Micropower Operation ... $1 \mu \mathrm{~A} /$ Channel

- Rail-to-Rail Input/Output
- Gain Bandwidth Product . . . 5.5 kHz
- Supply Voltage Range . . . 2.5 V to 12 V
- Specified Temperature Range
- $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. . . Commercial Grade
$-\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. . . Industrial Grade
- Ultrasmall Packaging
- 5-Pin SOT-23 (TLV2241)
- 8-Pin MSOP (TLV2242)

- Universal OpAmp EVM

description

The TLV224x family of single-supply operational amplifiers offers very low supply current of only $1 \mu \mathrm{~A}$ per channel.
The low supply current is coupled with extremely low input bias currents enabling them to be used with mega- Ω resistors making them ideal for portable, long active life, applications. DC accuracy is ensured with a low typical offset voltage as low as $600 \mu \mathrm{~V}$, CMRR of 100 dB , and minimum open loop gain of $100 \mathrm{~V} / \mathrm{mV}$ at 2.7 V .
The maximum recommended supply voltage is as high as 12 V and ensured operation down to 2.5 V , with electrical characteristics specified at $2.7 \mathrm{~V}, 5 \mathrm{~V}$ and 12 V . The $2.5-\mathrm{V}$ operation makes it compatible with Li-Ion battery-powered systems and many micropower microcontrollers available today including TI's MSP430.

FAMILY PACKAGE TABLE

DEVICE	NO. OF Ch	PACKAGE TYPES					UNIVERSAL EVM
		PDIP	SOIC	SOT-23	TSSOP	MSOP	
TLV2241	1	8	8	5	-	-	Refer to the EVM Selection Guide (Lit\# SLOU060)
TLV2242	2	8	8	-	-	8	
TLV2244	4	14	14	-	14	-	

SELECTION OF SINGLE SUPPLY OPERATIONAL AMPLIFIER PRODUCTS \dagger

DEVICE	$\mathbf{V}_{\mathbf{D D}}$ (\mathbf{V})	$\mathbf{V}_{\mathbf{I O}}$ $(\mathbf{m V})$	$\mathbf{B W}$ $(\mathbf{M H z})$	SLEW RATE $(\mathbf{V} / \mu \mathbf{s})$	IDD (PER CHANNEL) $(\mu \mathbf{A})$	RAIL-TO-RAIL
TLV240x \ddagger	$2.5-16$	0.390	0.005	0.002	0.880	I / O
TLV224x	$2.5-12$	0.600	0.005	0.002	1	I / O
TLV2211	$2.7-10$	0.450	0.065	0.025	13	0
TLV245x	$2.7-6$	0.020	0.22	0.110	23	I / O
TLV225x	$2.7-8$	0.200	0.2	0.12	35	O

\dagger All specifications are typical values measured at 5 V .
\ddagger This device also offers $18-\mathrm{V}$ reverse battery protection and 5 - V over-the-rail operation on the inputs.

TLV2241 AVAILABLE OPTIONS					
		PACKAGED DEVICES			
T_{A}	AT $25^{\circ} \mathrm{C}$	SMALL OUTLINE \dagger (D)	$\begin{aligned} & \hline \text { SOT-23 } \\ & (\mathrm{DBV}) \end{aligned}$	SYMBOLS	PLASTIC DIP (P)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		TLV2241CD	-	-	-
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$3000 \mu \mathrm{~V}$	TLV2241ID	TLV2241IDBV	VBEI	TLV2241IP

\dagger This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2241CDR).
\ddagger This package is available in a 250 piece mini-reel. To order this package, add a T suffix to the part number (e.g., TLV2241DBVT). This package is also available in a 3000 piece reel, add a R suffix to the part number (e.g., TLV2241DBVR).

TLV2242 AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	VIOmax AT $25^{\circ} \mathrm{C}$	PACKAGED DEVICES			
		MSOP† (DGK)	SYMBOLS	PLASTIC DIP (P)	
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$3000 \mu \mathrm{~V}$	TLV2242CD	-	-	-
		TLV2242IDGK	xxTIALE	TLV2242IP	

\dagger This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2242CDR).

TLV2244 AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	$\mathbf{V}_{\text {IOmax }}$ AT $25^{\circ} \mathbf{C}$	PACKAGED DEVICES		
		SMAL OUTLINE \dagger (D)	PLASTIC DIP (N)	TSSOP (PW)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$3000 \mu \mathrm{~V}$	TLV2244CD	-	-
		TLV2244ID	TLV2244IN	TLV2244IPW

\dagger This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2244CDR).

TLV224x PACKAGE PINOUTS

TLV2241
D OR P PACKAGE (TOP VIEW)

NC - No internal connection
TLV2244
D, N, OR PW PACKAGE
(TOP VIEW)

TLV2242
D, DGK, OR P PACKAGE (TOP VIEW)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage, $\mathrm{V}_{\text {CC }}$ (see Note 1)	16.5 V
Differential input voltage, $\mathrm{V}_{\text {ID }}$	$\pm \mathrm{V}_{\mathrm{CC}}$
Input current, II (any input)	$\pm 10 \mathrm{~mA}$
Output current, Io	$\pm 10 \mathrm{~mA}$
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}: ~ \mathrm{C}$ suffix	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
I suffix	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Maximum junction temperature, T_{J}	$150^{\circ} \mathrm{C}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
	$260^{\circ} \mathrm{C}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values, except differential voltages, are with respect to GND
DISSIPATION RATING TABLE

PACKAGE	$\begin{gathered} \text { OJC } \\ \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	$\begin{gathered} \Theta_{\mathrm{JA}} \\ \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ POWER RATING
D (8)	38.3	176	710 mW	142 mW
D (14)	26.9	122.6	1022 mW	204.4 mW
DBV (5)	55	324.1	385 mW	77.1 mW
DGK (8)	54.2	259.9	481 mW	96.2 mW
N(14)	32	78	1600 mW	320.5 mW
P (8)	41	104	1200 mW	240.4 mW
PW (14)	29.3	173.6	720 mW	144 mW

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V_{CC}	Single supply	2.5	12	V
	Split supply	± 1.25	± 6	
Common-mode input voltage range, VICR^{2}	0	$\mathrm{~V}_{\mathrm{CC}}$	V	
Operating free-air temperature, T_{A}	C-suffix	0	70	C
		I-suffix	-40	

electrical characteristics at recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=2.7,5 \mathrm{~V}$, and 12 V (unless otherwise noted) ${ }^{\ddagger}$
dc performance

PARAMETER	TEST CONDITIONS		TA ${ }^{\dagger}$	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\mathrm{IO}} \quad$ Input offset voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$		$25^{\circ} \mathrm{C}$		600	3000	$\mu \mathrm{V}$
			Full range			4500	
α VIO Offset voltage drift			$25^{\circ} \mathrm{C}$		3		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
CMRR Common-mode rejection ratio	$\mathrm{V}_{\text {IC }}=0$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{R}_{\text {S }}=50 \Omega$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	55	100		dB
			Full range	50			
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	60	100		
			Full range	53			
		$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	60	100		
			Full range	55			
AVD $\begin{aligned} & \text { Large-signal differential voltage } \\ & \text { amplification }\end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}(\mathrm{pp})=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	100	400		V/mV
			Full range	30			
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}(\mathrm{pp})=3 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	250	1000		
			Full range	100			
	$\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}(\mathrm{pp})}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$		$25^{\circ} \mathrm{C}$	700	1500		
			Full range	120			

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the C suffix and $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the I suffix. If not specified, full range is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
input characteristics

	PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	MIN	TYP	MAX	UNIT	
IIO Input offset current		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega \end{aligned}$		$25^{\circ} \mathrm{C}$		25	250	pA	
		TLV224xC	Full range			300			
		TLV224x\|				400			
IIB	Input bias current			$25^{\circ} \mathrm{C}$		100	500	pA	
			TLV224xC	Full range			550		
			TLV224xI				1000		
$\mathrm{r}_{\mathrm{i}}(\mathrm{d})$	Differential input resistance				$25^{\circ} \mathrm{C}$		300		$\mathrm{M} \Omega$
$\mathrm{C}_{\mathrm{i}(\mathrm{c})}$	Common-mode input capacitance		$\mathrm{f}=100 \mathrm{kHz}$		$25^{\circ} \mathrm{C}$		3		pF

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the C suffix and $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the I suffix. If not specified, full range is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
\ddagger Specifications at 5 V are ensured by design and device testing at 2.7 V and 12 V .

electrical characteristics at recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=2.7,5 \mathrm{~V}$, and 12 V (unless otherwise noted) \ddagger (continued)

output characteristics

PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathbf{A}}{ }^{\dagger}$	MIN	TYP	MAX	UNIT
VOH High-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2, \\ & \mathrm{IOH}=-2 \mu \mathrm{~A} \end{aligned}$	$V_{C C}=2.7 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	2.65	2.68		V
			Full range	2.63			
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	4.95	4.98		
			Full range	4.93			
		$V_{C C}=12 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	11.95	11.98		
			Full range	11.93			
	$\begin{aligned} & \mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2, \\ & \mathrm{IOH}=-50 \mu \mathrm{~A} \end{aligned}$	$V_{C C}=2.7 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	2.62	2.65		
			Full range	2.6			
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	4.92	4.95		
			Full range	4.9			
		$\mathrm{V}_{C C}=12 \mathrm{~V}$	$25^{\circ} \mathrm{C}$	11.92	11.95		
			Full range	11.9			
Low-level output voltage	$\mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2, \quad \mathrm{IOL}=2 \mu \mathrm{~A}$		$25^{\circ} \mathrm{C}$		90	150	mV
			Full range			180	
	V IC $=\mathrm{V}_{\text {CC }} / 2, \quad \mathrm{IOL}=50 \mu \mathrm{~A}$		$25^{\circ} \mathrm{C}$		180	230	
			Full range			260	
IO Output current	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ from rail		$25^{\circ} \mathrm{C}$		± 200		$\mu \mathrm{A}$

\dagger Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the C suffix and $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the I suffix. If not specified, full range is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
power supply

	PARAMETER	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}{ }^{\dagger}$	MIN	TYP	MAX	UNIT
ICC	Supply current (per channel)	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} / 2$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ or 5 V	$25^{\circ} \mathrm{C}$		980	1200	nA
				Full range			1500	
			$\mathrm{V}_{C C}=12 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		1000	1250	
				Full range			1550	
PSRR	Power supply rejection ratio $\left(\Delta \mathrm{V}_{\mathrm{CC}} / \Delta \mathrm{V}_{\mathrm{IO}}\right)$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \text { to } 5 \mathrm{~V} \text {, } \\ & \mathrm{V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{~V}, \\ & \text { No load, } \end{aligned}$		$25^{\circ} \mathrm{C}$	70	100		dB
			TLV224xC	Full range	65			
			TLV224xI		60			dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \text { to } 12 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{IC}}=\mathrm{V}_{\mathrm{CC}} / 2 \mathrm{~V}, \\ & \text { No load } \end{aligned}$		$25^{\circ} \mathrm{C}$	70	100		dB
				Full range	70			

[^0]electrical characteristics at recommended operating conditions, $\mathrm{V}_{\mathrm{CC}}=2.7,5 \mathrm{~V}$, and 12 V (unless otherwise noted) \ddagger (continued)
dynamic performance

noise/distortion performance

PARAMETER		TEST CONDITIONS	$\mathrm{T}_{\text {A }}$	MIN	TYP	MAX	UNIT
V_{n}	Equivalent input noise voltage	$\mathrm{f}=10 \mathrm{~Hz}$	$25^{\circ} \mathrm{C}$		800		$\mathrm{nV} / \mathrm{NHz}$
		$\mathrm{f}=100 \mathrm{~Hz}$			500		
In_{n}	Equivalent input noise current	$\mathrm{f}=100 \mathrm{~Hz}$			8		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$

\ddagger Specifications at 5 V are ensured by design and device testing at 2.7 V and 12 V .

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
$\mathrm{V}_{1 \mathrm{O}}$	Input offset voltage	vs Common-mode input voltage	1, 2, 3
		vs Free-air temperature	4, 6, 8
IB	Input bias current	vs Common-mode input voltage	5, 7, 9
	Input offet current	vs Free-air temperature	4, 6, 8
IO	Input offset current	vs Common-mode input voltage	5, 7, 9
CMRR	Common-mode rejection ratio	vs Frequency	10
V_{OH}	High-level output voltage	vs High-level output current	11, 13, 15
V_{OL}	Low-level output voltage	vs Low-level output current	12, 14, 16
$\mathrm{V}_{\mathrm{O}}(\mathrm{PP})$	Output voltage peak-to-peak	vs Frequency	17
Z_{0}	Output impedance	vs Frequency	18
ICC	Supply current	vs Supply voltage	19
PSRR	Power supply rejection ratio	vs Frequency	20
AVD	Differential voltage gain	vs Frequency	21
	Phase	vs Frequency	21
	Gain-bandwidth product	vs Supply voltage	22
SR	Slew rate	vs Free-air temperature	23
ϕ_{m}	Phase margin	vs Capacitive load	24
	Gain margin	vs Capacitive load	25
	Voltage noise over a 10 Second Period		26
	Large-signal voltage follower		27, 28, 29
	Small-signal voltage follower		30
	Large-signal inverting pulse response		31, 32, 33
	Small-signal inverting pulse response		34
	Crosstalk	vs Frequency	35

TYPICAL CHARACTERISTICS

Figure 1

INPUT BIAS / OFFSET CURRENT
vs

Figure 4
INPUT BIAS / OFFSET CURRENT vs COMMON-MODE INPUT voltage

Figure 7

Figure 2
INPUT BIAS / OFFSET CURRENT vs COMMON MODE INPUT VOLTAGE

Figure 5

INPUT BIAS / OFFSET CURRENT
vs
FREE-AIR TEMPERATURE

Figure 8

INPUT OFFSET VOLTAGE
vs COMMON-MODE INPUT VOLTAGE

Figure 3

INPUT BIAS / OFFSET CURRENT
vs
FREE-AIR TEMPERATURE

Figure 6
INPUT BIAS / OFFSET CURRENT
vs COMMON-MODE INPUT VOLTAGE

Figure 9

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Figure 25

LARGE SIGNAL FOLLOWER

 PULSE RESPONSE

Figure 27

LARGE SIGNAL FOLLOWER PULSE RESPONSE

Figure 29

VOLTAGE NOISE OVER A 10 SECOND PERIOD

Figure 26

LARGE SIGNAL FOLLOWER PULSE RESPONSE

Figure 28
SMALL SIGNAL FOLLOWER PULSE RESPONSE

Figure 30

TYPICAL CHARACTERISTICS

Figure 31

Figure 33

Figure 32
SMALL SIGNAL INVERTING PULSE RESPONSE

Figure 34

Figure 35

APPLICATION INFORMATION

offset voltage

The output offset voltage, $\left(\mathrm{V}_{\mathrm{OO}}\right)$ is the sum of the input offset voltage $\left(\mathrm{V}_{\mathrm{IO}}\right)$ and both input bias currents $\left(\mathrm{l}_{\mathrm{IB}}\right)$ times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

$$
\mathrm{v}_{\mathrm{OO}}=\mathrm{v}_{\mathrm{IO}}\left(1+\left(\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{G}}}\right)\right) \pm \mathrm{I}_{\mathrm{IB}+} \mathrm{R}_{\mathrm{S}}\left(1+\left(\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{G}}}\right)\right) \pm \mathrm{I}_{\mathrm{IB}-} \mathrm{R}_{\mathrm{F}}
$$

Figure 36. Output Offset Voltage Model

general configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 37).

$\mathrm{f}_{-3 \mathrm{~dB}}=\frac{1}{2 \pi \mathrm{R} 1 \mathrm{C} 1}$
$\frac{V_{O}}{V_{1}}=\left(1+\frac{R_{F}}{R_{G}}\right)\left(\frac{1}{1+s R 1 C 1}\right)$

Figure 37. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

$\mathbf{R 1}=\mathbf{R} \mathbf{2}=\mathbf{R}$
$C 1=C 2=C$
Q = Peaking Factor
(Butterworth $\mathrm{Q}=0.707$)
$f_{-3 d B}=\frac{1}{2 \pi R C}$
$R_{G}=\frac{R_{F}}{\left(2-\frac{1}{Q}\right)}$

Figure 38. 2-Pole Low-Pass Sallen-Key Filter

APPLICATION INFORMATION

circuit layout considerations

To achieve the levels of high performance of the TLV224x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following.

- Ground planes-lt is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling-Use a $6.8-\mu \mathrm{F}$ tantalum capacitor in parallel with a $0.1-\mu \mathrm{F}$ ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a $0.1-\mu \mathrm{F}$ ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the $0.1-\mu \mathrm{F}$ capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets-Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation.
- Short trace runs/compact part placements-Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier.
- Surface-mount passive components-Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible.

APPLICATION INFORMATION

general power dissipation considerations

For a given θ_{JA}, the maximum power dissipation is shown in Figure 39 and is calculated by the following formula:

Where:

$$
P_{D}=\left(\frac{T_{M A X}{ }^{-T} A}{\theta_{J A}}\right)
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}}=\text { Maximum power dissipation of THS224x IC (watts) } \\
& \mathrm{T}_{\mathrm{MAX}}=\text { Absolute maximum junction temperature }\left(150^{\circ} \mathrm{C}\right) \\
& \mathrm{T}_{\mathrm{A}}=\text { Free-ambient air temperature }\left({ }^{\circ} \mathrm{C}\right) \\
& \theta_{\mathrm{JA}}=\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}} \\
& \\
& \\
& \theta_{\mathrm{JC}}=\text { Thermal coefficient from junction to case } \\
& \theta_{\mathrm{CA}}=\text { Thermal coefficient from case to ambient air }\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{aligned}
$$

MAXIMUM POWER DISSIPATION
vs
FREE-AIR TEMPERATURE

NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.
Figure 39. Maximum Power Dissipation vs Free-Air Temperature

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim Parts ${ }^{\text {TM }}$ Release 8, the model generation software used with Microsim PSpice ${ }^{\text {TM }}$. The Boyle macromodel (see Note 2) and subcircuit in Figure 40 are generated using the TLV224x typical electrical and operating characteristics at $T_{A}=25^{\circ} \mathrm{C}$. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Unity-gain frequency
- Maximum negative output voltage swing
- Slew rate
- Common-mode rejection ratio
- Quiescent power dissipation
- Phase margin
- Input bias current
- DC output resistance
- Open-loop voltage amplification
- AC output resistance
- Short-circuit output current limit

NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", IEEE Journal of Solid-State Circuits, SC-9, 353 (1974).

Figure 40. Boyle Macromodels and Subcircuit

[^1]
PACKAGE OPTION ADDENDUM

www.ti.com
18-Apr-2016

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TLV2241ID	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	22411	Samples
TLV2241IDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBEI	Samples
TLV2241IDBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBEI	Samples
TLV2241IDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBEI	Samples
TLV2241IDBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	VBEI	Samples
TLV2241IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	22411	Samples
TLV2241IP	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2241I	Samples
TLV2241IPE4	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2241I	Samples
TLV2242CD	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2242C	Samples
TLV2242CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2242C	Samples
TLV2242CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2242C	Samples
TLV2242ID	ACTIVE	SOIC	D	8	75	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	22421	Samples
TLV2242IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	22421	Samples
TLV2242IDGK	ACTIVE	VSSOP	DGK	8	80	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	ALE	Samples
TLV2242IDGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	ALE	Samples
TLV2242IDGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	ALE	Samples
TLV2242IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	22421	Samples

18-Apr-2016

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking \qquad (4/5)	Samples
TLV2242IP	ACTIVE	PDIP	P	8	50	Pb -Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2242I	Samples
TLV2244CD	ACTIVE	SOIC	D	14	50	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TLV2244C	Samples
TLV2244ID	ACTIVE	SOIC	D	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLV2244I	Samples
TLV2244IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLV2244I	Samples
TLV2244IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TLV2244I	Samples
TLV2244IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TLV2244I	Samples
TLV2244IPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	22441	Samples
TLV2244IPWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS \& no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	22441	Samples
TLV2244IPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	22441	Samples
TLV2244IPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	22441	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 (iameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TLV2241IDBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | |
| TLV2241IDBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | |
| TLV2241IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | |
| TLV2241IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | |
| TLV2242CDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | |
| TLV2242IDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | |
| TLV2242IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | |
| TLV2244IDR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | |
| TLV2244IPWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV2241IDBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TLV2241IDBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TLV2241IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2241IDR	SOIC	D	8	2500	367.0	367.0	38.0
TLV2242CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2242IDGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
TLV2242IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2244IDR	SOIC	D	14	2500	367.0	367.0	38.0
TLV2244IPWR	TSSOP	PW	14	2000	367.0	367.0	35.0

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Refernce JEDEC MO-178.

SOLDER MASK DETAILS

NOTES: (continued)
4. Publication IPC-7351 may have alternate designs.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X

NOTES: (continued)
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
7. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G14)
PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
(D) Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AB.

D (R-PDSO-G14)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
(D) Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G8)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shal not exceed $0.006(0,15)$ each side.
D. Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side
E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
$P(R-P D I P-T 8)$
PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
D Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
E. Falls within JEDEC MO-187 variation AA, except interlead flash.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Tl's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.
Tl's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate Tl products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.
Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such Tl Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

[^0]: † Full range is $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ for the C suffix and $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ for the I suffix. If not specified, full range is $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
 \ddagger Specifications at 5 V are ensured by design and device testing at 2.7 V and 12 V .

[^1]: PSpice and Parts are trademarks of MicroSim Corporation.

