3.6 V to 5.5 V		10	20	
		SDA, ting P port,	V_1 on P port, ADDR and RESET = V_{CCP} or GND, $I_0 = 0$, I/O = inputs, $f_{SCL} = 400$ kHz V_1 on SDA = V_{CC1} or GND,	2.3 V to 3.6 V		6.5	15	μΑ
	Operating			1.65 V to 2.3 V		4	9	
	mode	ADDR,		3.6 V to 5.5 V		2.5	5	
сс		RESET	V_{I} on P port, ADDR and RESET = V_{CCP} or GND,	2.3 V to 3.6 V		1.6	3.8	
$(I_{CCI} + I_{CCP})$			$I_O = 0$, $I/O = inputs$, $f_{SCL} = 100 \text{ kHz}$	1.65 V to 2.3 V		1	2.3	
			V_I on SCL and SDA = V_{CCI} or	3.6 V to 5.5 V		0.2	1	
	Standby	SCL, SDA, P port,	GND, V _I on P Port, ADDR and	2.3 V to 3.6 V		0.1	0.6	
	mode	ADDR, RESET	$\frac{V_{1} O F_{1}}{RESET} = V_{CCP} \text{ or GND,}$ $I_{O} = 0, I/O = \text{ inputs,}$ $f_{SCL} = 0$	1.65 V to 2.3 V		0.1	0.4	
ΔI _{CCI}	Additional current in	SCL, SDA	One input at $V_{CCI} - 0.6 V$, Other inputs at V_{CCI} or GND	1.65 V to 5.5 V			25	μA
∆I _{CCP}	standby mode	P port, ADDR, RESET	One input at $V_{CCP} - 0.6 V$, Other inputs at V_{CCP} or GND	1.65 V to 5.5 V			60	μA
C _i	SCL		V _I = V _{CCI} or GND	1.65 V to 5.5 V		6	7	pF
	SDA		$V_{IO} = V_{CCI}$ or GND			7	8	
C _{io}	P port		$V_{IO} = V_{CCP}$ or GND	1.65 V to 5.5 V		7.5	8.5	pF

 All typical values are at nominal supply voltage (1.8-V, 2.5-V, 3.3-V, or 5-V V_{CC}) and T_A = 25°C.
 When power (from 0 V) is applied to V_{CCP}, an internal power-on reset holds the TCA6408 in a reset condition until V_{CCP} has reached V_{POR}. At that time, the reset condition is released, and the TCA6408 registers and I²C/SMBus state machine initialize to their default states. After that, V_{CCP} must be lowered to below 0.2 V and back up to the operating voltage for a power-reset cycle.

6.5 I²C Interface Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 14)

		STANDARE I ² C BU		FAST MODI I ² C BUS	FAST MODE I ² C BUS	
		MIN	MAX	MIN	MAX	
f _{scl}	I ² C clock frequency	0	100	0	400	kHz
t _{sch}	I ² C clock high time	4		0.6		μs
t _{scl}	I ² C clock low time	4.7		1.3		μs
t _{sp}	I ² C spike time	0	50	0	50	ns
t _{sds}	I ² C serial data setup time	250		100		ns
t _{sdh}	I ² C serial data hold time	0		0		ns
t _{icr}	I ² C input rise time		1000	20 + 0.1C _b ⁽¹⁾	300	ns
t _{icf}	I ² C input fall time		300	20 + 0.1C _b ⁽¹⁾	300	ns
t _{ocf}	I ² C output fall time, 10-pF to 400-pF bus		300	20 + 0.1C _b ⁽¹⁾	300	μs
t _{buf}	I ² C bus free time between Stop and Start	4.7		1.3		μs
t _{sts}	I ² C Start or repeater Start condition setup time	4.7		0.6		μs
t _{sth}	I ² C Start or repeater Start condition hold time	4		0.6		μs
t _{sps}	I ² C Stop condition setup time	4		0.6		μs
t _{vd(data)}	Valid data time, SCL low to SDA output valid		1		1	μs
t _{vd(ack)}	Valid data time of ACK condition, ACK signal from SCL low to SDA (out) low		1		1	μs

(1) $C_b = total capacitance of one bus line in pF$

6.6 Reset Timing Requirements

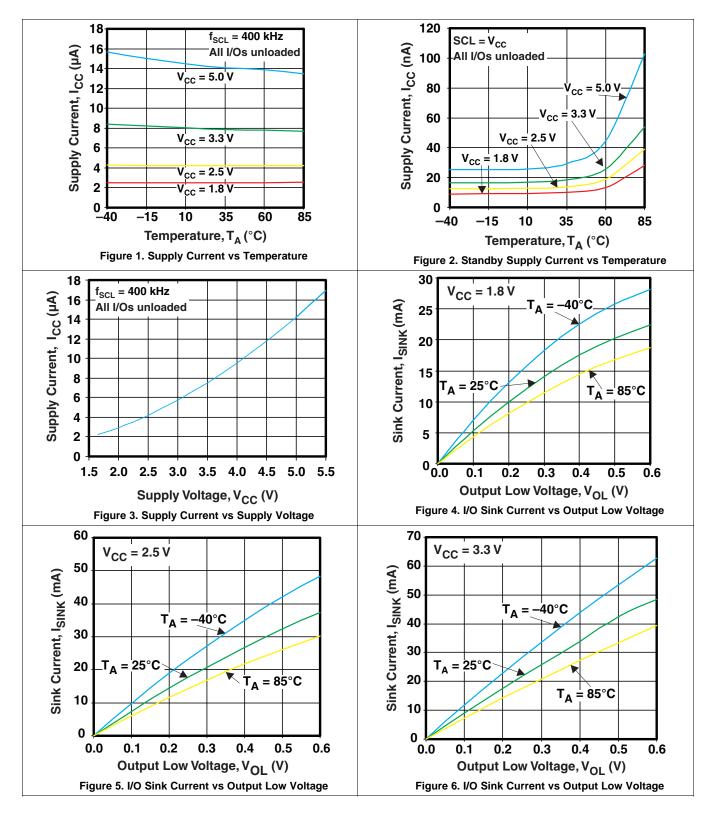
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 17)

		STANDARD I ² C BU		FAST MODE I ² C BUS		UNIT
		MIN	MAX	MIN	MAX	
t _W	Reset pulse duration	4		4		ns
t _{REC}	Reset recovery time	0		0		ns
t _{RESET}	Time to reset ⁽¹⁾	600		600		ns

(1) Minimum time for SDA to become high or minimum time to wait before doing a Start

6.7 Switching Characteristics

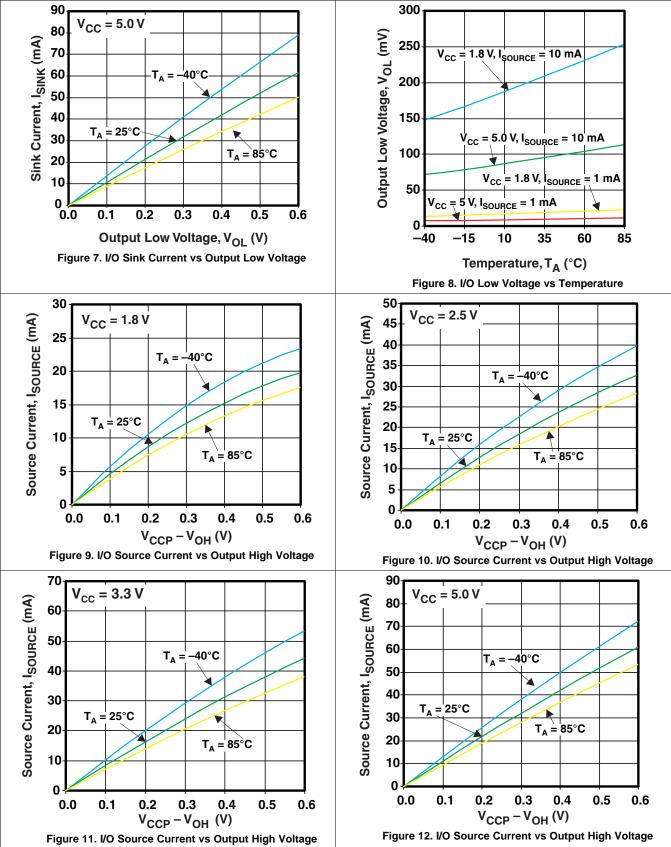
over recommended operating free-air temperature range, C_L ≤ 100 pF (unless otherwise noted) (see Figure 14)


PARAMETER		FROM	TO	STANDARD I I ² C BUS	FAST MODE I ² C BUS		UNIT	
		(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	
t _{iv}	Interrupt valid time	P Port	INT		4		4	μs
t _{ir}	Interrupt reset delay time	SCL	INT		4		4	μs
t _{pv}	Output data valid	SCL	P7–P0		400		400	ns
t _{ps}	Input data setup time	P Port	SCL	0		0		ns
t _{ph}	Input data hold time	P Port	SCL	300		300		ns

INSTRUMENTS

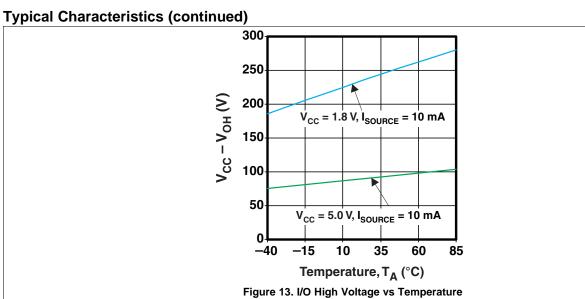
Texas

www.ti.com


6.8 Typical Characteristics

TEXAS INSTRUMENTS

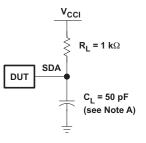
www.ti.com

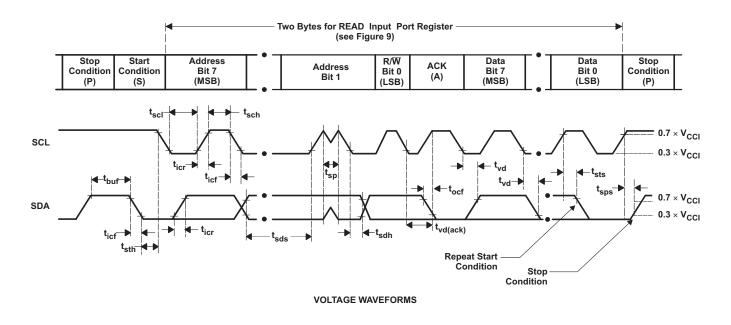


Copyright © 2007-2014, Texas Instruments Incorporated

TCA6408 SCPS151D-FEBRUARY 2007-REVISED JUNE 2014

10


Copyright © 2007–2014, Texas Instruments Incorporated

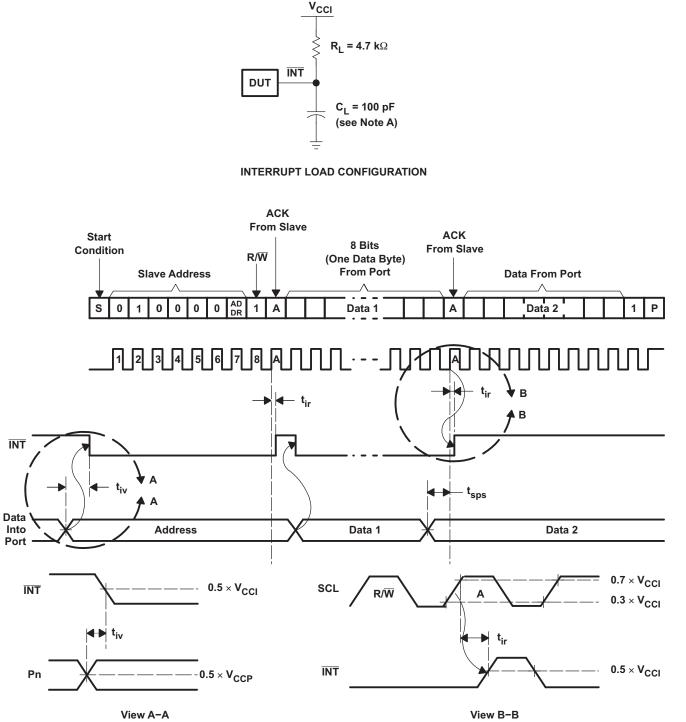

www.ti.com

7 Parameter Measurement Information

SDA LOAD CONFIGURATION

BYTE	DESCRIPTION
1	I ² C address
2	Input register port data

- A. C_L includes probe and jig capacitance. tocf is measured with C_L of 10 pF or 400 pF.
- B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f \leq 30 ns.
- C. All parameters and waveforms are not applicable to all devices.


Figure 14. I²C Interface Load Circuit And Voltage Waveforms

Not Recommended for New Designs

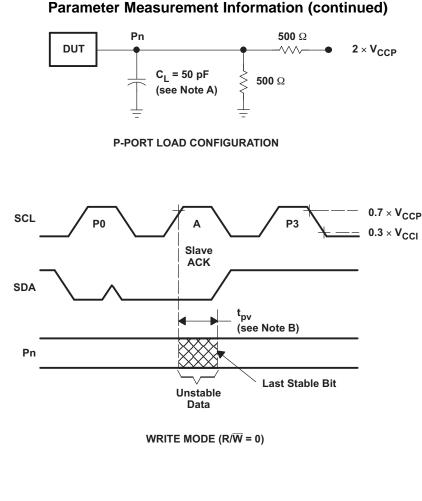
TEXAS INSTRUMENTS

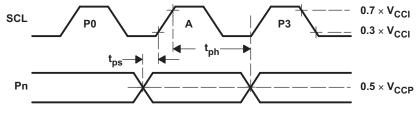
www.ti.com

A. C_L includes probe and jig capacitance.

B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f \leq 30 ns.

C. All parameters and waveforms are not applicable to all devices.

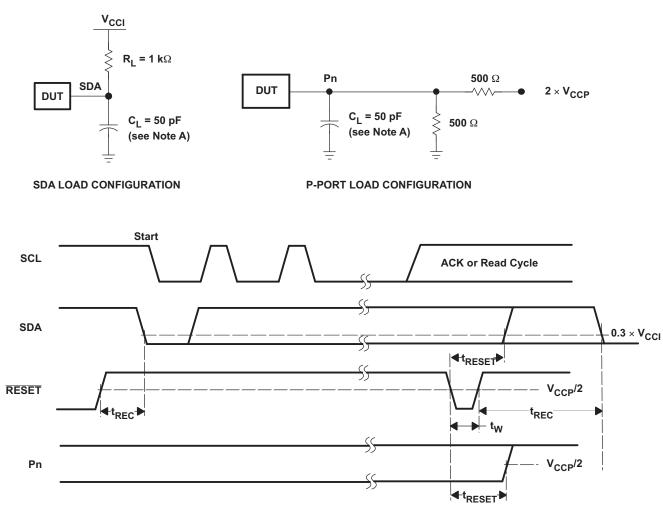

Figure 15. Interrupt Load Circuit And Voltage Waveforms



Not Recommended for New Designs

TCA6408 SCPS151D – FEBRUARY 2007 – REVISED JUNE 2014

www.ti.com


READ MODE (R/W = 1)

- A. C_L includes probe and jig capacitance.
- B. t_{pv} is measured from 0.7 × V_{CC} on SCL to 50% I/O (Pn) output.
- C. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f \leq 30 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 16. P-Port Load Circuit And Timing Waveforms

Texas Instruments

www.ti.com

Parameter Measurement Information (continued)

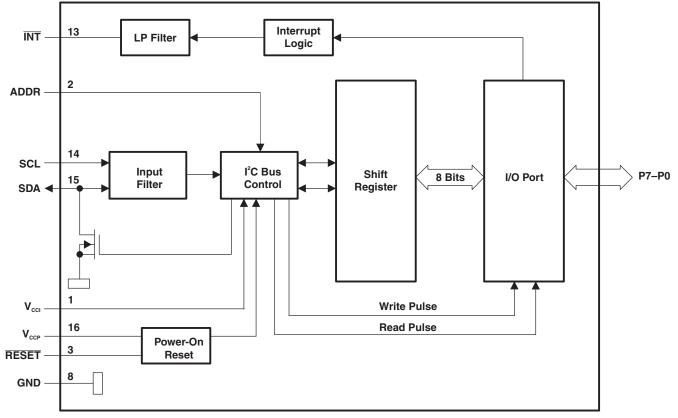

- A. C_L includes probe and jig capacitance.
- B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{r}/t_{f} \leq$ 30 ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. I/Os are configured as inputs.
- E. All parameters and waveforms are not applicable to all devices.

Figure 17. Reset Load Circuits And Voltage Waveforms

8 Detailed Description

8.1 Functional Block Diagram

A. All pin numbers shown are for the PW package.

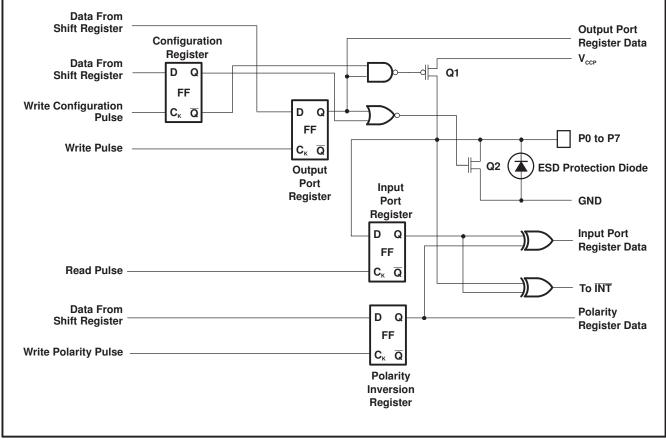

B. All I/Os are set to inputs at reset.

Figure 18. Logic Diagram (Positive Logic)

Texas Instruments

www.ti.com

Functional Block Diagram (continued)

A. On power up or reset, all registers return to default values.

Figure 19. Simplified Schematic Of P0 To P7

8.2 Device Functional Modes

8.2.1 Voltage Translation

Table 1 shows how to set up V_{CC} levels for the necessary voltage translation between the I²C bus and the TCA6408.

V _{CCI} (SCL AND SDA OF I ² C MASTER) (V)	V _{CCP} (P PORT) (V)
1.8	1.8
1.8	2.5
1.8	3.3
1.8	5
2.5	1.8
2.5	2.5
2.5	3.3
2.5	5
3.3	1.8
3.3	2.5
3.3	3.3
3.3	5
5	1.8
5	2.5
5	3.3
5	5

Table	1.	Voltage	Translation
-------	----	---------	-------------

8.2.2 Reset (RESET) Input

The RESET input can be asserted to intialize the system while keeping V_{CCP} at its operating level. A reset can be accomplished by holding the RESET pin low for a minimum of t_W . The TCA6408 registers and I²C/SMBus state machine are changed to their default state once RESET is low (0). When RESET is high (1), the I/O levels at the P port can be changed externally or through the master. This input requires a pullup resistor to V_{CCP} , if no active connection is used.

8.2.2.1 RESET Errata

If RESET voltage set higher than VCC, current will flow from RESET pin to VCC pin.

System Impact

VCC will be pulled above its regular voltage level

System Workaround

Design such that RESET voltage is same or lower than VCC

8.2.3 Power-On Reset

When power (from 0 V) is applied to V_{CCP} , an internal power-on reset holds the TCA6408 in a reset condition until V_{CCP} has reached V_{POR} . At that time, the reset condition is released, and the TCA6408 registers and I²C/SMBus state machine initialize to their default states. After that, V_{CCP} must be lowered to below 0.2 V and back up to the operating voltage for a power-reset cycle.

TCA6408

SCPS151D-FEBRUARY 2007-REVISED JUNE 2014

8.2.4 I/O Port

When an I/O is configured as an input, FETs Q1 and Q2 (in Figure 19) are off, which creates a high-impedance input. The input voltage may be raised above V_{CC} to a maximum of 5.5 V.

If the I/O is configured as an output, Q1 or Q2 is enabled depending on the state of the Output Port Register. In this case, there are low impedance paths between the I/O pin and either V_{CC} or GND. The external voltage applied to this I/O pin should not exceed the recommended levels for proper operation.

8.2.5 Interrupt (INT) Output

An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time t_{iv} , the signal INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original setting, data is read from the port that generated the interrupt or in a stop event. Resetting occurs in the read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal. Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and is transmitted as INT.

Reading from or writing to another device does not affect the interrupt circuit, and a pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur, if the state of the pin does not match the contents of the Input Port register.

In the TCA6408, an interrupt is not immediately generated by any rising or falling edge of port inputs in input mode after issuing any I²C commands (read or write). In order to capture the INT in the TCA6408, the user needs to add one more SCL clock pulse after a Stop signal.

The INT output has an open-drain structure and requires a pullup resistor to V_{CCP} or V_{CCI} depending on the application. If the INT signal is connected back to the processor that provides the SCL signal to the TCA6408, then the INT pin has to be connected to V_{CCI} . If not, the INT pin can be connected to V_{CCP} .

8.2.5.1 Interrupt Errata

The INT will be improperly de-asserted if the following two conditions occur:

1. The last I²C command byte (register pointer) written to the device was 00h.

NOTE

This generally means the last operation with the device was a Read of the input register. However, the command byte may have been written with 00h without ever going on to read the input register. After reading from the device, if no other command byte written, it will remain 00h.

2. Any other slave device on the I²C bus acknowledges an address byte with the R/W bit set high

System Impact

Can cause improper interrupt handling as the Master will see the interrupt as being cleared.

System Workaround

Minor software change: User must change command byte to something besides 00h after a Read operation to the TCA6408 device or before reading from another slave device.

NOTE

Software change will be compatible with other versions (competition and TI redesigns) of this device.

8.3 Programming

8.3.1 I²C Interface

The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply through a pullup resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

I²C communication with this device is initiated by a master sending a Start condition, a high-to-low transition on the SDA input/output, while the SCL input is high (see Figure 20). After the <u>Start</u> condition, the device address byte is sent, most significant bit (MSB) first, including the data direction bit (R/W).

After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/output during the high of the ACK-related clock pulse. The address (ADDR) input of the slave device must not be changed between the Start and the Stop conditions.

On the I²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (Start or Stop) (see Figure 21).

A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see Figure 20).

Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 22). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to ensure proper operation.

A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a Stop condition.

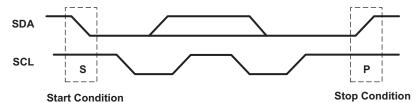


Figure 20. Definition Of Start And Stop Conditions

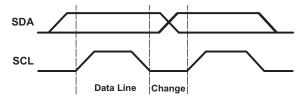
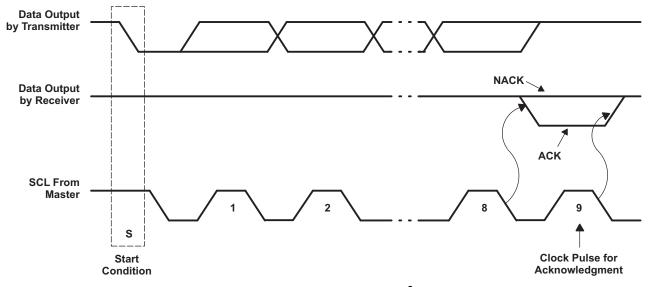


Figure 21. Bit Transfer

TCA6408


SCPS151D-FEBRUARY 2007-REVISED JUNE 2014

www.ti.com

NSTRUMENTS

ÈXAS

Programming (continued)

8.3.2 Register Map

Table 2. Interface Definition

BYTE				В	ΙТ			
DIIC	7 (MSB)	6	5	4	3	2	1	0 (LSB)
I ² C slave address	L	Н	L	L	L	L	ADDR	R/W
I/O data bus	P7	P6	P5	P4	P3	P2	P1	P0

8.3.2.1 Device Address

The address of the TCA6408 is shown in Figure 23.

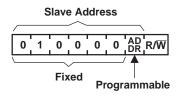


Figure 23. Tca6408 Address

Table 3. Address Reference

ADDR	I ² C BUS SLAVE ADDRESS
L	32 (decimal), 20 (hexadecimal)
Н	33 (decimal), 21 (hexadecimal)

The last bit of the slave address defines the operation (read or write) to be performed. A high (1) selects a read operation, while a low (0) selects a write operation.

8.3.2.2 Control Register And Command Byte

Following the successful acknowledgement of the address byte, the bus master sends a command byte, which is stored in the Control Register in the TCA6408. Two bits of this data byte state the operation (read or write) and the internal registers (Input, Output, Polarity Inversion, or Configuration) that will be affected. This register can be written or read through the I²C bus. The command byte is sent only during a write transmission.

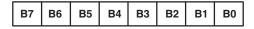


Figure 24. Control Register Bits

Table 4. Command Byte

		CONT	ROL RE	GISTER	BITS			COMMAND			POWER-UP
B7	B6	B5	B4	B3	B2	B1	B0	BYTE REGISTER PRO (HEX)		REGISTER PROTOCOL	
0	0	0	0	0	0	0	0	00	Input Port	Read byte	xxxx xxxx ⁽¹⁾
0	0	0	0	0	0	0	1	01	Output Port	Read/write byte	1111 1111
0	0	0	0	0	0	1	0	02	Polarity Inversion	Read/write byte	0000 0000
0	0	0	0	0	0	1	1	03	Configuration	Read/write byte	1111 1111

(1) Undefined

TCA6408

SCPS151D-FEBRUARY 2007-REVISED JUNE 2014

www.ti.com

8.3.2.3 Register Descriptions

The Input Port Register (register 0) reflects the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the Configuration Register. They act only on read operation. Writes to this register have no effect. The default value (X) is determined by the externally applied logic level. Before a read operation, a write transmission is sent with the command byte to indicate to the I²C device that the Input Port Register will be accessed next.

Table 5. Register	0 (Input Port	Register)
-------------------	---------------	-----------

BIT	I-7	I-6	I-5	I-4	I-3	I-2	I-1	I-0
DEFAULT	Х	Х	Х	Х	Х	Х	Х	Х

The Output Port Register (register 1) shows the outgoing logic levels of the pins defined as outputs by the Configuration Register. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this register reflect the value that is in the flip-flop controlling the output selection, not the actual pin value.

BIT	0-7	O-6	O-5	O-4	O-3	O-2	O-1	O-0
DEFAULT	1	1	1	1	1	1	1	1

The Polarity Inversion Register (register 2) allows polarity inversion of pins defined as inputs by the Configuration Register. If a bit in this register is set (written with 1), the corresponding port pin's polarity is inverted. If a bit in this register is cleared (written with a 0), the corresponding port pin's original polarity is retained.

Table 7. Register 2 (Polarity Inversion Register)

BIT	N-7	N-6	N-5	N-4	N-3	N-2	N-1	N-0
DEFAULT	0	0	0	0	0	0	0	0

The Configuration Register (register 3) configures the direction of the I/O pins. If a bit in this register is set to 1, the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit in this register is cleared to 0, the corresponding port pin is enabled as an output.

Table 8. Register 3 (Configuration Register)

BIT	C-7	C-6	C-5	C-4	C-3	C-2	C-1	C-0
DEFAULT	1	1	1	1	1	1	1	1

8.3.2.4 Bus Transactions

Data is exchanged between the master and TCA6408 through write and read commands.

8.3.2.4.1 Writes

Data is transmitted to the TCA6408 by sending the device address and setting the least significant bit (LSB) to a logic 0 (see Figure 23 for device address). The command byte is sent after the address and determines which register receives the data that follows the command byte. There is no limitation on the number of data bytes sent in one write transmission.

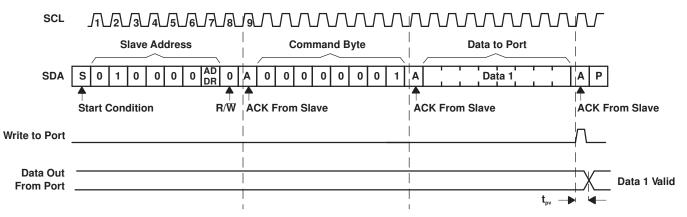


Figure 25. Write To Output Port Register

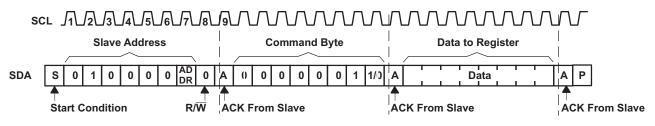


Figure 26. Write To Configuration Or Polarity Inversion Registers

TCA6408

SCPS151D-FEBRUARY 2007-REVISED JUNE 2014

8.3.2.4.2 Reads

The bus master first must send the TCA6408 address with the LSB set to a logic 0 (see Figure 23 for device address). The command byte is sent after the address and determines which register is accessed.

After a restart, the device address is sent again but, this time, the LSB is set to a logic 1. Data from the register defined by the command byte then is sent by the TCA6408 (see Figure 27 and Figure 28).

Data is clocked into the register on the rising edge of the ACK clock pulse.

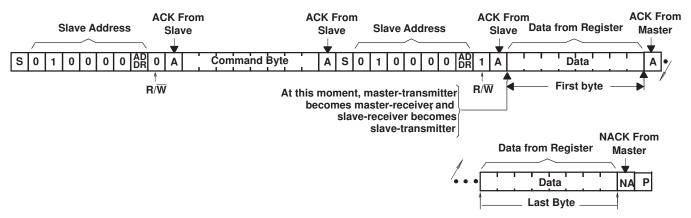
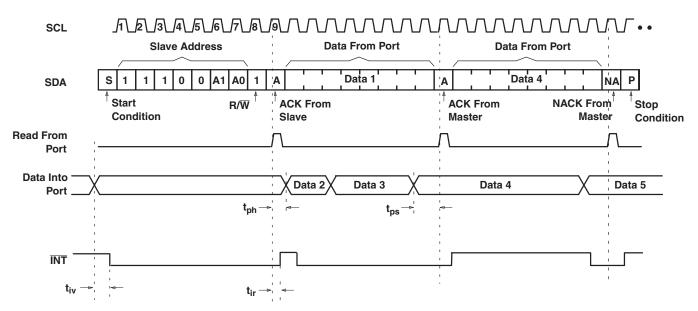
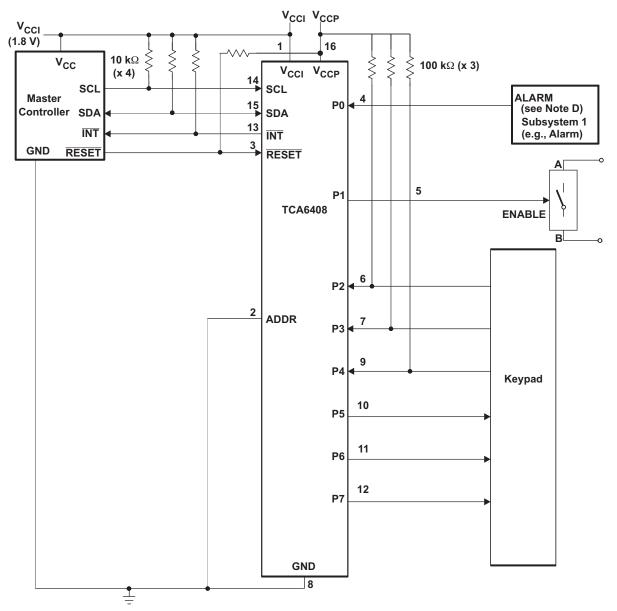



Figure 27. Read From Register

- A. Transfer of data can be stopped at any time by a Stop condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It is assumed that the command byte previously has been set to 00 (read Input Port Register).
- B. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address call and actual data transfer from P port (see Figure 27).


Figure 28. Read From Input Port Register

9 Application And Implementation

9.1 Typical Application

Figure 29 shows an application in which the TCA6408 can be used.

- A. Device address configured as 0100000 for this example.
- B. P0 and P2–P4 are configured as inputs.
- C. P1 and P5-P7 are configured as outputs.
- D. Resistors are required for inputs (on P port) that may float. If a driver to an input will never let the input float, a resistor is not needed. Outputs (in the P port) do not need pullup resistors.

Figure 29. Typical Application

TEXAS INSTRUMENTS

www.ti.com

Typical Application (continued)

9.1.1 Design Requirements

9.1.1.1 Minimizing I_{CC} When I/O Is Used To Control Leds

When the I/Os are used to control LEDs, normally they are connected to V_{CC} through a resistor as shown in Figure 29. The LED acts as a diode so when the LED is off, the I/O V_{IN} is about 1.2 V less than V_{CC}. The ΔI_{CC} parameter in Electrical Characteristics shows how I_{CC} increases as V_{IN} becomes lower than V_{CC}. Designs that must minimize current consumption, such as battery power applications, should consider maintaining the I/O pins greater than or equal to V_{CC} when the LED is off.

Figure 30 shows a high-value resistor in parallel with the LED. Figure 31 shows V_{CC} less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O V_{IN} at or above V_{CC} and prevent additional supply current consumption when the LED is off.

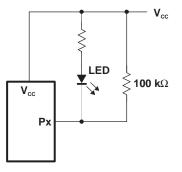


Figure 30. High-Value Resistor In Parallel With Led

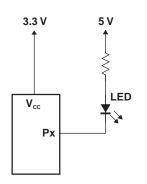


Figure 31. Device Supplied By A Low Voltage

10 Device and Documentation Support

10.1 Trademarks

All trademarks are the property of their respective owners.

10.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

10.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated