

Sample &

Buy

TPS2052C, TPS2062C, TPS2062C-2, TPS2066C, TPS2066C-2 TPS2060C, TPS2064C, TPS2064C-2, TPS2002C, TPS2003C

SLVSAX6H-OCTOBER 2011-REVISED DECEMBER 2015

TPS20xxC, TPS20xxC-2 Dual Channel, Current-Limited, Power-Distribution Switches

1 Features

Texas

• Dual Power Switch Family

INSTRUMENTS

- Rated Currents of 0.5 A, 1 A, 1.5 A, 2 A
- Accurate ±20% Current Limit Tolerance
- Fast Overcurrent Response 2 µs (Typical)
- 70-mΩ (Typical) High-Side N-Channel MOSFET
- Operating Range: 4.5 V to 5.5 V
- Deglitched Fault Reporting (FLTx)
- Selected Parts With (TPS20xxC) and Without (TPS20xxC-2) Output Discharge
- Reverse Current Blocking
- Built-in Softstart
- Pin for Pin With Existing TI Switch Portfolio
- Ambient Temperature Range: -40°C to 85°C

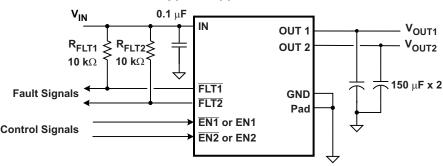
2 Applications

- USB Ports or Hubs, Laptops, Desktops
- High-Definition Digital TVs
- Set Top Boxes
- Short Circuit Protection

3 Description

Tools &

Software


The TPS20xxC and TPS20xxC-2 dual powerdistribution switch family is intended for applications such as USB where heavy capacitive loads and short-circuits may be encountered. This family offers multiple devices with fixed current-limit thresholds for applications between 0.5 A and 2 A.

The TPS20xxC and TPS20xxC-2 dual family limits the output current to a safe level by operating in a constant-current mode when the output load exceeds the current-limit threshold. This provides a predictable fault current under all conditions. The fast overcurrent response time eases the burden on the main 5 V supply to provide regulated power when the output is shorted. The power-switch rise and fall times are controlled to minimize current surges during turnon and turnoff.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)			
TPS2052C TPS2062C TPS2066C TPS2066C-2 TPS2060C TPS2064C TPS2064C-2	MSOP (8)	3.00 mm × 3.00 mm			
TPS2062C TPS2066C	SOIC (8)	3.90 mm × 4.90 mm			
TPS2062C-2	SON (8)	3.00 mm × 3.00 mm			
TPS2002C TPS2003C	VSON (10)	3.00 mm × 3.00 mm			

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application

Table of Contents

1	Fea	tures 1		
2	Applications 1			
3	Des	cription 1		
4	Rev	ision History 2		
5	Dev	ice Comparison Table 4		
6	Pin	Configuration and Functions 5		
7	Spe	cifications6		
	7.1	Absolute Maximum Ratings 6		
	7.2	ESD Ratings6		
	7.3	Recommended Operating Conditions 6		
	7.4	Thermal Information7		
	7.5	Electrical Characteristics: $T_J = T_A = 25^{\circ}C7$		
	7.6	Electrical Characteristics: $-40^{\circ}C \le (T_J = T_A) \le 125^{\circ}C$		
	7.7	Typical Characteristics		
8	Para	ameter Measurement Information 14		
9	Deta	ailed Description 16		
	9.1	Overview		
	9.2	Functional Block Diagram 16		
	9.3	Feature Description 17		

	9.4	Device Functional Modes	18
10	Appl	lication and Implementation	. 19
	10.1	Application Information	19
	10.2	Typical Application	19
11	Pow	er Supply Recommendations	. 21
	11.1	Self-Powered and Bus-Powered Hubs	21
	11.2	Low-Power Bus-Powered and High-Power Bus-	
	F	Powered Functions	21
12	Layo	out	. 21
	12.1	Layout Guidelines	21
	12.2	Layout Example	21
	12.3	Power Dissipation and Junction Temperature	22
13	Devi	ce and Documentation Support	. 23
	13.1	Related Links	23
	13.2	Community Resources	23
	13.3	Trademarks	23
	13.4	Electrostatic Discharge Caution	23
	13.5	Glossary	23
14	Mecl	hanical, Packaging, and Orderable	
		mation	. 23

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision G (January 2013) to Revision H

Page

•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation
	section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and
	Mechanical, Packaging, and Orderable Information section

Changes from Revision F (November 2012) to Revision G

•	Changed device TPS2062C-2 SON-8 packages From: Preview To: Active
•	Changed devices TPS2066C-2, and TPS2064C-2 MSOP-8 package From: Preview To: Active

Changes from Revision E (August 2012) to Revision F

Page

Page

•	Changed Feature from: Rated Currents of 1 A, 1.5 A, 2 A to: Rated Currents of 0.5 A, 1 A, 1.5 A, 2 A Changed Feature from: Output Discharge When Disabled to: Selected parts with (TPS20xxC) and without (TPS20xxC-2) Output Discharge	
•	Added TPS2052C, TPS2062C-2, TPS2064C-2, and TPS2066C-2 devices to Table 1	
•	Added TPS2052C, TPS2062C-2, TPS2064C-2, and TPS2066C-2 devices to Table 2	4
•	Added TPS2052C, TPS2062C-2, TPS2064C-2, and TPS2066C-2 devices to RECOMMENDED OPERATING CONDITIONS table	6
•	Added TPS2052C and TPS2066C-2 devices to r _{DS(on)}	. 8
•	Added the TPS2052C and TPS2064C-2 devices to I _{os}	8
•	Added Leakage current to Electrical Characteristics table	. 8
•	Added text to the SOFTSTART, REVERSE BLOCKING AND DISCHARGE OUTPUT section	18
•	Added last paragraph in the DISCHARGE OUTPUT section	18

TPS2052C, TPS2062C, TPS2062C-2, TPS2066C, TPS2066C-2 TPS2060C, TPS2064C, TPS2064C-2, TPS2002C, TPS2003C

SLVSAX6H-OCTOBER 2011-REVISED DECEMBER 2015

Cha	inges from Revision D (July 2012) to Revision E	Page
•	Changed devices TPS2002C and TPS2003C SON-10 package From: Preview To: Active	4
•	Changed the I _{OS} current limit values for TPS2002C and 03C (2 A)	8
•	Corrected Note 2 reference in the Electrical Characteristics table	
Cha	inges from Revision C (June 2012) to Revision D	Page
•	Changed the Device Information table, Package Devices and Marking columns	4
Cha	inges from Revision B (March 2012) to Revision C	Page
•	Changed devices TPS2062C and TPS2066C SOIC-8 package From: Preview To: Active	4
•	Changed the TPS2062C and 66C $r_{DS(on)}$ D package TYP value From: 84 to 90 m Ω	
Cha	inges from Revision A (March 2012) to Revision B	Page
•	Changed device TPS2060C MSOP-8 package From: Preview To: Active	4
Cha	inges from Original (October 2011) to Revision A	Page
•	Changed devices TPS2062C and TPS2066C MSOP-8 package From: Preview to Active	4
•	Changed the I _{os} current limit values for TPS2062C/66C (1 A)	8

Submit Documentation Feedback

5 Device Comparison Table

Table 1. Devices

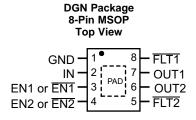
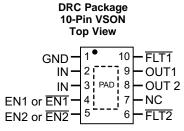
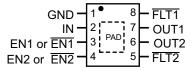

		STATUS				
DEVICES	RATED CURRENT	MSOP-8 (PowerPad™)	SOIC-8	SON-8	VSON-10	
TPS2052C	0.5 A	Active	—	—	—	
TPS2062C TPS2066C	1 A	Active and Active	Active and Active	_	—	
TPS2062C-2 TPS2066C-2	1 A	— and Active	_	Active and —	_	
TPS2060C TPS2064C	1.5 A	Active and Active	_	_	_	
TPS2064C-2	1.5 A	Active	—	—	—	
TPS2002C TPS2003C	2 A	_	—	—	Active and Active	

Table 2. Device Information

PART NUMBER	MAXIMUM OPERATING CURRENT	ENABLE	OUTPUT DISCHARGE
TPS2052C	0.5	High	Y
TPS2062C	1	Low	Y
TPS2062C-2	1	Low	Ν
TPS2066C	1	High	Y
TPS2066C-2	1	High	Ν
TPS2060C	1.5	Low	Y
TPS2064C	1.5	High	Y
TPS2064C-2	1.5	High	Ν
TPS2002C	2	Low	Y
TPS2003C	2	High	Y



6 Pin Configuration and Functions



D Package
8-Pin SOIC
Top View

	-		
GND -	1 [●]	8	FLT1
IN —	2	7	
EN1 or EN1 -	3	6	- OUT2
EN2 or EN2 -	4	5	FLT2

DRB Package 8-Pin SON Top View

Pin Functions

		PIN			TYPE ⁽¹⁾	DECODIDITION	
NAME	MSOP	SOIC	VSON	SON	ITPE''	DESCRIPTION	
GND	1	1	1	1	GND	Ground connection	
IN	2	2	2, 3	2	I	Input voltage and power-switch drain; connect a 0.1 μF or greater ceramic capacitor from IN to GND close to the IC	
	3 ⁽²⁾	3 ⁽³⁾	4 ⁽⁴⁾			Eachte frank shares the tests birth transmission with	
EN1	_(5)	_(6)	_(7)			Enable input channel 1, logic high turns on power switch	
	_(2)	_(3)	_(4)				
EN1	3 ⁽⁵⁾ 3 ⁽⁶⁾ 4 ⁽⁷⁾ 3 I Enable i		I	Enable input channel 1, logic low turns on power switch			
-	4 ⁽²⁾	4 ⁽³⁾	5 ⁽⁴⁾				
EN2	_(5)	_(6)	_(7)			Enable input channel 2, logic high turns on power switch	
	_(2)	_(3)	_(4)				
EN2	4 ⁽⁵⁾	4 ⁽⁶⁾	5 ⁽⁷⁾	4		Enable input channel 2, logic low turns on power switch	
FLT2	5	5	6	5	0	Active-low open-drain output, asserted during overcurrent, or overtemperature conditions on channel 2	
NC	_		7	_	0	No connect – leave floating	
OUT2	6	6	8	6	0	Power-switch output channel 2, connected to load	
OUT1	7	7	9	7	0	Power-switch output channel 1, connected to load	
FLT1	8	8	10	8	0	Active-low open-drain output, asserted during over-current, or overtemperature conditions on channel 1	
PowerPAD™	PAD	—	PAD	_	GND	Internally connected to GND; used to heat-sink the part to the circuit board traces. Connect PAD to GND plane as a heatsink.	

(1) I = Input, O = Output, GND = Ground

(2) Applies to TPS2052C, TPS2066C, TPS2066C-2, TPS2064C, and TPS2064C-2

(3) Applies to TPS2066C

(4) Applies to TPS2003C

(5) Applies to TPS2062C and TPS2060C

(6) Applies to TPS2062C

(7) Applies to TPS2002C

Copyright © 2011–2015, Texas Instruments Incorporated

Submit Documentation Feedback

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾⁽³⁾

	MIN	MAX	UNIT
Voltage range on IN, OUTx, ENx or ENx, FLTx ⁽⁴⁾	-0.3	6	V
Voltage range from IN to OUT	-6	6	V
Maximum junction temperature, T _J	Internall	y limited	°C
Storage temperature, T _{stg}	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Absolute maximum ratings apply over recommended junction temperature range.

(3) All voltages are with respect to GND unless otherwise noted.

(4) See Input and Output Capacitance.

7.2 ESD Ratings

			VALUE	UNIT	
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V	
N/		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	±500 V	
V _(ESD)	Electrostatic discharge	IEC 61000-4-2, contact discharge ⁽³⁾	±8000		
		IEC 61000-4-2, air-gap discharge ⁽³⁾	±15000	V	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

(3) V_{OUT} was surged on a PCB with input and output bypassing per Figure 22 (except input capacitor was 22 µF) with no device failure.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
V _{IN}	Input voltage, IN		4.5	5.5	N
V _{Enable}	Input voltage, ENx or ENx	out voltage, ENx or ENx			
		TPS2052C		0.5	
I _{OUTx}	Continuous output current, OUTx	TPS2062C, TPS2062C-2, TPS2066C, and TPS2066C-2		1	A
		TPS2060C, TPS2064C, and TPS2064C-2		1.5	
		TPS2002C and TPS2003C		2	
TJ	Operating junction temperature	-40	125	°C	
IFLTx	Sink current into FLTx		0	5	mA

7.4 Thermal Information

	THERMAL METRIC ⁽¹⁾⁽²⁾	TPS2052C TPS2062C TPS2066C TPS2066C-2 TPS2060C TPS2064C TPS2064C-2	TPS2062C TPS2066C	TPS2062C-2	TPS2002C TPS2003C	UNIT
		DGN (MSOP)	D (SOIC)	DRB (SON)	DRC (VSON)	
		8 PINS	8 PINS	8 PINS	10 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	57.2	129.9	50.8	45.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	110.5	83.5	60.3	58	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	60.7	70.4	26.3	21.1	°C/W
ΨJT	Junction-to-top characterization parameter	7.8	36.6	2.1	1.9	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	24	66.9	26.5	21.3	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	14.3	n/a	9.8	9.1	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

(2) For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.

7.5 Electrical Characteristics: $T_J = T_A = 25^{\circ}C$

 $V_{IN} = 5 V, V_{ENx} = VIN \text{ or } V_{\overline{ENx}} = 0 V \text{ (unless otherwise noted)}$

PARAMETER		TEST CONDITIONS ⁽¹⁾	TEST CONDITIONS ⁽¹⁾			MAX	UNIT			
POWER	SWITCH									
		TPS2052C (0.5 A)	DGN		70	84				
		TPS2052C (0.5 A) DGN $-40^{\circ}C \le (T_{,j}, T_{A}) \le 85^{\circ}C$ DGN			70	95				
		TPS2062C, 66C, and 66C-2 (1 A)	DGN		70	84				
		TPS2062C, 66C, and 66C-2 (1 A), -40°C \leq (T _J , T _A) \leq 85°C	DGN		70	95				
		TPS2062C and 66C (1 A)	D		90	108				
		TPS2062C and 66C (1 A) $-40^{\circ}C \le (T_J, T_A) \le 85^{\circ}C$	D		90	122	0			
r _{DS(on)}	On-resistance	TPS2062C-2 (1 A)	DRB		73	87	mΩ			
		TPS2062C-2 (1 A) –40°C ≤ (T _J , T _A) ≤ 85°C	DRB		73	101				
		TPS2060C, 64C, and 64C-2 (1.5 A)			70	84				
		TPS2060C, 64C, and 64C-2 (1.5 A) $-40^{\circ}C \le (T_J, T_A) \le 85^{\circ}C$			70	70 95				
		TPS2002C and 03C (2 A)		70	84					
		TPS2002C and 03C (2 A) -40°C \leq (T _J , T _A) \leq 85°C		70	95					
CURRE	NT LIMIT									
		TPS2052C (0.5 A)	0.75	1	1.25					
	Current-limit (see Figure 28)	TPS2062C, 62C-2, 66C, and 66C-2 (1	TPS2062C, 62C-2, 66C, and 66C-2 (1 A)			1.94				
los	Current-innic (see Figure 26)	TPS2060C, 64C, and 64C-2 (1.5 A)	TPS2060C, 64C, and 64C-2 (1.5 A)				A			
		TPS2002C and 03C (2 A)	2.55	3.15	3.77					
SUPPLY	CURRENT					<u>.</u>				
I _{SD}	Supply current, switch disabled	$I_{(OUTx)} = 0 \text{ mA}$			0.01	1				
I _{S1E}	Supply current, single switch enabled	I _(OUTx) = 0 mA		60	75					
I _{S2E}	Supply current, both switches enabled	$I_{(OUTx)} = 0 \text{ mA}$			100	120	μA			
I _{LKG}	Leakage current	$\label{eq:VOUT} \begin{array}{l} V_{\text{OUT}} = 0 \ \text{V}, \ \text{V}_{\text{IN}} = 5.5 \ \text{V}, \ \text{disabled}, \\ \text{measured } I_{\text{VIN}} \end{array} \qquad \text{TPS20xxC-2}$			0.05	1				
	Reverse leakage current	V_{OUT} = 5.5 V, V_{IN} = 0 V, measured I _{(OU}	Tx)		0.15	1				

(1) Pulsed testing techniques maintain junction temperature approximately equal to ambient temperature

Electrical Characteristics: $T_J = T_A = 25^{\circ}C$ (continued)

 $V_{IN} = 5 \text{ V}, V_{ENx} = \text{VIN or } V_{\overline{ENx}} = 0 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹⁾	MIN	ТҮР	MAX	UNIT	
OUTPUT DISCHARGE							
R _{PD}	Output pulldown resistance ⁽²⁾	$V_{IN} = V_{OUTx} = 5 V$, disabled	TPS20xxC	400	470	600	Ω

(2) These parameters are provided for reference only, and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

7.6 Electrical Characteristics: $-40^{\circ}C \le (T_J = T_A) \le 125^{\circ}C^{(1)}$

4.5 V \leq V_{IN} \leq 5.5 V, V_{ENx} = V_{IN} or V_{ENx} = 0 V, I_{OUTx} = 0 A (unless otherwise noted)

	PARAMETER	PARAMETER TEST CONDITIONS ⁽¹⁾		MIN	TYP ⁽²⁾	MAX	UNIT
POWER	SWITCH						
		TPS2052C (0.5 A)	DGN		70	112	
		TPS2062C, 66C, and 66C-2 (1 A)	DGN		70	112	
		TPS2062C and 66C (1 A)	D		90	135	0
r _{DS(on)}	On-resistance	TPS2062C-2 (1 A)	DRB		73	115	mΩ
		TPS2060C, 64C, and 64C-2 (1.5 A)		70	112		
		TPS2002C and 03C (2 A)	DRC		70	112	
ENABLE	INPUT (ENx or ENx)						
V _{IH}	ENx (ENx), High-level input voltage	$4.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 5.5 \text{ V}$		2			
VIL	ENx (ENx), Low-level input Voltage					0.8	V
	Hysteresis	V _{IN} = 5 V			0.14		
	Leakage current	V _{ENx} = 5.5 V or 0 V, V _{ENx} = 0 V or 5.5 V		-1	0	1	μA
t _{on}	Turnon time ⁽³⁾	V_{IN} = 5 V, C _L = 1 μF, R _L = 100 Ω, ENx ↑ (see Figure 25, Figure 26, and Figure 23 1 A, 1.5 A, 2 A Rated	1.4	1.9	2.4	ms	
t _{off}	Turnoff time ⁽³⁾	V _{IN} = 5 V, C _L = 1 μF, R _L = 100 Ω, ENx ↑ (see Figure 25, Figure 26, and Figure 23 1 A, 1.5 A, 2 A Rated	1.95	2.60	3.25	ms	
t _r	Rise time, output ⁽³⁾	$C_L = 1 \ \mu F, R_L = 100 \ \Omega$ (see Figure 24) 1 A, 1.5 A, 2 A Rated	0.58	0.82	1.15	ms	
t _f	Fall time, output ⁽³⁾	C_L = 1 $\mu F,R_L$ = 100 Ω (see Figure 24) 1 A, 1.5 A, 2 A Rated		0.33	0.47	0.66	ms
CURRE	NT LIMIT					·	
		TPS2052C (0.5 A)	0.7	1	1.3		
		TPS2062C, 62C-2, 66C, and 66C-2 (1 A)	1.12	1.61	2.10	•
os	Current-limit (see Figure 28)	TPS2060C, 64C, and 64C-2 (1.5 A)	1.72	2.29	2.86	A	
		TPS2002C and 03C (2 A)	2.35	3.15	3.95		
t _{IOS}	Short-circuit response time	$ \begin{array}{l} V_{\text{IN}} = 5 \; V \; (\text{see Figure 27}), \\ \text{One-half full load} \rightarrow R_{(\text{SHORT})} = 50 \; \text{m}\Omega, \text{ I} \\ \text{application to when current falls below 1} \\ \text{value} \end{array} $	Measure from 20% of final		2		μs
SUPPLY	CURRENT	·					
SD	Supply current, switch disabled	Standard conditions, I _(OUTx) = 0 mA			0.01	10	
S1E	Supply current, single switch enabled	Standard conditions, I _(OUTx) = 0 mA				90	
S2E	Supply current, both switches enabled	Standard conditions, I _(OUTx) = 0 mA				150	μA
LKG	Leakage current	V _{OUT} = 0 V, V _{IN} = 5.5 V, disabled, measured I _{VIN} TPS20xxC-2			0.05		μΑ
2.10	Reverse leakage current	$V_{OUT} = 5.5 \text{ V}, V_{IN} = 0 \text{ V}, \text{ measured } I_{(OUT)}$		0.20			
JNDER\	OLTAGE LOCKOUT	· · · · · · · · · · · · · · · · · · ·					
JVLO	Low-level input voltage, IN	VIN rising		3.4		4.0	V
	Hysteresis, IN				0.14		V

(1) Pulsed testing techniques maintain junction temperature approximately equal to ambient temperature.

(2) Typical values are at 5 V and 25°C.

Submit Documentation Feedback

8

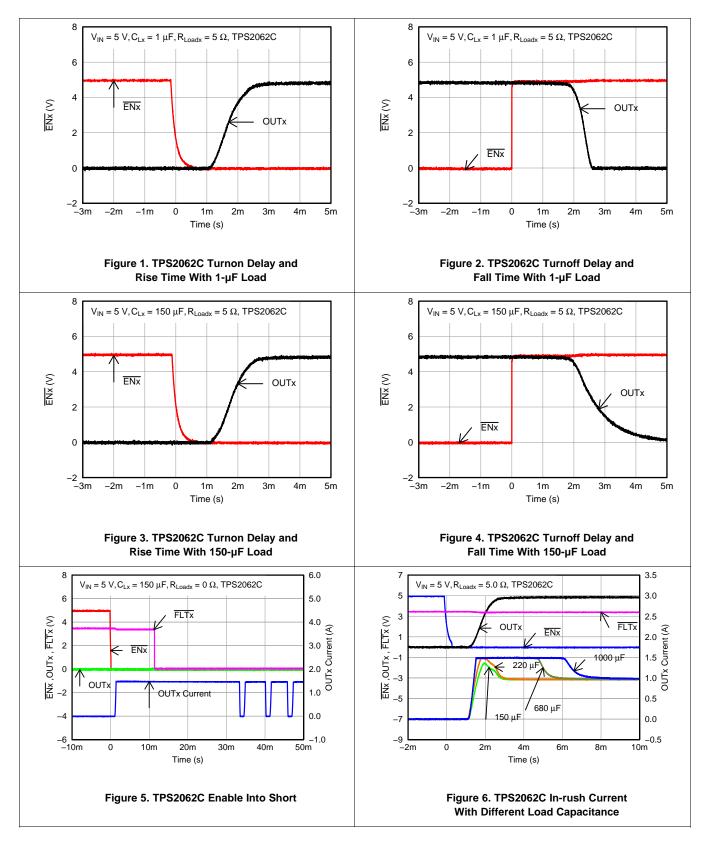
(3) These parameters are provided for reference only, and do not constitute part of TI's published device specifications for purposes of TI's product warranty.

Copyright © 2011–2015, Texas Instruments Incorporated

Electrical Characteristics: $-40^{\circ}C \le (T_J = T_A) \le 125^{\circ}C^{(1)}$ (continued)

4.5 V \leq V_{IN} \leq 5.5 V, V_{ENx} = V_{IN} or V_{ENx} = 0 V, I_{OUTx} = 0 A (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT	
FLTx						
Output low voltage, FLTx	$I_{\overline{(FLTx)}} = 1 \text{ mA}$			0.2	V	
Off-state leakage	$V_{\overline{(FLTx)}} = 5.5 V$				1	μA
FLTx deglitch ⁽³⁾	FLTx overcurrent assertion and deas	7	10	13	ms	
OUTPUT DISCHARGE						
Output pulldown resistance ⁽³⁾	$V_{IN} = 5 V, V_{OUT} = 5 V$, disabled	TPS20xxC	300	470	800	0
Output pulldown resistance	$V_{IN} = 4 V, V_{OUT} = 5 V$, disabled	TPS20xxC	350	560	1200	Ω
THERMAL SHUTDOWN						
	In current limit		135			°C
Junction thermal shutdown threshold	Not in current limit	Not in current limit				Ĵ
Hysteresis				20		°C

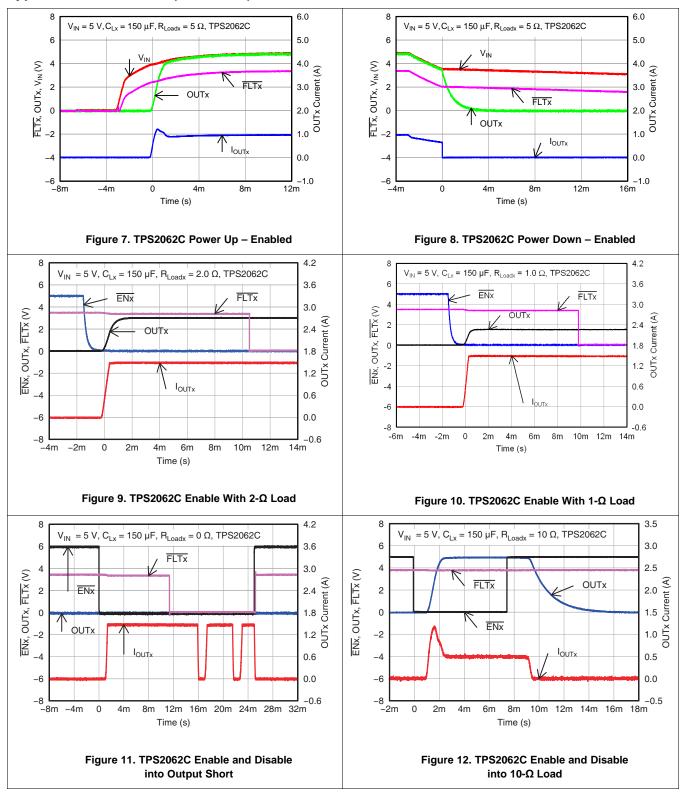

Copyright © 2011–2015, Texas Instruments Incorporated

Submit Documentation Feedback 9

TPS2052C, TPS2062C, TPS2062C-2, TPS2066C, TPS2066C-2 TPS2060C, TPS2064C, TPS2064C-2, TPS2002C, TPS2003C SLVSAX6H–OCTOBER 2011–REVISED DECEMBER 2015

www.ti.com

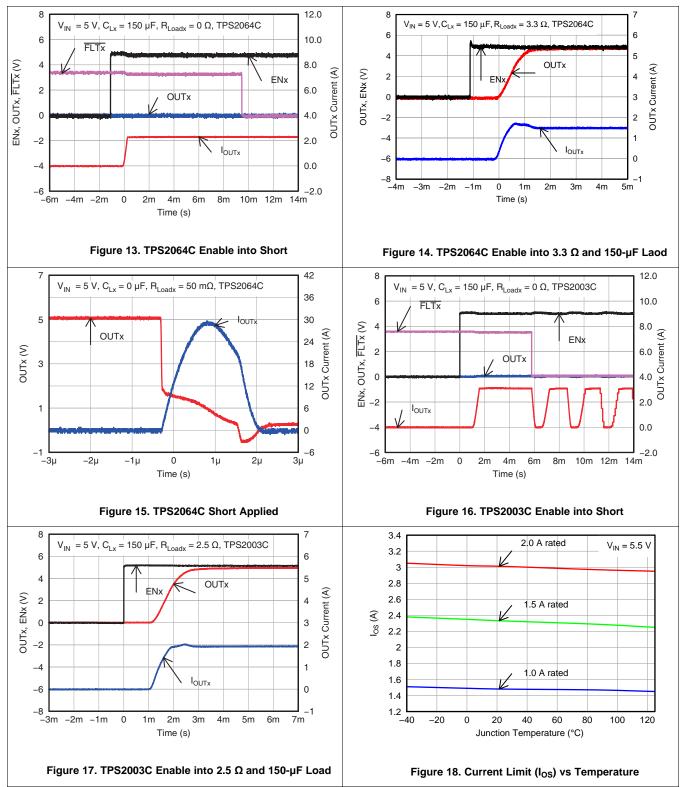
7.7 Typical Characteristics



Copyright © 2011–2015, Texas Instruments Incorporated

Product Folder Links: TPS2052C TPS2062C TPS2062C-2 TPS2066C TPS2066C-2 TPS2060C TPS2064C TPS2064C-2 TPS2003C

Typical Characteristics (continued)

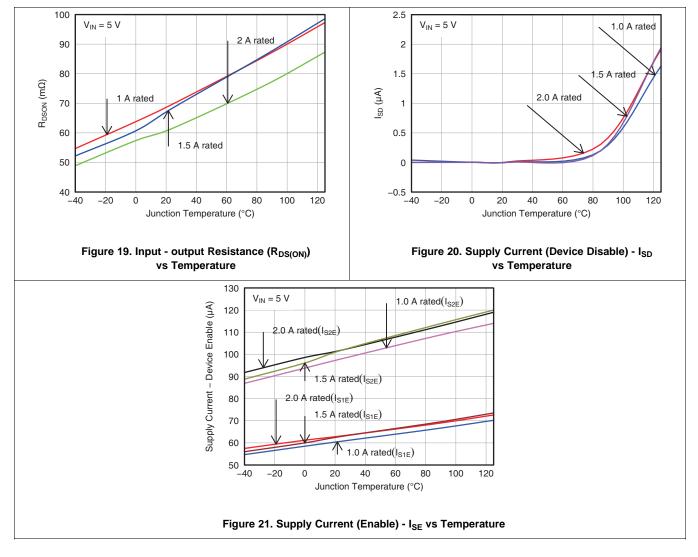


TPS2052C, TPS2062C, TPS2062C-2, TPS2066C, TPS2066C-2 TPS2060C, TPS2064C, TPS2064C-2, TPS2002C, TPS2003C SLVSAX6H–OCTOBER 2011–REVISED DECEMBER 2015

TEXAS INSTRUMENTS

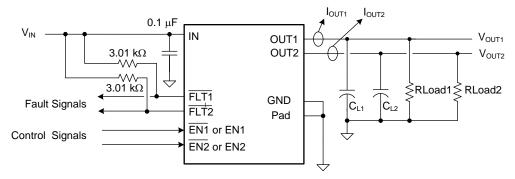
www.ti.com

Typical Characteristics (continued)



Product Folder Links: TPS2052C TPS2062C TPS2062C-2 TPS2066C TPS2066C-2 TPS2060C TPS2064C TPS2064C-2 TPS2002C TPS2003C

SLVSAX6H-OCTOBER 2011-REVISED DECEMBER 2015


Typical Characteristics (continued)

Copyright © 2011–2015, Texas Instruments Incorporated

Submit Documentation Feedback 13

8 Parameter Measurement Information

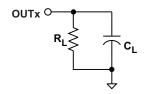


Figure 23. Output Rise / Fall Test Load

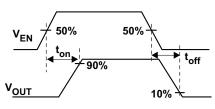
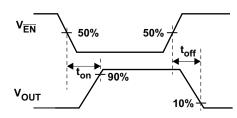
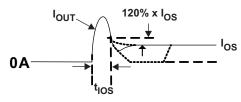
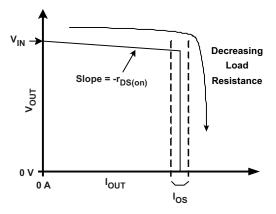




Figure 25. Enable Timing, Active High Enable



www.ti.com

9 Detailed Description

9.1 Overview

The TPS20xxC and TPS20xxC-2 are dual current-limited, power-distribution switches providing between 0.5 A and 2 A of continuous load current in 5-V circuits. These parts use N-channel MOSFETs for low resistance, maintaining output voltage load regulation. They are designed for applications where short circuits or heavy capacitive loads are encountered. Device features include UVLO, ON/OFF control (Enable), reverse blocking when disabled, output discharge when TPS20xxC disabled, overcurrent protection, overtemperature protection, and deglitched fault reporting. They are pin for pin with existing TI Switch Portfolio.

9.2 Functional Block Diagram

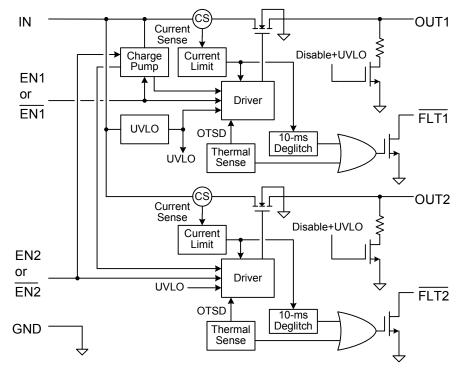


Figure 29. TPS20xxC Functional Block Diagram

Functional Block Diagram (continued)

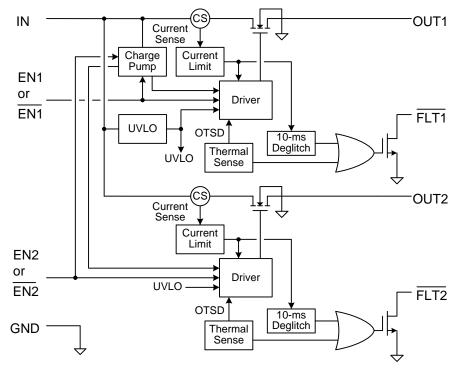


Figure 30. TPS20xxC-2 Functional Block Diagram

9.3 Feature Description

9.3.1 Undervoltage Lockout (UVLO)

The undervoltage lockout (UVLO) circuit disables the power switch when the input voltage is below the UVLO threshold. Built-in hysteresis prevents unwanted ON/OFF cycling due to input voltage drop from large current surges. FLTx is high impedance when the TPS20xxC and TPS20xxC-2 dual are in UVLO.

9.3.2 Enable (ENx or \overline{ENx})

The logic input of ENx or ENx disables all of the internal circuitry while maintaining the power switch OFF. The supply current of the device can be reduced to less than 1 µA when both switches are disabled. A logic low input on ENx or a logic high input on ENx enables the driver, control circuits, and power switch of corresponding channel.

The ENx or ENx input voltage is compatible with both TTL and CMOS logic levels. The FLTx is immediately cleared and the output discharge circuit is enabled when the device is disabled.

9.3.3 Deglitched Fault Reporting

FLTx is an open-drain output that asserts (active low) during an overcurrent or overtemperature condition on each corresponding channel. The FLTx output remains asserted until the fault condition is removed or the channel is disabled. The TPS20xxC and TPS20xxC-2 dual eliminates false FLTx reporting by using internal delay circuitry after entering or leaving an overcurrent condition. The deglitch time is typically 10 ms. This ensures that FLTx is not accidentally asserted under overcurrent conditions with a short time, such as starting into a heavy capacitive load. Overtemperature conditions are not deglitched. The FLTx pin is high impedance when the device is disabled and in undervoltage lockout (UVLO). The fault circuits are independent so that another channel continues to operate when one channel is in a fault condition.

Copyright © 2011–2015, Texas Instruments Incorporated

Feature Description (continued)

9.3.4 Overcurrent Protection

The TPS20xxC and TPS20xxC-2 dual responds to overloads by limiting each channel output current to the static I_{OS} levels shown in *Electrical Characteristics:* $T_J = T_A = 25^{\circ}$ C. When an overload condition is present, the device maintains a constant current (I_{OS}) and reduces the output voltage accordingly, with the output voltage falling to ($I_{OS} \times R_{SHORT}$). Three possible overload conditions can occur. In the first condition, the output has been shorted before the device is enabled or before voltage is applied to IN. The device senses over-current and immediately switches into a constant-current output. In the second condition, a short or an overload occurs while the device is enabled. At the instant a short-circuit occurs, high currents may flow for several microseconds (t_{IOS}) before the current-limit circuit reacts. The device operates in constant-current mode after the current-limit circuit has responded. In the third condition, the load is increased gradually beyond the recommended operating current. The current is permitted to rise until the current-limit threshold is reached. The devices are capable of delivering current up to the current-limit threshold without damage. Once the threshold is reached, the device switches into constant-current mode. For all of the above three conditions, the device may begin thermal cycling if the overcurrent condition persists.

9.3.5 Overtemperature Protection

The TPS20xxC and TPS20xxC-2 dual includes per channel overtemperature protection circuitry, which activates at 135°C (minimum) junction temperature while in current limit. There is an overall thermal shutdown of 155°C (minimum) junction temperature when the TPS20xxC and TPS20xxC-2 dual are not in current limit. The device remains off until the junction temperature cools 20°C and then restarts. Thermal shutdown may occur during an overload due to the relatively large power dissipation $[(V_{IN} - V_{OUT}) \times I_{OS}]$ driving the junction temperature up. The power switch cycles on and off until the fault is removed. This topology allows one channel to continue normal operation even if the other channel is in an overtemperature condition.

9.3.6 Softstart, Reverse Blocking and Discharge Output

The power MOSFET driver incorporates circuitry that controls the rise and fall times of the output voltage to limit large current and voltage surges on the input supply, and provides built-in soft-start functionality.

The TPS20xxC and TPS20xxC-2 dual power switch will block current from OUT to IN when turned off by the UVLO or disabled.

The TPS20xxC dual includes an output discharge function on each channel. A 470 Ω (typical) discharge resistor will dissipate stored charge and leakage current on OUTx when the device is in UVLO or disabled. However as this circuit is biased from IN, the output discharge will not be active when IN voltage is close to 0 V.

The TPS20xxC-2 does not have this function. The output is be controlled by an external loadings when the device is in ULVO or disabled.

9.4 Device Functional Modes

There are no other functional modes.

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The universal serial bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for low-tomedium bandwidth PC peripherals (for example, keyboards, printers, scanners, and mice). The four-wire USB interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for differential data, and two lines are provided for 5-V power distribution.

USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V from the 5-V input or its own internal power supply.

The USB specification defines the following five classes of devices, each differentiated by power-consumption requirements:

- Hosts or self-powered hubs (SPH)
- Bus-powered hubs (BPH)
- Low-power, bus-powered functions
- High-power, bus-powered functions
- Self-powered functions

Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS20xxC and TPS20xxC-2 can provide power distribution solutions to many of these device classes.

10.2 Typical Application



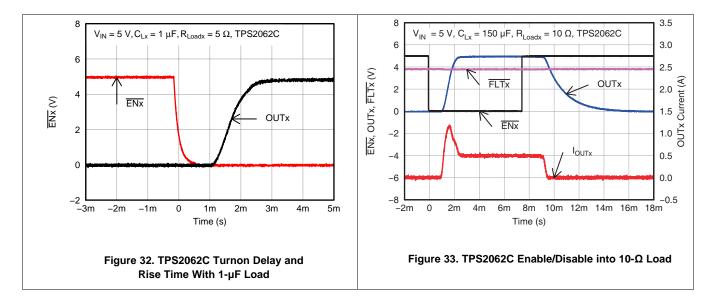
Figure 31. Typical Application Circuit

Typical Application (continued)

10.2.1 Design Requirements

Table 3 shows the design requirements for the typical application.

PARAMETER	VALUE
Input voltage	5 V
Output voltage 1	5 V
Output voltage 2	5 V
Current limit	1 A


Table 3. Design Parameters

10.2.2 Detailed Design Procedure

10.2.2.1 Input and Output Capacitance

Input and output capacitance improves the performance of the device. For all applications, TI recommends placing a 0.1- μ F or greater ceramic bypass capacitor between IN and GND as close as possible to the device for local noise de-coupling. The actual capacitance should be optimized for the particular application. This precaution reduces ringing on the input due to power-supply transients. Additional input capacitance may be needed on the input to reduce the overshoot voltage from exceeding the absolute maximum voltage of the device during heavy transients.

A 120- μ F minimum output capacitance is required when implementing USB standard applications. Typically this uses a 150- μ F electrolytic capacitor. If the application does not require 120 μ F of output capacitance, a minimum of 10- μ F ceramic capacitor on the output is recommended to reduce the transient negative voltage on OUTx pin caused by load inductance during a short circuit. The transient negative voltage should be less than 1.5 V for 10 μ s.

10.2.3 Application Curves

11 Power Supply Recommendations

11.1 Self-Powered and Bus-Powered Hubs

A Self-Powered Hub (SPH) has a local power supply that powers embedded functions and downstream ports. This power supply must provide between 4.75 V to 5.25 V to downstream facing devices under full-load and noload conditions. SPHs are required to have current-limit protection and must report overcurrent conditions to the USB controller.

Typical SPHs are desktop PCs, monitors, printers, and stand-alone hubs.

A Bus-Powered Hub (BPH) obtains all power from an upstream port and often contains an embedded function. It must power up with less than 100 mA. The BPH usually has one embedded function, and power is always available to the controller of the hub. If the embedded function and hub require more than 100 mA on power up, the power to the embedded function may need to be kept off until enumeration is completed. This is accomplished by removing power or by shutting off the clock to the embedded function. Power switching the embedded function is not necessary if the aggregate power draw for the function and controller is less than 100 mA. The total current drawn by the bus-powered device is the sum of the current to the controller, the embedded function, and it is limited to 500 mA from an upstream port.

11.2 Low-Power Bus-Powered and High-Power Bus-Powered Functions

Both low-power and high-power bus-powered functions obtain all power from upstream ports. Low-power functions always draw less than 100 mA; high-powered functions must draw less than 100 mA at power up and can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of 44 Ω and 10 µF at power up, the device must implement inrush current limiting.

12 Layout

12.1 Layout Guidelines

- Place the 100-nF bypass capacitor near the IN and GND pins, and make the connections using a low-inductance trace.
- When large transient currents are expected on the output, TI recommends placing a high-value electrolytic capacitor and a 100-nF bypass capacitor on the output pin.
- The PowerPAD should be directly connected to PCB ground plane using wide and short copper trace.

12.2 Layout Example

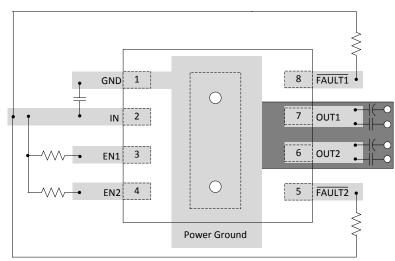


Figure 34. Layout Recommendation

Copyright © 2011–2015, Texas Instruments Incorporated

12.3 Power Dissipation and Junction Temperature

It is good design practice to estimate power dissipation and maximum expected junction temperature of the TPS20xxC and TPS20xxC-2 dual. The system designer can control choices of package, proximity to other power dissipating devices, and printed circuit board (PCB) design based on these calculations. These have a direct influence on maximum junction temperature. Other factors such as airflow and maximum ambient temperature are often determined by system considerations.

Addition of extra PCB copper area around these devices is recommended to reduce the thermal impedance and maintain the junction temperature as low as practical.

The following procedure requires iteration because power loss is due to the two internal MOSFETs $2 \times l^2 \times r_{DS(on)}$, and $r_{DS(on)}$ is a function of the junction temperature. As an initial estimate, use the $r_{DS(on)}$ at 125°C from the typical characteristics, and the preferred package thermal resistance for the preferred board construction from the thermal parameters section.

$$T_{J} = T_{A} + [2 \times I_{OUT}^{2} \times r_{DS(on)} \times \theta_{JA}]$$

where

- I_{OUT} = rated OUT pin current (A)
- $r_{DS(on)}$ = Power switch on-resistance at an assumed $T_J(\Omega)$
- T_A = Maximum ambient temperature (°C)
- T_J = Maximum junction temperature (°C)
- θ_{JA} = Thermal resistance (°C/W)

(1)

If the calculated $T_{\rm J}$ is substantially different from the original assumption, look up a new value of $r_{\rm DS(on)}$ and recalculate.

If the resulting T_J is not less than 125°C, try a PCB construction and/or package with lower θ_{JA} .

13 Device and Documentation Support

13.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY					
TPS2052C	Click here	Click here	Click here	Click here	Click here					
TPS2062C	Click here	Click here	Click here	Click here	Click here					
TPS2062C-2	Click here	Click here	Click here	Click here	Click here					
TPS2066C	Click here	Click here	Click here	Click here	Click here					
TPS2066C-2	Click here	Click here	Click here	Click here	Click here					
TPS2060C	Click here	Click here	Click here	Click here	Click here					
TPS2064C	Click here	Click here	Click here	Click here	Click here					
TPS2064C-2	Click here	Click here	Click here	Click here	Click here					
TPS2002C	Click here	Click here	Click here	Click here	Click here					
TPS2003C	Click here	Click here	Click here	Click here	Click here					

Table 4. Related Links

13.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.3 Trademarks

PowerPad, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

13.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2011–2015, Texas Instruments Incorporated

12-Nov-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS2002CDRCR	ACTIVE	VSON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	VFEQ	Samples
TPS2002CDRCT	ACTIVE	VSON	DRC	10	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	VFEQ	Samples
TPS2003CDRCR	ACTIVE	VSON	DRC	10	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	VRFQ	Samples
TPS2003CDRCT	ACTIVE	VSON	DRC	10	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	VRFQ	Samples
TPS2052CDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	PYNI	Samples
TPS2052CDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	PYNI	Samples
TPS2060CDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	VRAQ	Samples
TPS2060CDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	VRAQ	Samples
TPS2062CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2062C	Samples
TPS2062CDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	VRBQ	Samples
TPS2062CDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	VRBQ	Samples
TPS2062CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2062C	Samples
TPS2062CDRBR-2	ACTIVE	SON	DRB	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PYVI	Samples
TPS2062CDRBT-2	ACTIVE	SON	DRB	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	PYVI	Samples
TPS2064CDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	VRCQ	Samples
TPS2064CDGN-2	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	PYTI	Samples
TPS2064CDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	VRCQ	Samples

12-Nov-2015

Orderable Device	Status	Package Type	Package Drawing				Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing	_	Qty	(2)	(6)	(3)		(4/5)	
TPS2064CDGNR-2	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	ΡΥΤΙ	Samples
TPS2066CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2066C	Samples
TPS2066CDGN	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	VRDQ	Samples
TPS2066CDGN-2	ACTIVE	MSOP- PowerPAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	PYUI	Samples
TPS2066CDGNR	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	VRDQ	Samples
TPS2066CDGNR-2	ACTIVE	MSOP- PowerPAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAUAG	Level-2-260C-1 YEAR	-40 to 85	PYUI	Samples
TPS2066CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2066C	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

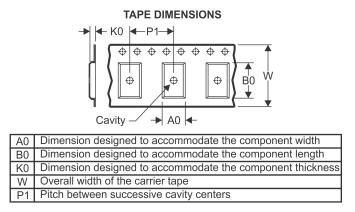
PACKAGE OPTION ADDENDUM

12-Nov-2015

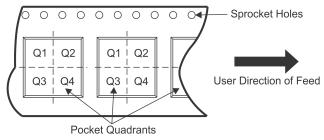
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

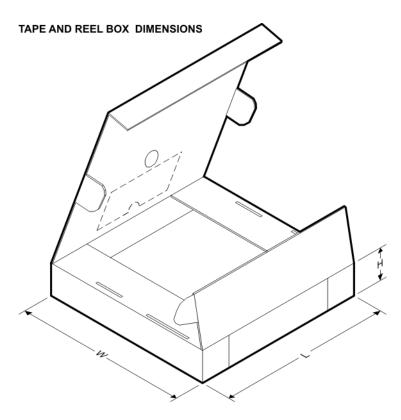
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS2002CDRCR	VSON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2002CDRCT	VSON	DRC	10	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2003CDRCR	VSON	DRC	10	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2003CDRCT	VSON	DRC	10	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2052CDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS2060CDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS2062CDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS2062CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS2062CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS2062CDRBR-2	SON	DRB	8	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2062CDRBT-2	SON	DRB	8	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS2064CDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1


PACKAGE MATERIALS INFORMATION

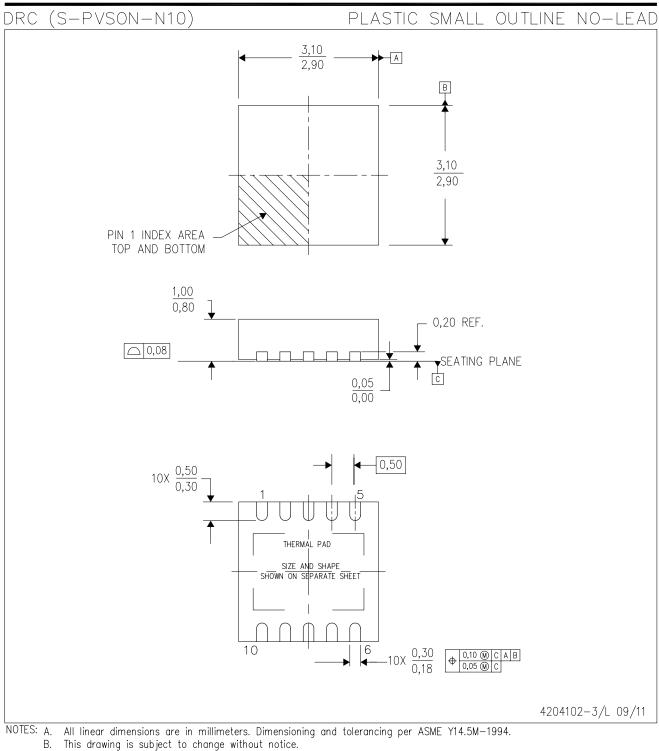
www.ti.com

12-Nov-2015

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS2064CDGNR-2	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS2066CDGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS2066CDGNR-2	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS2066CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS2002CDRCR	VSON	DRC	10	3000	367.0	367.0	35.0
TPS2002CDRCT	VSON	DRC	10	250	210.0	185.0	35.0
TPS2003CDRCR	VSON	DRC	10	3000	367.0	367.0	35.0
TPS2003CDRCT	VSON	DRC	10	250	210.0	185.0	35.0
TPS2052CDGNR	MSOP-PowerPAD	DGN	8	2500	366.0	364.0	50.0
TPS2060CDGNR	MSOP-PowerPAD	DGN	8	2500	364.0	364.0	27.0
TPS2062CDGNR	MSOP-PowerPAD	DGN	8	2500	364.0	364.0	27.0
TPS2062CDR	SOIC	D	8	2500	367.0	367.0	35.0
TPS2062CDR	SOIC	D	8	2500	340.5	338.1	20.6

PACKAGE MATERIALS INFORMATION



www.ti.com

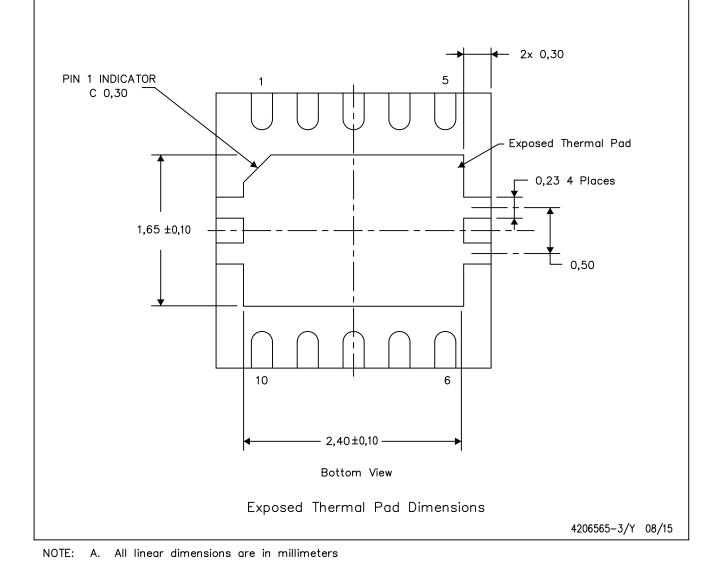
12-Nov-2015

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS2062CDRBR-2	SON	DRB	8	3000	367.0	367.0	35.0
TPS2062CDRBT-2	SON	DRB	8	250	210.0	185.0	35.0
TPS2064CDGNR	MSOP-PowerPAD	DGN	8	2500	364.0	364.0	27.0
TPS2064CDGNR-2	MSOP-PowerPAD	DGN	8	2500	366.0	364.0	50.0
TPS2066CDGNR	MSOP-PowerPAD	DGN	8	2500	364.0	364.0	27.0
TPS2066CDGNR-2	MSOP-PowerPAD	DGN	8	2500	366.0	364.0	50.0
TPS2066CDR	SOIC	D	8	2500	340.5	338.1	20.6

MECHANICAL DATA

- C. Small Outline No-Lead (SON) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance, if present.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features
- and dimensions, if present

DRC (S-PVSON-N10)


PLASTIC SMALL OUTLINE NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

4206987-2/P 04/16

DRC (S-PVSON-N10) PLASTIC SMALL OUTLINE NO-LEAD Example Stencil Design **Example Board Layout** (Note E) Note D -🗕 8x0,5 8x0,5 4x1 38 4x0,26 4X 2x0,22 0.5 3,8 2,1 1,65 2,15 3,75 2x0,22 0,25 4x1,05 4x0,68 10x0,8 -10x0,23 2,40 72% solder coverage on center pad Exposed Pad Geometry Non Solder Mask Defined Pad 5xø0,3 Solder Mask Opening 4x0,28 R0,14 0,08 (Note F) 0.5 0,5 1,0 Pad Geometry 0,85 0.28 (Note C) 0,07 -All around 4x 0.75 0,7 1.5

NOTES: A. All linear dimensions are in millimeters.

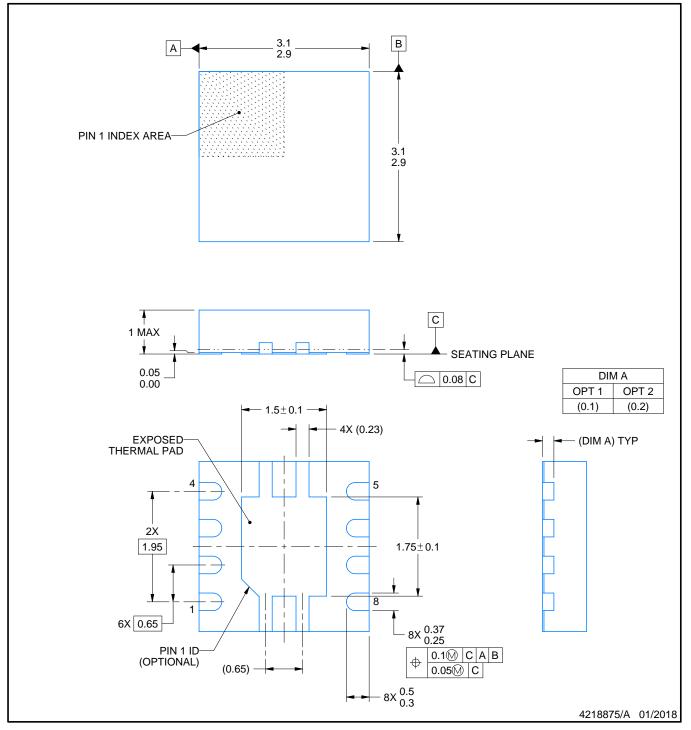
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

GENERIC PACKAGE VIEW

VSON - 1 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4203482/L


DRB0008A

PACKAGE OUTLINE

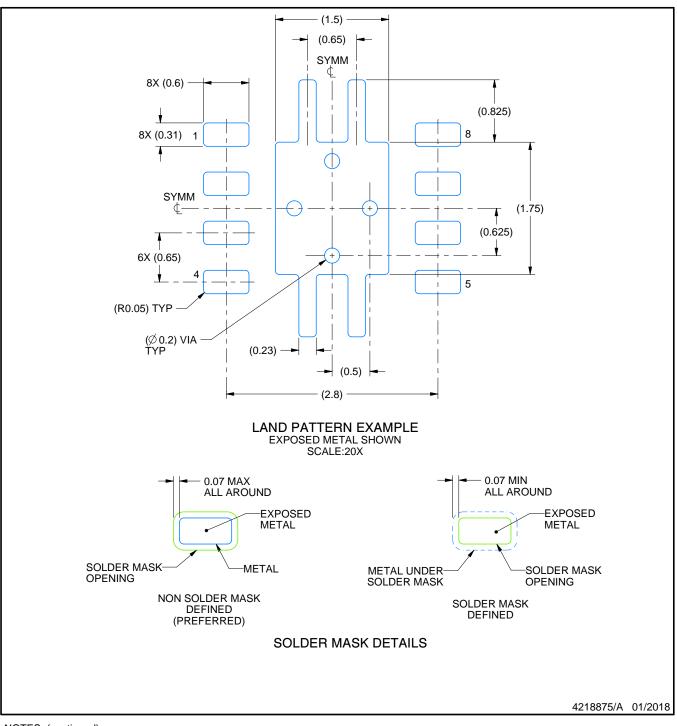
VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



DRB0008A

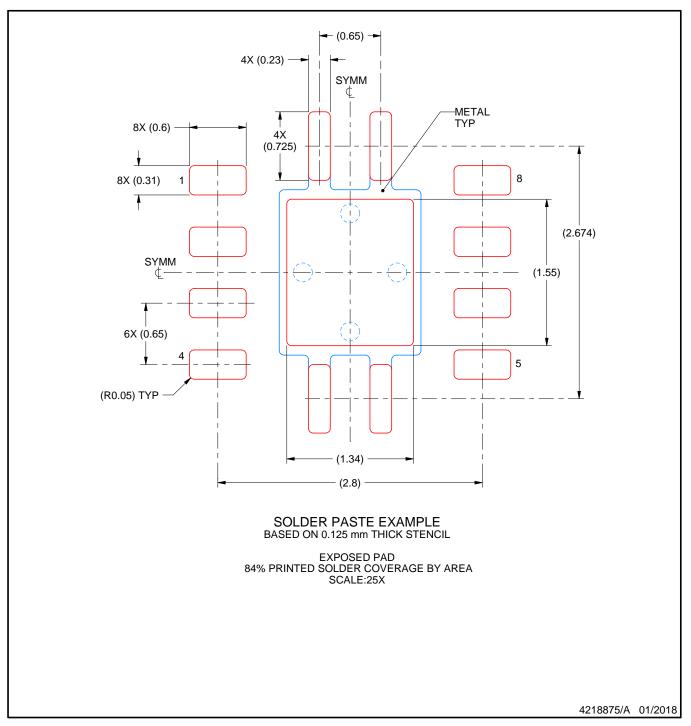
EXAMPLE BOARD LAYOUT

VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

- This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

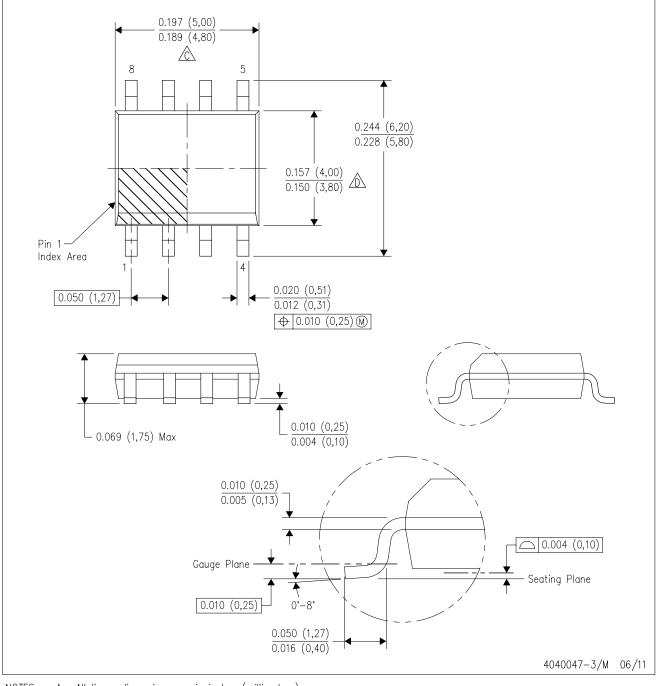


DRB0008A

EXAMPLE STENCIL DESIGN

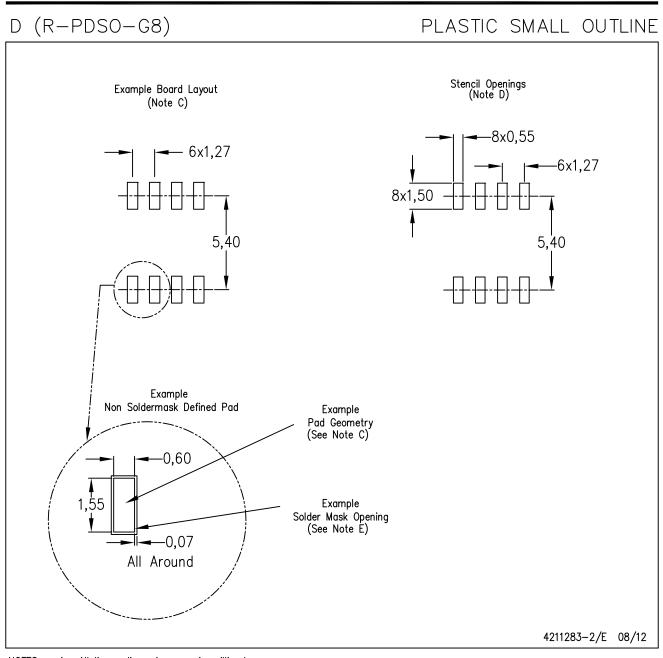
VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD


NOTES: (continued)

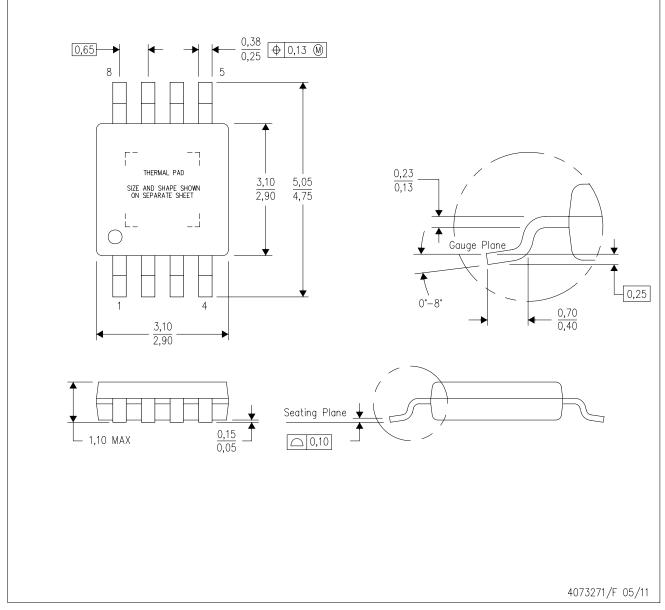
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DGN (S-PDSO-G8)

PowerPAD[™] PLASTIC SMALL OUTLINE

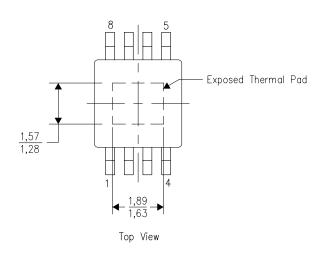
NOTES: A. All linear dimensions are in millimeters.

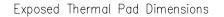
B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions. F. Falls within JEDEC MO-187 variation AA-T

PowerPAD is a trademark of Texas Instruments.

DGN (S-PDSO-G8)


PowerPAD[™] PLASTIC SMALL OUTLINE

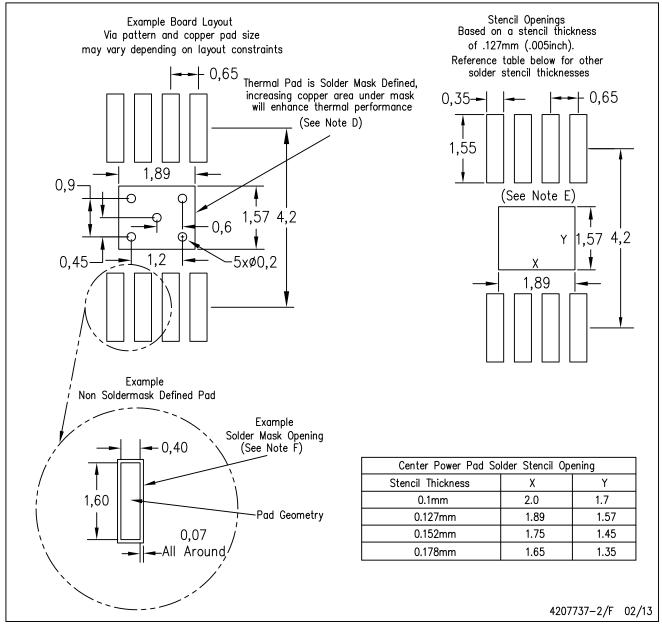

THERMAL INFORMATION

This PowerPAD M package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

4206323-2/1 12/11


NOTE: All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments

DGN (R-PDSO-G8)

PowerPAD[™] PLASTIC SMALL OUTLINE

NOTES:

- : A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
 - D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
 - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PowerPAD is a trademark of Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated