

SLVSBM1H – JUNE 2013 – REVISED NOVEMBER 2016

TPS65132

TPS65132 Single Inductor - Dual Output Power Supply

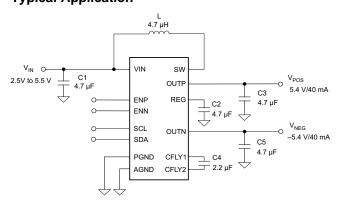
1 Features

- Input Voltage Range: 2.5 V to 5.5 V
- V_{POS} Boost Converter: 4 V to 6 V (0.1-V step)
- V_{NEG} Inverting Buck-Boost Converter: -6 V to -4 V (0.1-V step)
- Maximum Output Current: 80 mA or 150 mA
- · Outstanding Combined Efficiency
 - > 85% at I_{OUT} > 10 mA
 - > 90% at $I_{OUT} > 40$ mA
- Excellent Performance
 - Outstanding Transient Response
 - 1% Output Voltage Accuracy over Full Temperature Range
- I²C Interface
 - Programmable Power-Up / -Down Sequencing Options
 - Flexible Output Voltage Programming
 - Programmable Active Output Discharge
 - > 1000x Programmable Non-Volatile Memory
- Under-Voltage Lock-Out and Thermal Protection
- Two Package Options
 - 15-Ball CSP Package
 - 20-Pins QFN Package

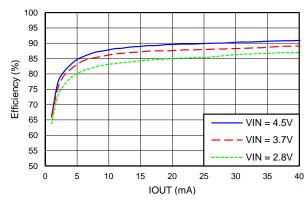
2 Applications

- Small-, Medium-Size Bipolar LCD Displays
 - Smartphone, Tablet
 - Camera, GPS
 - Home Automation, Point-of-Sales
 - Wearables (Smart Watch, Activity Tracker)
- General Split-Rail Power Supply
 - Differential Audio, Headphone Amplifier
 - Instrumentation, Operational Amplifier, Comparator
 - DAC / ADC

3 Description


The TPS65132 family is designed to supply positive/negative driven applications. The device uses a single inductor scheme for both outputs to provide the user smallest solution size, a small bill-of-material as well as high efficiency. The devices offer best line and load regulation at low noise. With its input voltage range of 2.5 V to 5.5 V, it is optimized for products powered by single-cell batteries (Li-lon, Ni-Li, Li-Polymer) and fixed 3.3-V and 5-V rails. The TPS656132 family provides 80 mA and 150 mA output current options with programmability to 40 mA. There are both CSP and QFN package options available.

Device Information (1)


PART NUMBER	PACKAGE	BODY SIZE (NOM.)
TPS65132 -B, -L, -T, -S	DSBGA (15)	2.11 mm × 1.51 mm
TPS65132W	WQFN (20)	4.00 mm × 3.00 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Typical Application

Efficiency vs Output Current

Table of Contents

1	Features 1	8.5 Programming 1
2	Applications 1	8.6 Register Maps1
3	Description 1	9 Application and Implementation 20
4	Revision History2	9.1 Application Information2
5	Device Comparison Table 4	9.2 Typical Applications2
6	Pin Configuration and Functions5	10 Power Supply Recommendations 53
7	Specifications8	11 Layout 54
•	7.1 Absolute Maximum Ratings 8	11.1 Layout Guidelines 5
	7.2 ESD Ratings	11.2 Layout Example 5
	7.3 Recommended Operating Conditions	12 Device and Documentation Support 55
	7.4 Thermal Information	12.1 Device Support 5
	7.5 Electrical Characteristics	12.2 Receiving Notification of Documentation Updates 5
	7.6 I ² C Interface Timing Requirements / Characteristics	12.3 Community Resources 5
	10	12.4 Trademarks 5
	7.7 Typical Characteristics11	12.5 Electrostatic Discharge Caution 5
8	Detailed Description 12	12.6 Glossary 5
	8.1 Overview 12	13 Mechanical, Packaging, and Orderable
	8.2 Functional Block Diagram 12	Information 50
	8.3 Feature Description	13.1 CSP Package Summary 5
	8.4 Device Functional Modes	

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	langes from Revision 6 (August 2015) to Revision n	raye
•	Removed Product Preview from TPS65132S.	1
•	Changed Device Comparison Table	4
•	Added description of clock stretching	17
•	Deleted detailed I ² C interface description	17
•	Added that the DLYx Register is only valid for TPS65132Sx versions.	22
<u>.</u>	Changed Table 6	23
Cł	nanges from Revision F (June 2015) to Revision G	Page
•	Changed scope figures for Boost Converter switching.	13
CI	nanges from Revision E (November 2014) to Revision F	Page
•	Added TPS65132L1 device to Device Comparison table	4
•	Added TPS65132T6 device to the Device Comparison Table.	4
•	Separated LOGIC SCL, SDA spec MIN/MAX from LOGIC EN, ENN, ENP, SYNC spec MIN/MAX	9
•	Changed DAC Registers section for clarity	19
<u>.</u>	Added High-current Applications (≤ 150 mA) section	44
CI	nanges from Revision D (October 2014) to Revision E	Page
•	Added TPS65132L0 device to Device Comparison table	4

Cł	nanges from Revision C (July 2014) to Revision D	Page
•	Changed package type to industry standard identifier in the Device Information table	1
CI	nanges from Revision B (May 2014) to Revision C	Page
•	Added note to Device Comparison Table	4
•	Added reference to Power-Down And Discharge (LDO) and Power-Down And Discharge (CPN)	12
•	Added Table 1 and various references to it	14
•	Added "Power-Down And Discharge (CPN) shows the V _{NEG} discharge behavior of each device variant"	16
•	Added Table 2 and various references to it	16
•	Added note to Figure 18	23
Cl	nanges from Revision A (August 2013) to Revision B	Page
•	Formatted to the new data sheet standard	1
•	Added new package option (QFN) to Device Information table	1
•	Added new package option (QFN) to Pin Configurations section	7
•	Added the ESD Ratings table	8
Cł	nanges from Original (June 2013) to Revision A	Page
•	Added TPS65132Bx devices to the Device Comparison table	4

5 Device Comparison Table

PART NUMBER ⁽¹⁾	PRE- PROGRAMMED OUTPUT VOLTAGES	I _{OUT_MAX}	PRE- PROGRAMMED I _{OUT}	PRE- PROGRAMMED ACTIVE DISCHARGE ⁽²⁾	STARTUP TIME VPOS / VNEG	I _{SD}	PACKAGE		
TPS65132A	$V_{POS} = 5.4 \text{ V}$ $V_{NEG} = -5.4 \text{ V}$	80 mA	40 mA	V /V	FAST	30 µA	CSP		
TPS65132A0	$V_{POS} = 5.0 \text{ V}$ $V_{NEG} = -5.0 \text{ V}$	00 IIIA	30 mA 40 mA	V _{POS} / V _{NEG}	TAST	30 μΑ	CSF		
TPS65132B	$V_{POS} = 5.4 \text{ V}$ $V_{NEG} = -5.4 \text{ V}$								
TPS65132B0	$V_{POS} = 5.0 \text{ V}$ $V_{NEG} = -5.0 \text{ V}$	80 mA	40 mA	V _{POS} / V _{NEG}	FAST	130 nA	CSP		
TPS65132B5	$V_{POS} = 5.5 \text{ V}$ $V_{NEG} = -5.5 \text{ V}$								
TPS65132B2	$V_{POS} = 5.2 \text{ V}$ $V_{NEG} = -5.2 \text{ V}$	80 mA							
TPS65132L	$V_{POS} = 5.4 \text{ V}$ $V_{NEG} = -5.4 \text{ V}$		80 mA	80 mA	40 mA	V _{POS} / V _{NEG}	SLOW	130 nA	CSP
TPS65132L0	$V_{POS} = 5.0 \text{ V}$ $V_{NEG} = -5.0 \text{ V}$								
TPS65132L1 ⁽⁴⁾	$V_{POS} = 5.1 \text{ V}$ $V_{NEG} = -5.1 \text{ V}$	80 mA	40 mA	V _{POS} / V _{NEG}	SLOW	130 nA	CSP		
TPS65132T6	$V_{POS} = 5.6 \text{ V}$ $V_{NEG} = -5.6 \text{ V}$	80 mA	80 mA	V _{POS} / V _{NEG}	SLOW	130 nA	CSP		
TPS65132S	$V_{POS} = 5.4 \text{ V}$ $V_{NEG} = -5.4 \text{ V}$	150 mA	80 mA	V _{POS} / V _{NEG}	SLOW	130 nA	CSP		
TPS65132W	$V_{POS} = 5.4 \text{ V}$ $V_{NEG} = -5.4 \text{ V}$	80 mA	80 mA	V _{POS} / V _{NEG}	SLOW	130 nA	QFN		

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com

⁽²⁾ See *Power-Down And Discharge (LDO)* and *Power-Down And Discharge (CPN)* for a detailed description of how each device variant implements the active discharge function.

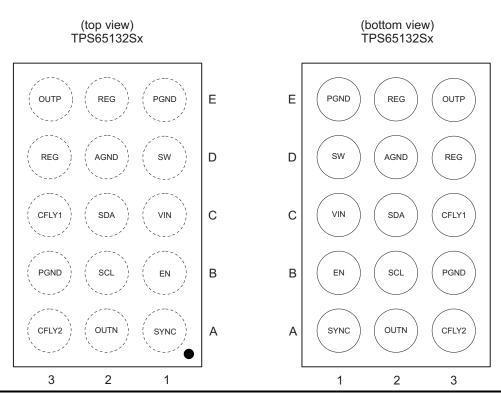
⁽³⁾ Please refer to Power-Up And Soft-Start (LDO) and Power-Up And Soft-Start (CPN) for more details.

⁽⁴⁾ Product preview.

6 Pin Configuration and Functions

3

2


1

YFF Package 15 Bumps (top view) (bottom view) TPS65132Ax / Bx / Lx / Tx TPS65132Ax / Bx / Lx / Tx PGND Ε PGND REG OUTP OUTP REG Ε D D SW AGND SW AGND REG SDA VIN С С SDA CFLY1 ENP PGND SCL ENP В В SCL PGND OUTN ENN Α Α OUTN CFLY2

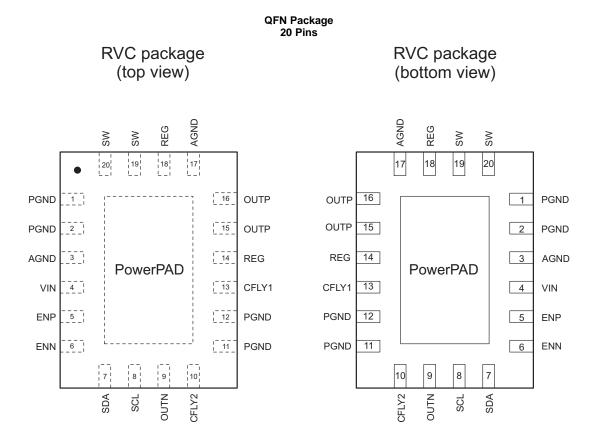
1

2

3

Copyright © 2013–2016, Texas Instruments Incorporated

Submit Documentation Feedback


Pin Functions

	PIN		1/0	DESCRIPTION	
NAME	Ax, Bx, Lx, Tx	Sx	I/O	DESCRIPTION	
AGND	D2	D2		Analog ground	
CFLY1	C3	C3	I/O	Negative charge pump flying capacitor pin	
CFLY2	A3	A3	I/O	Negative charge pump flying capacitor pin	
EN	_	B1		Enable pin (sequence programmed)	
ENN	A1	_	1	Enable pin for V _{NEG} rail	
ENP	B1	B1	1	Enable pin for V _{POS} rail	
OUTP	E3	E3	0	Output pin of the LDO (V _{POS})	
OUTN	A2	A2	0	Output pin of the negative charge pump (V _{NEG})	
PGND	В3	В3		Power ground	
PGND	E1	E1	_	Fower ground	
REG	D3	D3	I/O	Boost converter output nin	
REG	E2	E2	Ŋ	Boost converter output pin	
SCL	B2	B2	I/O	I ² C interface clock signal pin	
SDA	C2	C2	I/O	I ² C interface data signal pin	
SW	D1	D1	I/O	Switch pin of the boost converter	
SYNC	_	A1	I	Synchronization pin. 150 mA current enabled if this pin is pulled HIGH.	
VIN	C1	C1	I	Input voltage supply pin	

Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

Pin Functions

	PIN	1/0	DESCRIPTION	
NAME	Wx	I/O	DESCRIPTION	
ACND	3		Analog ground	
AGND	17	_	Analog ground	
CFLY1	13	I/O	Negative charge pump flying capacitor pin	
CFLY2	10	I/O	Negative charge pump flying capacitor pin	
ENN	6	I	Enable pin for V _{NEG} rail	
ENP	5	1	Enable pin for V _{POS} rail	
OUTP	16	0	Output his of the LDO (//)	
OUTF	15	O	Output pin of the LDO (V _{POS})	
OUTN	9	0	Output pin of the negative charge pump (V _{NEG})	
	1			
PGND	2		Power ground	
FGND	11		Fower ground	
	12			
REG	14	1/0	Boost converter output him	
REG	18	1/0	Boost converter output pin	
SCL	8	I/O	I ² C interface clock signal pin	
SDA	7	I/O	I ² C interface data signal pin	
SW	19	I/O	Switch his of the headt convertor	
SVV	20	1/0	Switch pin of the boost converter	
VIN	4	I	Input voltage supply pin	

7 Specifications

7.1 Absolute Maximum Ratings(1)(2)

over operating free-air temperature range (unless otherwise noted)

		VAI	_UE	UNIT
		MIN	MAX	UNII
Voltage range	CFLY1, EN, ENN, ENP, OUTP, REG, SCL, SDA, SW, SYNC, VIN	-0.3	7	V
	CFLY2, OUTN	-7	0.3	V
Continuous total power dissipation		See Therma	I Information	
Operating junction to	Operating junction temperature, T _J		150	°C
Operating ambient to	perating ambient temperature, T _A		85	°C
Storage temperature	, T _{stg}	-65	150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

		VALUE	UNIT
	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	±2000	V
V _{ESD}	Charged device model (CDM) per JEDEC specification JESD22-C101, all pins (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

		MIN	TYP MAX	UNIT
V _{IN}	Input voltage range	2.5	5.5	V
L	Inductor ⁽¹⁾	2.2	4.7	μΗ
C _{IN}	Input capacitor ⁽¹⁾⁽²⁾	4.7		μF
C _{FLY}	Flying capacitor ⁽¹⁾⁽²⁾	2.2		μF
C _{OUTP} , C _{OUTN} , C _{REG}	Output capacitors ⁽¹⁾⁽²⁾	4.7		μF
T _A	Operating ambient temperature	-40	85	°C
T_J	Operating junction temperature	-40	125	°C

⁽¹⁾ Please see *Detailed Description* section for further information.

7.4 Thermal Information

		TPS65132	TPS65132	
	YFF	RVC	UNIT	
		(15) BALLS	(20) PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	76.5	39.0	°C/W
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	0.2	42.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	44	13.6	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.6	0.6	°C/W
ΨЈВ	Junction-to-board characterization parameter	43.4	13.6	°C/W
$R_{\theta JCbot}$	Junction-to-case (bottom) thermal resistance	N/A	3.8	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ All voltage values are with respect to ground.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ X7R (or better dielectric material) is recommended.

7.5 Electrical Characteristics

 V_{IN} = 3.7 V, EN = ENN = ENP = V_{IN} , V_{POS} = 5.4 V, V_{NEG} = -5.4 V, T_A = -40°C to 85°C; typical values are at T_A = 25°C (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY C	CURRENT					
V _{IN}	Input voltage range		2.5		5.5	V
		V _{IN} rising	2.3		2.5	
V_{UVLO}	Undervoltage lockout threshold	V _{IN} falling	2.1		2.3	V
IQ	Quiescent current			0.54		mA
	Thermal shutdown			140		°C
	Thermal shutdown hysteresis			5		°C
LOGIC EN	I, ENN, ENP, SYNC					
V _{IH}	High level input voltage	V 05V455V	1.1			
V _{IL}	Low level input voltage	$V_{IN} = 2.5 \text{ V to } 5.5 \text{ V}$			0.4	V
R _{EN}	Pulldown resistors			200		kΩ
LOGIC SC	L, SDA					
V _{IH}	High level input voltage	V 05V455V	1.1			
V _{IL}	Low level input voltage	$V_{IN} = 2.5 \text{ V to } 5.5 \text{ V}$			0.54	V
BOOST C	ONVERTER				·	
I _{LIM}	Boost converter valley current limit		0.9	1.2	1.5	Α
f_{SW}	Boost converter switching frequency		1.35	1.80	2.25	MHz
LDO OUT	PUT V _{POS}					
V _{POS}	Positive output voltage range		4.0		6.0	V
V _{POS_acc}	Positive output voltage accuracy		-1 %		+1 %	
I _{POS}	Positive output current capability		200			mA
V_{DO}	Dropout voltage	$V_{REG} = V_{POS(NOM)} = 5.4V$, $I_{OUT} = 150$ mA		160		mV
	Line regulation	V _{IN} = 2.5 V to 5.5 V, I _{OUT} = 40 mA		2.7		mV
	Load regulation	$\Delta I_{OUT} = 80 \text{ mA}$		3.4		%/A
R _D	Discharge resistor			70		Ω
NEGATIVE	E CHARGE PUMP OUTPUT V _{NEG}		•		·	
V _{NEG}	Negative output voltage range		-6.0		-4.0	V
V _{NEG_acc}	Negative output voltage accuracy		-1 %		+1 %	
	No native autout aumout and ability	40mA MODE	40			A
I _{NEG}	Negative output current capability	80mA MODE	80			mA
I _{NEG}	Negative output current capability	TPS65132Sx, SYNC = HIGH	150			mA
f _{OSC}	Negative charge pump switching frequency		0.8	1.0	1.2	MHz
	Line regulation	V _{IN} = 2.5 V to 5.5 V, I _{OUT} = 40 mA		3.3		mV
	Load regulation	$\Delta I_{OUT} = 80 \text{ mA}$		6.1		%/A
R _D	Discharge resistor			20		Ω

TEXAS INSTRUMENTS

7.6 I²C Interface Timing Requirements / Characteristics (1)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Standard mode			100	kHz
f _{SCL}	SCL clock frequency	Fast mode			400	kHz
		Standard mode	4.7			μs
t_{LOW}	LOW period of the SCL clock	Fast mode	1.3			μs
		Standard mode	4.0			μs
tHIGH	HIGH period of the SCL clock	Fast mode	600			ns
	D (// L	Standard mode	4.7			μs
t _{BUF}	Bus free time between a STOP and START condition	Fast mode	1.3			μs
	Hold time for a new coted CTART condition	Standard mode	4.0			μs
t _{hd;STA}	Hold time for a repeated START condition	Fast mode	600			ns
	Cotion times for a new coted CTART condition	Standard mode	4.7			μs
t _{su;STA}	Setup time for a repeated START condition	Fast mode	600			ns
	Data active time	Standard mode	250			ns
t _{su;DAT}	Data setup time	Fast mode	100			ns
	Data hald time	Standard mode	0.05		3.45	μs
^τ hd;DAT	Data hold time	Fast mode	0.05		0.9	μs
	Rise time of SCL signal after a repeated START condition	Standard mode	20 + 0.1C _B		1000	ns
t _{RCL1}	and after an acknowledge bit	Fast mode	20 + 0.1C _B		1000	ns
	Directions of CCI since!	Standard mode	20 + 0.1C _B		1000	ns
t _{RCL}	Rise time of SCL signal	Fast mode	20 + 0.1C _B		300	ns
	Fall time of SCI gianal	Standard mode	20 + 0.1C _B		300	ns
t _{FCL}	Fall time of SCL signal	Fast mode	20 + 0.1C _B		300	ns
	Ping time of CDA gignel	Standard mode	20 + 0.1C _B		1000	ns
t _{RDA}	Rise time of SDA signal	Fast mode	20 + 0.1C _B		300	ns
	Fall time of CDA cinesal	Standard mode	20 + 0.1C _B		300	ns
t _{FDA}	Fall time of SDA signal	Fast mode	20 + 0.1C _B		300	ns
	Octor for Grant OTOD confile	Standard mode	4.0			μs
t _{su;STO}	Setup time for STOP condition	Fast mode	600			ns
C _B	Capacitive load for SDA and SCL				0.4	nF

(1) Industry standard I²C timing characteristics according to I²C-Bus Specification, Version 2.1, January 2000. Not tested in production.

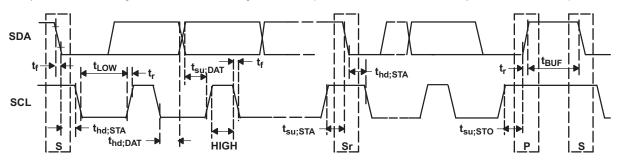
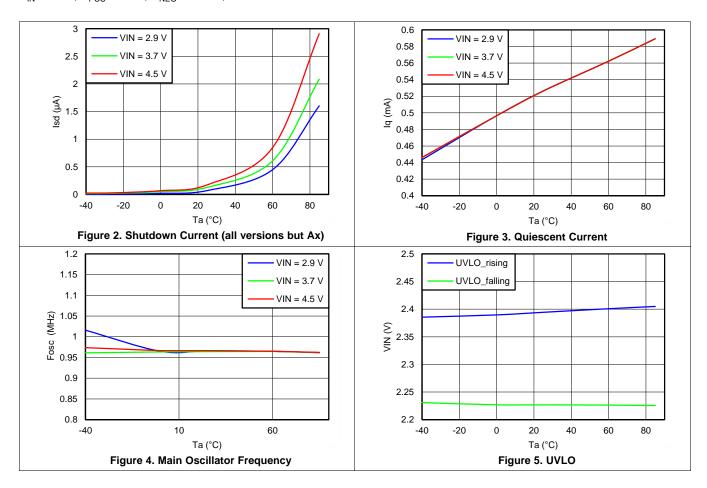
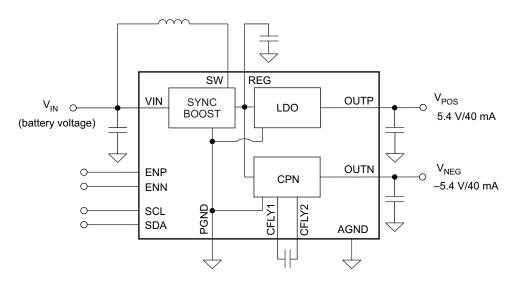



Figure 1. Serial Interface Timing For F/S-Mode

7.7 Typical Characteristics

 V_{IN} = 3.7 V, V_{POS} = 5.4 V, V_{NEG} = -5.4 V, unless otherwise noted



8 Detailed Description

8.1 Overview

The TPS65132, supporting input voltage range from 2.5 V to 5.5 V, operates with a single inductor scheme to provide a high efficiency with a small solution size. The synchronous boost converter generates a positive voltage that is regulated down by an integrated LDO, providing the positive supply rail (V_{POS}). The negative supply rail (V_{NEG}) is generated by an integrated negative charge pump (or CPN) driven from the boost converter output pin, REG. The operating mode can be selected between 40mA and 80mA in order to select the necessary output current capability and to get the best efficiency possible based on the application. The device topology allows a 100% asymmetry of the output currents.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Undervoltage Lockout (UVLO)

The TPS65132 integrates an undervoltage lockout block (UVLO) that enables the device once the voltage on the VIN pin exceeds the UVLO threshold (2.5 V maximum). No output voltage will be generated as long as the enable signals are not pulled HIGH. The device, as well as all converters (boost converter, LDO, CPN), will be disabled as soon as the V_{IN} voltage falls below the UVLO threshold. The UVLO threshold is designed in a way that the TPS65132 will continue operating as long as V_{IN} stays above 2.3 V. This guarantees a proper operation even in the event of extensive line transients when the battery gets suddenly heavily loaded.

For TPS65132Ax, a 40 ms delay is starting as soon as the UVLO threshold is reached. This delay prevents the device to be disabled and enabled by an unwanted VIN voltage spike. Once this delay has passed, the output rails can be enabled and disabled as desired with the enable signals without any delay.

8.3.2 Active Discharge

An active discharge of the positive rail and/or the negative rail can be programmed (DISP and DISN bits respectively - refer to *Registers*). If programmed to be active, the discharge will occur at power down, when the enable signals go LOW (Figure 37 and Figure 38 for TPS65132Ax, Bx, Lx, Tx, Wx — Figure 105 and Figure 104 for TPS65132Sx). See *Power-Down And Discharge (LDO)* and *Power-Down And Discharge (CPN)* for a detailed description of how each device variant implements the active discharge function.

Feature Description (continued)

8.3.3 Boost Converter

8.3.3.1 Boost Converter Operation

The synchronous boost converter uses a current mode topology and operates at a quasi-fixed frequency of typically 1.8 MHz, allowing chip inductors such as 2.2 μ H or 4.7 μ H to be used. The converter is internally compensated and provides a regulated output voltage automatically adjusted depending on the programmed V_{POS} and V_{NEG} voltages. The boost converter operates either in continuous conduction mode (CCM) or Pulse Frequency Modulation mode (PFM), depending on the load current in order to provide the highest efficiency possible. The switch node waveforms for CCM and DCM operation are shown in Figure 6 and Figure 7.

8.3.3.2 Power-Up And Soft-Start (Boost Converter)

The boost converter starts switching as soon as one enable signal is pulled HIGH and the voltage on VIN pin is above the UVLO threshold. For TPS65132Ax, in the case where one enable signal is already HIGH when V_{IN} reaches the UVLO threshold, the boost converter will only start switching after a 40 ms delay has passed (see *Undervoltage Lockout (UVLO)*).

The boost converter starts up with an integrated soft-start to avoid drawing excessive inrush current from the supply. The output voltage V_{REG} is slowly ramped up to its target value. Typical startup waveforms for low-current applications are shown in Figure 33 and Figure 35.

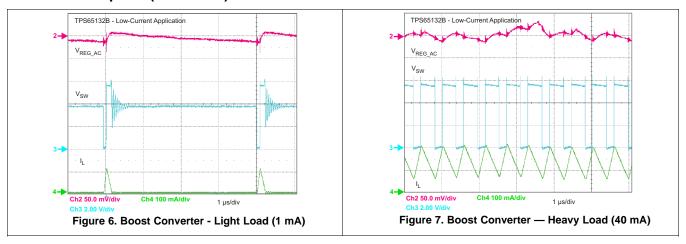
8.3.3.3 Power-Down (Boost Converter)

The boost converter stops switching when V_{IN} is below the UVLO threshold or when both output rails are disabled. For example, due to a special sequencing, the LDO might still be operating while the CPN is already disabled, in which case, the boost will continue operating until the LDO has been disabled. Typical power-down waveforms for low-current applications are shown in Figure 34 and Figure 36.

8.3.3.4 Isolation (Boost Converter)

The boost converter output (REG) is isolated from the input supply V_{IN}, providing a true shutdown.

8.3.3.5 Output Voltage (Boost Converter)


The output voltage of the boost converter is automatically adjusted depending on the programmed V_{POS} and V_{NEG} voltages.

8.3.3.6 Advanced Power-Save Mode For Light-Load Efficiency And PFM

The TPS65132 device integrates a power save mode to improve efficiency at light load. In power save mode the converter stops switching when the inductor current reaches 0 A. The device resumes its switching activity with one or more pulses once the V_{REG} voltage falls below its regulation level, and goes again into power save mode once the inductor current reaches 0 A. The pulse duration remains constant, but the frequency of these pulses varies according to the output load. This operating mode is also known as Pulse Frequency Modulation or PFM. Figure 6 provides plots of the inductor current and the switch node in PFM mode.

TEXAS INSTRUMENTS

Feature Description (continued)

8.3.4 LDO Regulator

8.3.4.1 LDO Operation

The Low Dropout regulator (or LDO) generates the positive voltage rail, V_{POS} , by regulating down the output voltage of the boost converter (V_{REG}). Its inherent power supply rejection helps filtering the output ripple of the boost converter in order to provide on OUTP pin a clean voltage, e.g. to supply the source driver IC of the display.

8.3.4.2 Power-Up And Soft-Start (LDO)

The LDO starts operating as soon as the ENP signal is pulled HIGH, V_{IN} voltage is above the UVLO threshold and the boost converter has reached its Power Good threshold.

In the case where the enable signal is already HIGH when V_{IN} exceeds the UVLO threshold, the boost converter will start first and the LDO will only start after the boost converter has reached its target voltage. For TPS65132Ax, the boost will start after the 40 ms delay has passed (see *Undervoltage Lockout (UVLO)*).

For TPS65132Sx the LDO startup is defined by the setting of the DLYx register and the SEQU bits, see *Registers* for more details.

The LDO integrates a soft-start that slowly ramps up its output voltage V_{POS} regardless of the output capacitor and the target voltage, as long as the LDO current limit is not reached. For TPS65132Ax and TPS65132Bx (except TPS65132B2), the typical startup time is 140 μ s. For TPS65132B2, TPS65132Lx, TPS65132Sx, TPS65132Tx and TPS65132Wx, the typical ramp-up time is 500 μ s and the inrush current is also reduced by a factor of 3. Typical startup waveforms for the low-current application are shown in Figure 33 to Figure 35.

8.3.4.3 Power-Down And Discharge (LDO)

The LDO stops operating when V_{IN} is below the UVLO threshold or when ENP is pulled LOW. Or for TPS65132Sx when EN is pulled LOW, and the internal sequencing has passed.

The positive rail can be actively discharged to GND during power-down if required. A discharge selection bit is available to enable or disable this function. See Registers for more details, as well as waveforms in Figure 37 and Figure 38. Table 1 shows the V_{POS} active discharge behavior of each device variant.

Table 1. V_{POS} Active Discharge Behavior

PART NUMBER	V _{IN}	ENP (or EN)	ENN (or SYNC)	V _{POS} DISCHARGE
	< V _{UVLO}	Don't Care	Don't Care	On
		Low	Low	Determined by DISP bit
TPS65132Ax	.,	Low	High	Determined by DISP bit
	> V _{UVLO}	High	Low	Off
		High	High	Off

Feature Description (continued)

Table 1. V_{POS} Active Discharge Behavior (continued)

PART NUMBER	V _{IN}	ENP (or EN)	ENN (or SYNC)	V _{POS} DISCHARGE
TD007/00D	< V _{UVLO}	Don't Care	Don't Care	On
TPS65132Bx TPS65132Lx		Low	Low	On
TPS65132Sx	. V	Low	High	Determined by DISP bit
TPS65132Tx TPS65132Wx	> V _{UVLO}	High	Low	On Determined by DISP bit Off
		High	High	Off

8.3.4.4 Isolation (LDO)

The LDO is isolating the V_{POS} rail from V_{REG} (boost converter output) as long as the rail is not enabled in order to ensure flexible startup like V_{NEG} before V_{POS}.

8.3.4.5 Setting The Output Voltage (LDO)

The output voltage of the LDO is programmable via a I²C compatible interface, from -6.0 V to -4.0 V in 100 mV steps. For more details, please refer to the VPOS Register – Address: 0x00

8.3.5 Negative Charge Pump

8.3.5.1 Operation

The negative charge pump (CPN) generates the negative voltage rail, V_{NEG}, by inverting and regulating the output voltage of the boost converter (V_{REG}). The charge pump uses 4 switches and an external flying capacitor to generate the negative rail. Two of the switches are turned on in the first phase to charge the flying capacitor up to V_{REG}, and in the second phase they are turned-off and the two others turn on to pump the energy negatively out of the OUTN capacitor.

8.3.5.2 Power-Up And Soft-Start (CPN)

The CPN starts operating as soon as the ENN signal is pulled HIGH, V_{IN} voltage is above the UVLO threshold and the boost converter has reached its Power Good threshold.

In the case where the enable signal is already HIGH when V_{IN} reaches the UVLO threshold, the boost converter will start first and the CPN will only start after the boost converter has reached its target voltage. For TPS65132Ax, the boost will start after the 40 ms delay has passed (see *Undervoltage Lockout (UVLO)*).

For TPS65132Sx the CPN startup is defined by the setting of the DLYx register and the SEQU bits, see Registers for more details.

The CPN integrates a soft-start that slowly ramps up its output voltage V_{NEG} within a time defined by the selected mode (40mA or 80mA), the output voltage and the output capacitor value. For TPS65132Ax and TPS65132Bx (except TPS65132B2), the startup current charging the output capacitor in 40mA mode is 50 mA, and 100 mA typically in 80mA mode. For TPS65132B2, TPS65132Lx, TPS65132Tx, and TPS65132Wx, the typical ramp-up times are slowed down by a factor of 4 (i.e 12.5 mA and 25 mA typical output current for 40mA and 80mA modes respectively) and the inrush current is also reduced by a factor of about 4. Typical startup waveforms for the lowcurrent application are shown in Figure 39 to Figure 42.

For TPS65132Sx, the negative rail starts-up in 40mA or 80mA mode, thus the startup current is set by the mode the device is programmed to, and not related to the SYNC pin state. The full current of 150 mA minimum is only released once both rails (V_{POS} and V_{NEG}) have reached their Power Good levels.

Product Folder Links: TPS65132

 $t_{\text{STARTUP}} = \frac{C_{\text{OUT}} \times V_{\text{NEG}}}{I_{\text{STARTUP}}}$ The estimated startup time can be calculated using the following formula:

Where:

 $t_{STARTUP}$ = startup time of the V_{NEG} rail C_{OUT} = output capacitance of the V_{NEG} rail V_{NEG} = target output voltage

Submit Documentation Feedback

 $I_{STARTUP}$ = output current of the V_{NEG} rail charging up the output capacitor at startup (12.5 mA, 25 mA, 50 mA or 100 mA as described above)

8.3.5.3 Power-Down And Discharge (CPN)

The CPN stops operating when V_{IN} is below the UVLO threshold or when ENN is pulled LOW.

Or when EN is pulled LOW in the TPS65132Sx, and the internal sequencing has passed.

The negative rail can be actively discharged to GND during power-down if required. A discharge selection bit is available to enable or disable this function. See for more details, as well as waveforms Figure 37 and Figure 38. Table 2 shows the V_{NEG} discharge behavior of each device variant.

PART NUMBER V_{IN} ENP (or EN) ENN (or SYNC) **V_{NEG} DISCHARGE** $< V_{UVLO}$ Don't Care Don't Care Determined by DISN bit Low Low Low Off TPS65132Ax High $> V_{UVLO}$ High Low Determined by DISN bit Off High High $< V_{UVLO}$ Don't Care Don't Care On On TPS65132Bx Low Low TPS65132Lx Low High Off TPS65132Tx $> V_{UVLO}$ Low Determined by DISN bit TPS65132Wx High High High Off Don't Care On Don't Care $< V_{UVLO}$ Low Low On Determined by DISN bit TPS65132Sx Low High $> V_{UVLO}$ Off High Low Off High High

Table 2. V_{NEG} Active Discharge Behavior

8.3.5.4 Isolation (CPN)

The CPN isolates the V_{NEG} rail from V_{REG} (boost converter output) as long as the rail is not enabled in order to ensure flexible startup like V_{POS} before V_{NEG} .

8.3.5.5 Setting The Output Voltage (CPN)

The output voltage of the CPN is programmable via a I²C compatible interface, from –4.0 V to –6.0 V in 100 mV steps. For more details, please refer to the *VNEG Register – Address 0x01*.

8.4 Device Functional Modes

8.4.1 Enabling and Disabling the Device

At startup (V_{IN} goes above UVLO and at least one of the enable pins (ENP, ENN, or EN) goes HIGH), the EEPROM content is loaded into the DAC registers and the IC starts with these default values. The TPS65132 is enabled as long as the V_{IN} voltage is above the UVLO and one of the enable pins (ENP, ENN, or EN) is HIGH.

Pulling ENP or ENN LOW disables either rail (V_{POS} or V_{NEG} respectively); and, pulling both pins LOW disables the device entirely (the internal oscillator of the TPS65132Ax continues running to allow access to the I²C interface).

For TPS65132Sx, pulling EN LOW disables the device.

Product Folder Links: TPS65132

Copyright © 2013-2016, Texas Instruments Incorporated

8.5 Programming

8.5.1 I²C Serial Interface Description

The TPS65132 communicates through an industry standard I²C compatible interface, to receive data in slave mode. I²C is a 2-wire serial interface developed by Philips Semiconductor (see I²C-Bus Specification, Version 2.1, January 2000).

The TPS65132 integrates a non-volatile memory (EEPROM) that allows the storage of the register values with a capability of up to 1000 programming cycles. At startup the TPS65132 loads first the EEPROM content into the registers and uses these voltages to start.

It is recommended to stop I²C communication with the TPS65132 for 50 ms after the command "Write EEPROM data" was sent. If the device is accessed via I²C during EEPROM programming, the device will pull down the SCL line (clock stretch) after it recognized its I²C address. The SCL line will be released after EEPROM programming is finished.

The TPS65132 works as a slave and supports the following data transfer modes, as defined in the I²C-Bus specification: standard mode (100 kbps) and fast mode (400 kbps). The data transfer protocol for standard and fast modes is exactly the same, therefore they are referred to as F/S-mode in this document. The TPS65132 supports 7-bit addressing. The device 7-bit address is 3E (see Figure 8), and the LSB enables the write or read function.

Figure 8. TPS65132 Slave Address Byte

MSB		TPS65132		Address			LSB
0	1 1 1		1	1	1	0	R/W
$R/\overline{W} = R/(W)$							

NOTE

With TPS65132Ax, the I^2C interface is accessible as long as the input voltage is above the undervoltage lockout threshold. In all other versions, the I^2C interface is accessible only as soon as one of the enable pins is pulled HIGH while the input voltage is above the undervoltage lockout.

8.5.2 I²C Interface Protocol

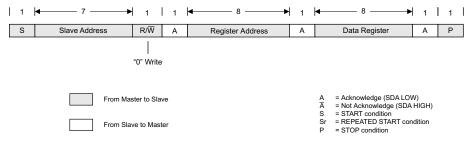


Figure 9. "Write" Data To DAC - Transfer Format In F/S-Mode

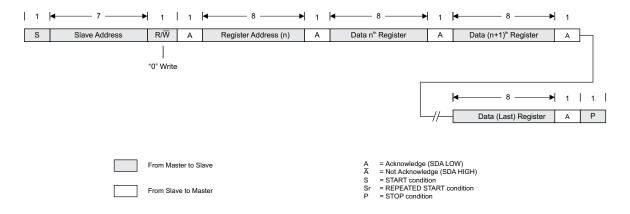


Figure 10. "Write" Data To DAC – Transfer Format In F/S-Mode Featuring Register Address Auto-Increment

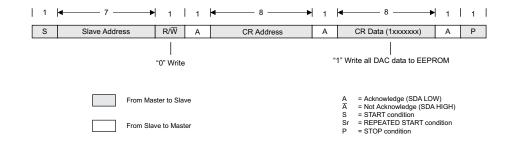


Figure 11. "Write" Data To EEPROM - Transfer Format In F/S-Mode

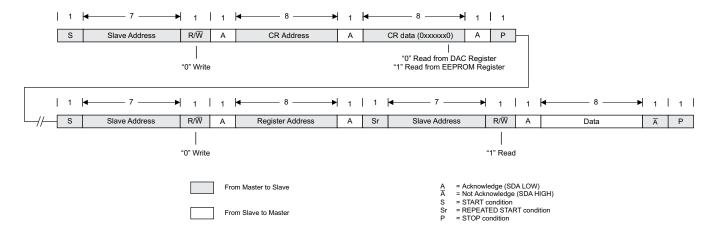


Figure 12. "Read" Data From DAC/EEPROM - Transfer Format In F/S-Mode

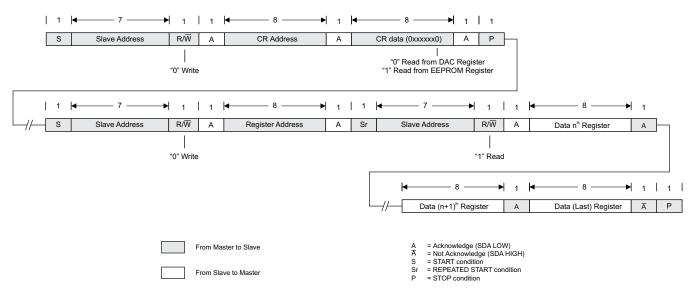


Figure 13. "Read" Data From DAC/EEPROM – Transfer Format In F/S-Mode Featuring Register Address Auto-Increment

8.6 Register Maps

The TPS65132 has a non-volatile memory (EEPROM) which contains the initial values and one volatile memory (Registers) which contains the actual settings. The EEPROM and the Registers are accessed with the same address.

Startup option: At power-up, the values contained in the EEPROM are loaded into the Registers to the last stored setting within less than 20 µs. The programmed factory value of the EEPROM of each address is described in section *Factory Default Register Value*.

Write description: The user has to program all Registers first (0×00 to 0×03), then set the WED (Write EEPROM Data) bit to 1. A dead time of 50 ms is then initiated during which the register content or all registers (0×00 ~ 0×03) are stored into the non-volatile EEPROM cells. During that time, there should be no data flowing through the I^2C because the I^2C interface is momentarily not responding.

After the 50 ms have passed, the WED bit is automatically reset to 0, and the user is able to read the values or program again.

Slave address: 0x3E

X = R/W $R/W = 1 \rightarrow read mode$

 $R/W = 0 \rightarrow write mode$

8.6.1 Registers

Attempting to read data from register addresses not listed in the following section will result in 0x00 being read out.

8.6.1.1 VPOS Register - Address: 0x00

Figure 14. VPOS Register

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	VPOS[4:0]				
0	0	0	0 1 1 1 0				
	R				R/W		

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 3. VPOS Register Field Descriptions

Bit	Field	Description						
7:5	RSVD[2:0]	Reserved, always set to 0						
		VPOS output voltage adjustment						
		VPOS[4:0] Value (binary)	VPOS Output Voltage (V)	VPOS[4:0] Value (binary)	VPOS Output Voltage (V)			
		00000	4.0	01011	5.1			
		00001	4.1	01100	5.2			
		00010	4.2	01101	5.3			
		00011	4.3	01110	5.4			
4:0	VPOS[4:0]	00100	4.4	01111	5.5			
		00101	4.5	10000	5.6			
		00110	4.6	10001	5.7			
		00111	4.7	10010	5.8			
		01000	4.8	10011	5.9			
		01001	4.9	10100	6.0			
		01010	5.0					

Product Folder Links: TPS65132

Submit Documentation Feedback

8.6.1.2 VNEG Register – Address 0x01

Figure 15. VNEG Register

7	6	5	4	3	2	1	0
RSVD	RSVD	RSVD	VNEG[4:0]				
0	0	0	0 1 1 1 0				
	R				R/W		

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4. VNEG Register Field Descriptions

Bit	Field	Description	Description					
7:5	RSVD[2:0]	Reserved, always set to	Reserved, always set to 0					
		VNEG output voltage adjustment						
		VNEG[4:0] Value (binary)	VNEG Output Voltage (V)	VNEG[4:0] Value (binary)	VNEG Output Voltage (V)			
		00000	-4.0	01011	-5.1			
		00001	-4.1	01100	-5.2			
		00010	-4.2	01101	-5.3			
		00011	-4.3	01110	-5.4			
4:0	VNEG[4:0]	00100	-4.4	01111	-5.5			
		00101	-4.5	10000	-5.6			
		00110	-4.6	10001	-5.7			
		00111	-4.7	10010	-5.8			
		01000	-4.8	10011	-5.9			
		01001	-4.9	10100	-6.0			
		01010	-5.0					

8.6.1.3 DLYx Register – Address 0x02 (Only valid for TPS65132Sx)

Figure 16. DLYx Register

7	6	5	4	3	2	1	0	
DLYP2	DLYP2	DLYN2	DLYN2	DLYP1	DLYP1	DLYN1	DLYN1	
0	0	0	0	0	0	0	1	
	R/W							

Table 5. DLYx Register Field Descriptions

Bit	Field	Description		
7:6	DLYP2[1:0]			
5:4	DLYN2[1:0]	Dolov in milliogoondo		
3:2	DLYP1[1:0]	Delay in milliseconds	Delay in milliseconds	
1:0	DLYN1[1:0]			
		DLYx Value (binary)	DLYx Delay (ms)	
		00	0	
	DLYx[1:0]	01	1	
		10	5	
		11	10	

8.6.1.4 APPS - SEQU - SEQD - DISP - DISN Register - Address 0x03

Figure 17. APPS - SEQU - SEQD - DISP - DISN Register

7	6	5	4	3	2	1	0
RSVD	APPS	SEQU	SEQU	SEQD	SEQD	DISP	DISN
0	0	0	0	0	0	1	0
R	R/W						

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6. APPS - SEQU - SEQD - DISP - DISN Field Descriptions

Bit	Field	Description		Value (binary)	Action
7	RSVD	Reserved, always	s set to 0		
6	APPS	Application	APPS	0	40mA
0	APPS	Application	Value	1	80mA
				00	V _{POS} and V _{NEG} simultaneously (DLYP1 after EN goes HIGH)
5:4	SEQU ⁽¹⁾	Sequencing at	SEQU	01	V _{POS} (DLYP1 after EN goes HIGH) and then V _{NEG} (DLYN1 after V _{POS})
5.4	SEQU	Startup	Value	10	V _{NEG} (DLYN1 after EN goes HIGH) and then V _{POS} (DLYP1 after V _{NEG})
				11	V _{POS} only
				00	V _{POS} and V _{NEG} simultaneously (DLYP2 after EN goes LOW)
3:2	SEQD ⁽¹⁾	Sequencing at	SEQD	01	V _{POS} (DLYP2 after EN goes LOW) and then V _{NEG} (DLYN2 after V _{POS})
3.2	SEQU	Shutdown	Value	10	V _{NEG} (DLYN2 after EN goes LOW) and then V _{POS} (DLYP2 after V _{NEG})
				11	Ignored
1	DISP ⁽²⁾	Discharge V	DISB Value	0	No discharge
	טוסף ייי	Discharge V _{POS} DISP Value		1	V _{POS} actively discharged
0	DISN ⁽²⁾	Disales and M. DION A	DISN Value	0	No discharge
	0 DISN ⁽²⁾ Discharge V _{NEG}		DISIN Value	1	V _{NEG} actively discharged

SEQU and SEQD bits are just valid for TPS65132Sx

See Power-Down And Discharge (LDO) and Power-Down And Discharge (CPN) for a detailed description of how each device variant implements the active discharge function.

8.6.1.5 Control Register - Address 0xFF

Figure 18. Control Register

7	6	5	4	3	2	1	0
WED	RSVD[6:1]					EE/(DR)	

The **Reserved** bits are ignored when written and return either 0 or 1 when read.

Table 7. Control Register Field Descriptions

Bit	Field	Value (binary)	Description
7	WED	0	No action
′	WED	1	Write EEPROM Data
6:1	RSVD[6:1]	Reserved	
0	FF//DD)	0	Read from Registers
0 EE	EE/(DR)	1	Read from EEPROM

8.6.2 Factory Default Register Value

Part number	Register address				
Part number	0x00	0x01	0x02	0x03	
TPS65132A	0x0E	0x0E	_	0x03	
TPS65132A0	0x0A	0x0A	_	0x03	
TPS65132B	0x0E	0x0E	_	0x03	
TPS65132B0	0x0A	0x0A	_	0x03	
TPS65132B2	0x0C	0x0C	_	0x03	
TPS65132B5	0x0F	0x0F	_	0x03	
TPS65132L	0x0E	0x0E	_	0x03	
TPS65132L0	0x0A	0x0A	_	0x03	
TPS65132L1 ⁽¹⁾	0x0B	0x0B	_	0x03	
TPS65132S	0x0E	0x0E	0x00	0x43	
TPS65132T6	0x10h	0x10h	_	0x43	
TPS65132W	0x0E	0x0E	_	0x43	

(1) Product preview.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS65132xx devices, primarily intended to supplying TFT LCD displays, can be used for any application that requires positive and negative supplies, ranging from ±4 V to ±6 V and current up to 80 mA (150 mA for the TPS65132Sx version). Both output voltages can be set independently and their sequencing is also independent. The following section presents the different operating modes that the device can support as well as the different features that the user can select.

9.2 Typical Applications

9.2.1 Low-current Applications (≤ 40 mA)

The TPS65132 can be programmed to 40mA mode with the APPS bit to support applications that require output currents up to 40 mA (refer to Figure 17). The 40mA mode limits the negative charge pump output current to 40 mA DC in order to provide the highest efficiency possible. The V_{POS} rail can deliver up to 200 mA DC regardless of the mode. Output peak currents are supported by the output capacitors.

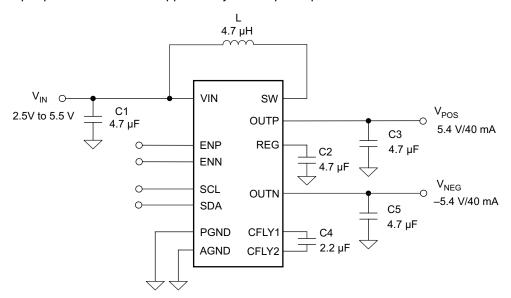


Figure 19. Typical Low-current Application Circuit

9.2.1.1 Design Requirements

Table 8. Design Parameters

PARAMETERS	EXAMPLE VALUES	
Input Voltage Range	2.5 V to 5.5 V	
Output Voltages	4.0 V to 6.0 V, -4.0 V to -6.0 V	
Output Current Rating	40 mA	
Boost Converter Switching Frequency	1.8 MHz	
Negative Charge Pump Switching Frequency	1.0 MHz	

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 **Sequencing**

Each output rail (V_{POS} and V_{NEG}) is enabled and disabled using an external enable signal. If not explicitly specified, the enable signal in the rest of the document refers to ENN or ENP: ENP for the positive rail V_{POS} and ENN for the negative rail V_{NEG}. Figure 33 to Figure 36 show the typical sequencing waveforms.

NOTE

In the case where V_{IN} falls below the UVLO threshold while one of the enable signals is still high, all converters will be shut down instantaneously and both V_{POS} and V_{NEG} output rails will be actively discharged to GND.

9.2.1.2.2 Boost Converter Design Procedure

The first step in the design procedure is to verify whether the maximum possible output current of the boost converter supports the specific application requirements. A simple approach is to estimate the converter efficiency, by taking the efficiency number from the provided efficiency curves at the application's maximum load or to use a worst case assumption for the expected efficiency, e.g., 85%.

1. Duty Cycle: D = 1 -
$$\frac{V_{IN_min} \times \eta}{V_{REG}}$$

- 2. Inductor ripple current: $\Delta I_L = \frac{V_{IN_min} \times D}{f_{SW} \times L}$
- 3. Maximum output current: $I_{OUT_max} = \left(I_{LIM_min} + \frac{\Delta I_L}{2}\right) \times (1 D)$
- 4. Peak switch current of the application: $I_{SWPEAK} = \frac{I_{OUT}}{1-D} + \frac{\Delta I_L}{2}$ η = Estimated boost converter efficiency (use the number from the efficiency plots or 85% as an estimation)

 f_{SW} = Boost converter switching frequency (1.8 MHz)

L = Selected inductor value for the boost converter (see the Inductor Selection section)

 I_{SWPFAK} = Boost converter switch current at the desired output current (must be < $[I_{IIM min} + \Delta I_{I}]$)

 ΔI_L = Inductor peak-to-peak ripple current

 $V_{REG} = max \ (V_{POS}, \ |V_{NEG}|) + 200 \ mV \ (in 40mA mode — + 300 \ mV in 80mA mode — + 500 \ mV with TPS65132Sx with SYNC = HIGH)$

 $I_{OUT} = I_{OUT_VPOS} + |I_{OUT_VNEG}|$ (I_{OUT_max} being the maximum current delivered on each rail)

The peak switch current is the current that the integrated switch and the inductor have to handle. The calculation must be done for the minimum input voltage where the peak switch current is highest.

9.2.1.2.2.1 Inductor Selection (Boost Converter)

Saturation current: the inductor must handle the maximum peak current (I_{L SAT} > I_{SWPEAK}, or I_{L_SAT} > [I_{LIM_min} + ΔI_{\perp}] as conservative approach)

DC Resistance: the lower the DCR, the lower the losses

Inductor value: in order to keep the ratio $I_{OUT}/\Delta I_{L}$ low enough for proper sensing operation purpose, it is recommended to use a 4.7 µH inductor for 40mA mode (a 2.2 µH might however be used, but the efficiency might be lower than with 4.7 µH at light loads depending on the inductor characteristics).

Table 9. Inductor Selection Boost (1)

L (µH)	SUPPLIER (1)	COMPONENT CODE	EIA SIZE	DCR TYP (mΩ)	I _{SAT} (A)
2.2	Toko	1269AS-H-2R2N=P2	1008	130	2.4
2.2	Murata	LQM2HPN2R2MG0	1008	80	1.3
2.2	Murata	LQM21PN2R2NGC	0805	250	0.8
4.7	Toko	1269AS-H-4R7N=P2	1008	250	1.6
4.7	Murata	LQM21PN4R7MGR	0805	230	0.8
4.7	FDK	MIPS2520D4R7	1008	280	0.7

⁽¹⁾ See Third-Party Products Disclaimer

9.2.1.2.2.2 Input Capacitor Selection (Boost Converter)

For best input voltage filtering low ESR ceramic capacitors are recommended. TPS65132 has an analog input pin VIN. A $4.7~\mu F$ minimum bypass capacitor is required as close as possible from VIN to GND. This capacitor is also used as the boost converter input capacitor.

For better input voltage filtering, this value can be increased or two capacitors can be used: one 4.7 μ F input capacitor for the boost converter as well as a 1 μ F bypass capacitor close to the VIN pin. Refer to the Recommended Operating Conditions, Table 10 and Figure 19 for input capacitor recommendations.

9.2.1.2.2.3 Output Capacitor Selection (Boost Converter)

For the best output voltage filtering, low-ESR ceramic capacitors are recommended. A minimum of 4.7 µF ceramic output capacitor is required. Higher capacitor values can be used to improve the load transient response. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 19 for output capacitor recommendations.

Table 10. Input And Output Capacitor Selection⁽¹⁾

CAPACITOR (µF)	SUPPLIER	COMPONENT CODE	EIA SIZE (Thickness max.)	VOLTAGE RATING (V)	COMMENTS
2.2	Murata	GRM188R61C225KAAD	0603 (0.9 mm)	16	C_{FLY}
4.7	Murata	GRM188R61C475KAAJ	0603 (0.95 mm)	16	$C_{IN}, C_{NEG}, C_{POS}, \\ C_{REG}$
10	Murata	GRM219R61C106KA73	0603 (0.95 mm)	16	C_{NEG}, C_{REG}

⁽¹⁾ See Third-Party Products Disclaimer

9.2.1.2.3 Input Capacitor Selection (LDO)

The LDO input capacitor is also the boost converter output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 19.

9.2.1.2.4 Output Capacitor Selection (LDO)

The LDO is designed to operate with a 4.7 μF minimum ceramic output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 19.

9.2.1.2.5 Input Capacitor Selection (CPN)

The CPN input capacitor is also the boost converter output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 19.

9.2.1.2.6 Output Capacitor Selection (CPN)

The CPN is designed to operate with a 4.7 μ F minimum ceramic output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 19.

9.2.1.2.7 Flying Capacitor Selection (CPN)

The CPN needs an external flying capacitor. The minimum value is 2.2 μ F. Special care must be taken while choosing the flying capacitor as it will directly impact the output voltage accuracy and load regulation performance. Therefore, a minimum capacitance of 1 μ F must be achieved by the capacitor at a DC bias voltage of $|V_{NEG}|$ + 300 mV. For proper operation, the flying capacitor value must be lower than the output capacitor of the boost converter on REG pin.

9.2.1.3 Application Curves

 $V_{IN} = 3.7 \text{ V}$, $V_{POS} = 5.4 \text{ V}$, $V_{NEG} = -5.4 \text{ V}$, unless otherwise noted

Table 11. Component List Used For The Application Curves

REFERENCE	DESCRIPTION	MANUFACTURER AND PART NUMBER (1)	
	2.2 µF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C225KAAD	
С	4.7 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C475KAAJ	
	10 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61E106MA73	
1	2.2 μH, 2.4 A, 130 m Ω , 2.5 mm × 2.0 mm × 1.0 mm	Toko - DFE252010C (1269AS-H-2R2N=P2)	
L	4.7 μH, 1.6 A, 250 mΩ, 2.5 mm × 2.0 mm × 1.0 mm	Toko - DFE252010C (1269AS-H-4R7N=P2)	
U1	TPS65132AYFF	Texas Instruments	

(1) See Third-Party Products Disclaimer

Table 12. Table Of Graphs

PARAMETER	CONDITIONS	Figure
EFFICIENCY		
Efficiency vs. Output Current	± 5.0 V — 40mA Mode — L = 4.7 μH	Figure 20
Efficiency vs. Output Current	± 5.4 V — 40mA Mode — L = 4.7 μH	Figure 21
Efficiency vs. Output Current	± 5.0 V — 40mA Mode — L = 2.2 μH	Figure 22
Efficiency vs. Output Current	± 5.4 V — 40mA Mode — L = 2.2 μH	Figure 23
CONVERTERS WAVEFO	DRMS	,
V _{NEG} Output Ripple	$I_{NEG} = 2 \text{ mA} / 20 \text{ mA} / 40 \text{ mA} - 40 \text{mA} \text{ Mode} - C_{OUT} = 4.7 \mu\text{F}$	Figure 24
V _{NEG} Output Ripple	$I_{NEG} = 2 \text{ mA} / 20 \text{ mA} / 40 \text{ mA} - 40 \text{mA} \text{ Mode} - C_{OUT} = 2 \times 4.7 \mu\text{F}$	Figure 25
V _{POS} Output Ripple	Any load	Figure 26
LOAD TRANSIENT		
Load Transient	V_{IN} = 2.9 V — I_{POS} = $-I_{NEG}$ = 5 mA \rightarrow 35 mA \rightarrow 5 mA — 40mA Mode — L = 4.7 μ H	Figure 27
Load Transient	V_{IN} = 3.7 V — I_{POS} = $-I_{NEG}$ = 5 mA \rightarrow 35 mA \rightarrow 5 mA — 40mA Mode — L = 4.7 μ H	Figure 28
Load Transient	V_{IN} = 4.5 V — I_{POS} = $-I_{NEG}$ = 5 mA \rightarrow 35 mA \rightarrow 5 mA — 40mA Mode — L = 4.7 μ H	Figure 29
LINE TRANSIENT		•
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V $-$ I _{POS} = $-$ I _{NEG} = 0 mA $-$ 40mA Mode $-$ L = 4.7 μ H	Figure 30
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V $-$ I _{POS} = $-$ I _{NEG} = 5 mA $-$ 40mA Mode $-$ L = 4.7 μ H	Figure 31
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V \rightarrow I_{POS} = $-I_{NEG}$ = 35 mA \rightarrow 40mA Mode \rightarrow L = 4.7 μ H	Figure 32

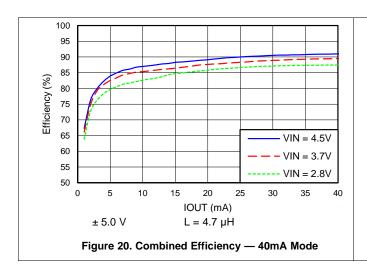


Table 12. Table Of Graphs (continued)

PARAMETER	CONDITIONS	Figure
POWER SEQUENCING		
Power-up Sequencing	Simultaneous — no load	
Power-down Sequencing	Simultaneous — no load with Active Discharge	Figure 34
Power-up Sequencing	Sequential — no load	Figure 35
Power-down Sequencing	Sequential — no load with Active Discharge	Figure 36
Power-up/down Sequencing	Simultaneous — no load with Active Discharge	Figure 37
Power-up/down Sequencing	Simultaneous — no load without Active Discharge	Figure 38
INRUSH CURRENT		
Inrush Current	Simultaneous — no load — 40mA Mode	Figure 39
Inrush Current	Sequential — no load — 40mA Mode	Figure 40
Inrush Current	Simultaneous — no load — 40mA Mode — TPS65132B2, -Lx, -Sx, -Tx, -Wx	Figure 41
Inrush Current	Sequential — no load — 40mA Mode — TPS65132B2, -Lx, -Sx, -Tx, -Wx	Figure 42
LOAD REGULATION		
V _{POS} vs Output Current	V_{POS} = 5.0 V — 40mA Mode — I_{POS} = 0 mA to 40 mA — L = 4.7 μ H and 2.2 μ H	Figure 43
V _{POS} vs Output Current	V_{POS} = 5.4 V — 40mA Mode — I_{POS} = 0 mA to 40 mA — L = 4.7 μ H and 2.2 μ H	Figure 44
V _{NEG} vs Output Current	V_{NEG} = -5.0 V — 40mA Mode — I_{NEG} = 0 mA to 40 mA — L = 4.7 μ H and 2.2 μ H	Figure 45
V _{NEG} vs Output Current	V_{NEG} = -5.4 V — 40mA Mode — I_{NEG} = 0 mA to 40 mA — L = 4.7 μ H and 2.2 μ H	Figure 46
LINE REGULATION		
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.0 V — 40mA Mode — I_{POS} = 20 mA — L = 4.7 μH and 2.2 μH	Figure 47
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.4 V — 40mA Mode — I_{POS} = 20 mA — L = 4.7 μ H and 2.2 μ H	Figure 48
V _{NEG} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{NEG} = -5.0 V — 40mA Mode — I_{NEG} = 20 mA — L = 4.7 μ H and 2.2 μ H	Figure 49
V _{NEG} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{NEG} = -5.4 V — 40mA Mode — I_{NEG} = 20 mA — L = 4.7 μ H and 2.2 μ H	Figure 50

NOTE

In this section, I_{OUT} means that the outputs are loaded with $I_{POS} = -I_{NEG}$ simultaneously.

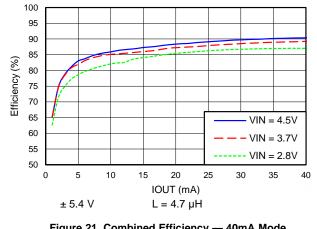
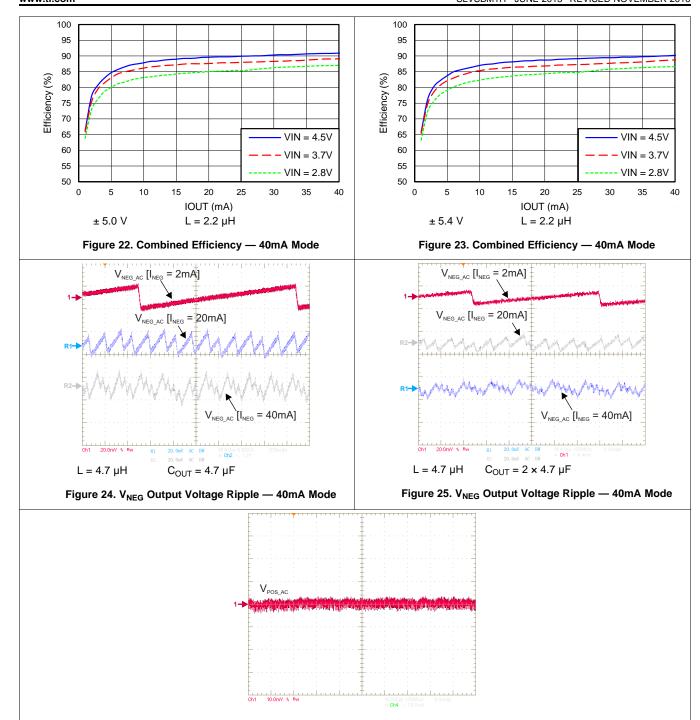
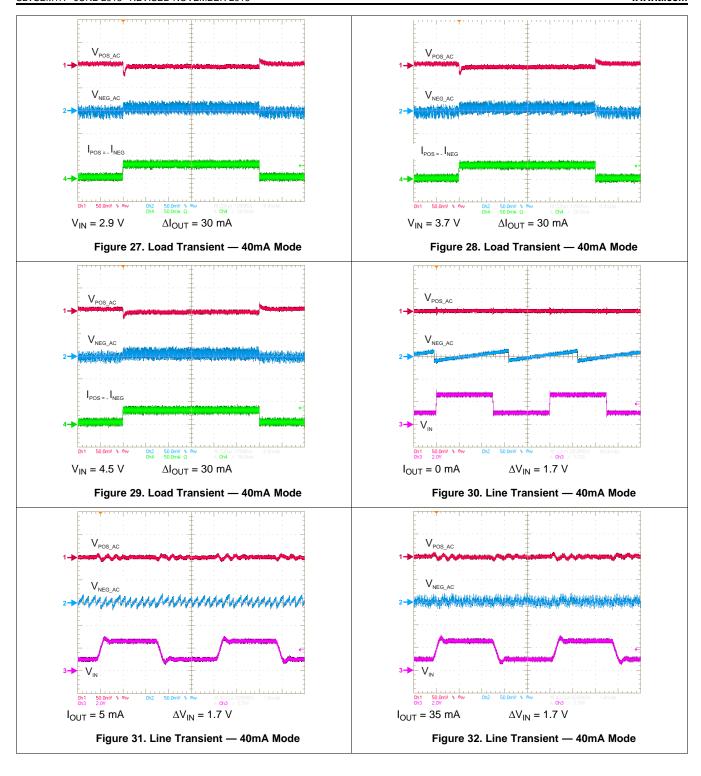



Figure 21. Combined Efficiency — 40mA Mode

Submit Documentation Feedback

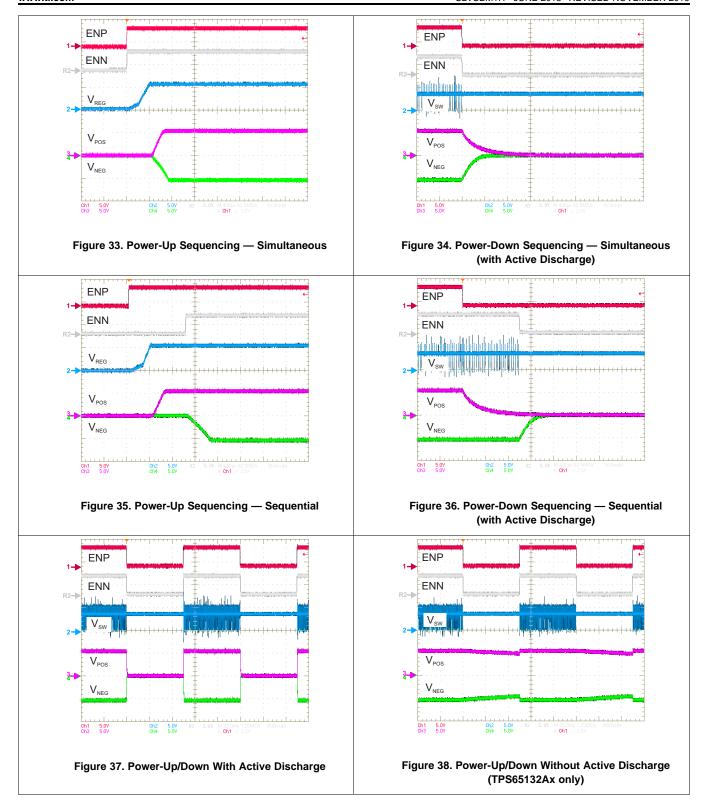
Copyright © 2013–2016, Texas Instruments Incorporated



Copyright © 2013–2016, Texas Instruments Incorporated

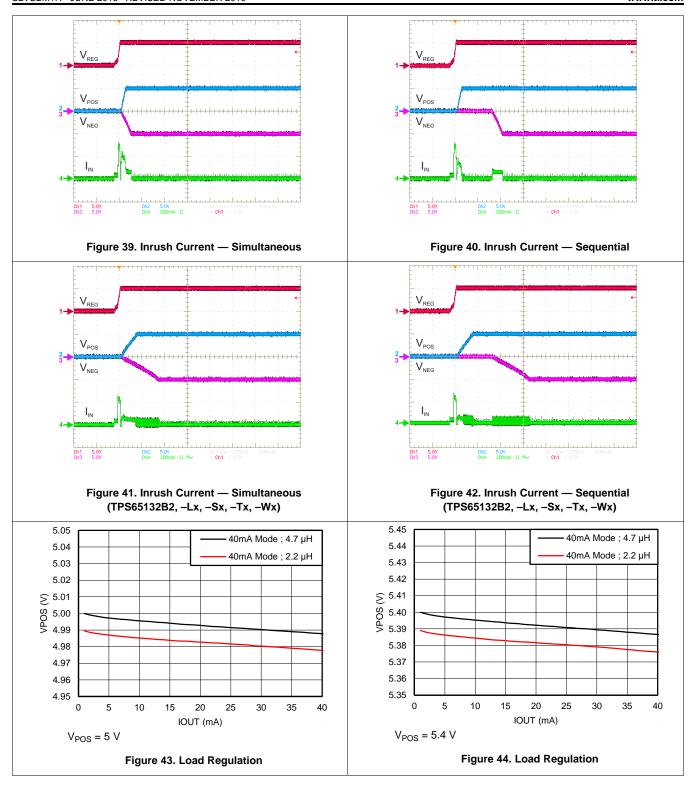
Submit Documentation Feedback

Figure 26. V_{POS} Output Voltage Ripple



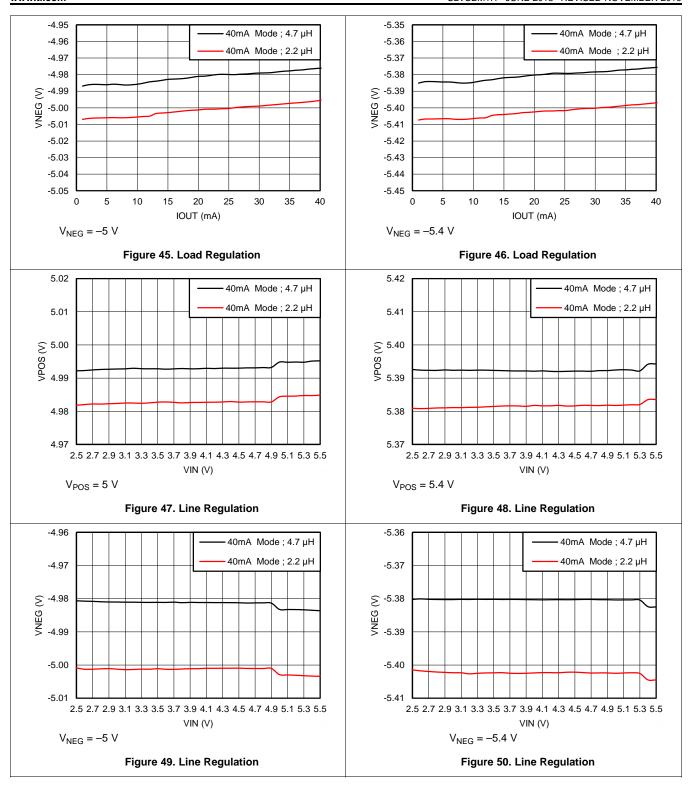
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated



Copyright © 2013–2016, Texas Instruments Incorporated

Submit Documentation Feedback



Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

Copyright © 2013–2016, Texas Instruments Incorporated

Submit Documentation Feedback

9.2.2 Mid-current Applications (≤ 80 mA)

The TPS65132 can be programmed to 80mA mode with the APPS bit to support applications that require output currents up to 80 mA (refer to Figure 17). The 80mA mode is limiting the negative charge pump (CPN) output current to 80 mA DC in order to provide the highest efficiency possible where the $V_{(POS)}$ rail can deliver up to 200 mA DC regardless of the mode. Output peak currents are supported by the output capacitors.

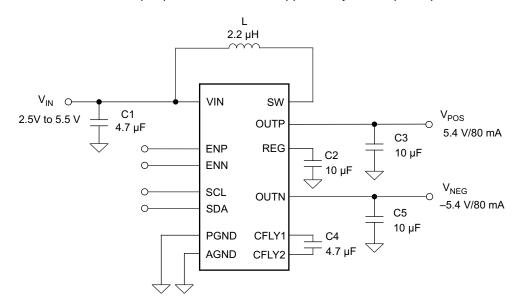


Figure 51. Typical Mid-current Application Circuit

9.2.2.1 Design Requirements

Table 13. Design Parameters

PARAMETERS	EXAMPLE VALUES	
Input Voltage Range	2.5 V to 5.5 V	
Output Voltages	4.0 V to 6.0 V, -4.0 V to -6.0 V	
Output Current Rating	80 mA	
Boost Converter Switching Frequency	1.8 MHz	
Negative Charge Pump Switching Frequency	1.0 MHz	

9.2.2.2 Detailed Design Procedure

The design procedure for the mid-current applications (80mA mode) is identical to the one for the low-current applications (40mA mode), except for the BOM (bill of materials). Refer to the *Detailed Design Procedure* for details about the sequencing and the general component selection.

9.2.2.2.1 Boost Converter Design Procedure

9.2.2.2.1.1 Inductor Selection (Boost Converter)

In order to keep the ratio $I_{OUT}/\Delta I_L$ low enough for proper sensing operation purpose, it is recommended to use a 2.2 μ H inductor for 80mA mode. For details, see *Inductor Selection (Boost Converter)*.

9.2.2.2.1.2 Input Capacitor Selection (Boost Converter)

A 4.7 μ F minimum bypass capacitor is required as close as possible from VIN to GND. This capacitor is also used as the boost converter input capacitor.

For better input voltage filtering, this value can be increased or two capacitors can be used: one 4.7 μ F input capacitor for the boost converter as well as a 1 μ F bypass capacitor close to the VIN pin. Refer to the Recommended Operating Conditions, Table 10 and Figure 51 for input capacitor recommendations.

9.2.2.2.1.3 Output Capacitor Selection (Boost Converter)

For best output voltage filtering low ESR ceramic capacitors are recommended. A minimum of 10 µF ceramic output capacitor is required. Higher capacitor values can be used to improve the load transient response. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 51 for output capacitor recommendations.

9.2.2.2.2 Input Capacitor Selection (LDO)

The LDO input capacitor is also the boost converter output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 51.

9.2.2.2.3 Output Capacitor Selection (LDO)

The LDO is designed to operate with a 4.7 μF minimum ceramic output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 51.

9.2.2.2.4 Input Capacitor Selection (CPN)

The CPN input capacitor is also the boost converter output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 51.

9.2.2.2.5 Output Capacitor Selection (CPN)

The CPN is designed to operate with a 10 μF minimum ceramic output capacitor. Refer to the *Recommended Operating Conditions*, Table 10 and Figure 51.

9.2.2.2.6 Flying Capacitor Selection (CPN)

The CPN needs an external flying capacitor. The minimum value is 4.7 μ F. Special care must be taken while choosing the flying capacitor as it will directly impact the output voltage accuracy and load regulation performance. Therefore, a minimum capacitance of 2.2 μ F must be achieved by the capacitor at a DC bias voltage of $|V_{NEG}|$ + 300 mV. For proper operation, the flying capacitor value must be lower than the output capacitor of the boost converter on REG pin.

9.2.2.3 Application Curves

 $V_{IN} = 3.7 \text{ V}$, $V_{POS} = 5.4 \text{ V}$, $V_{NEG} = -5.4 \text{ V}$, unless otherwise noted

Table 14. Component List For Typical Characteristics Circuits

REFERENCE	DESCRIPTION	MANUFACTURER AND PART NUMBER (1)
	2.2 µF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C225KAAD
С	4.7 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C475KAAJ
	10 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61E106MA73
L	2.2 μH, 2.4 A, 130 mΩ, 2.5 mm × 2.0 mm × 1.0 mm	Toko - DFE252010C (1269AS-H-2R2N=P2)
U1	TPS65132AYFF	Texas Instruments

(1) See Third-Party Products Disclaimer

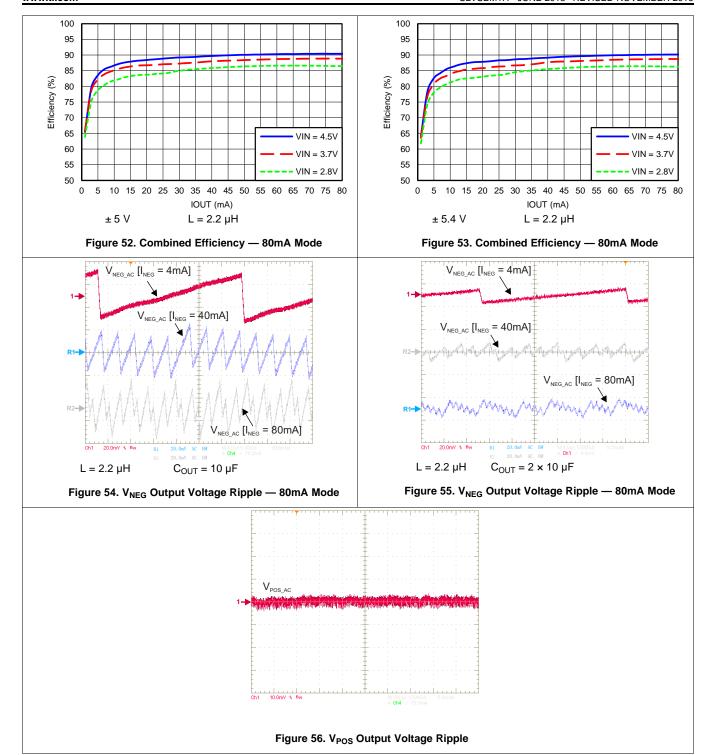
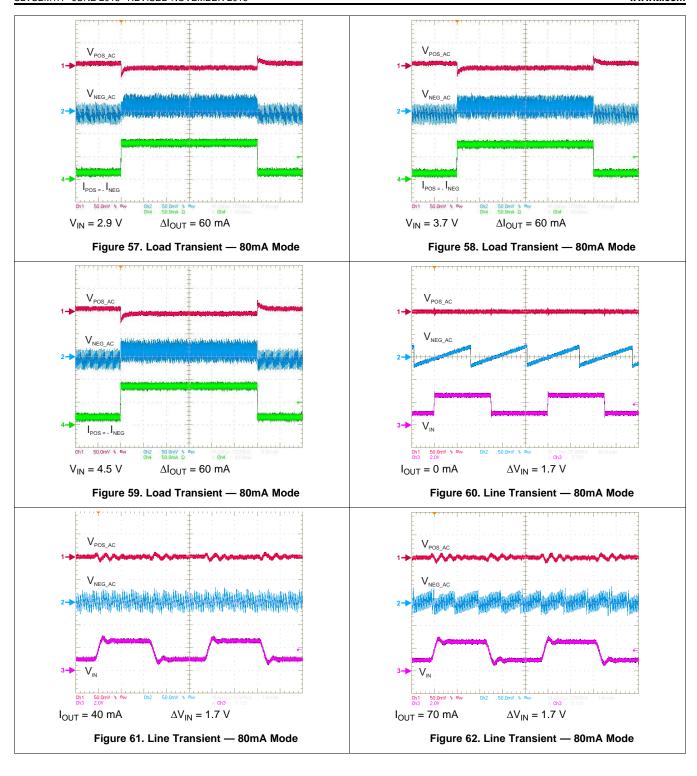
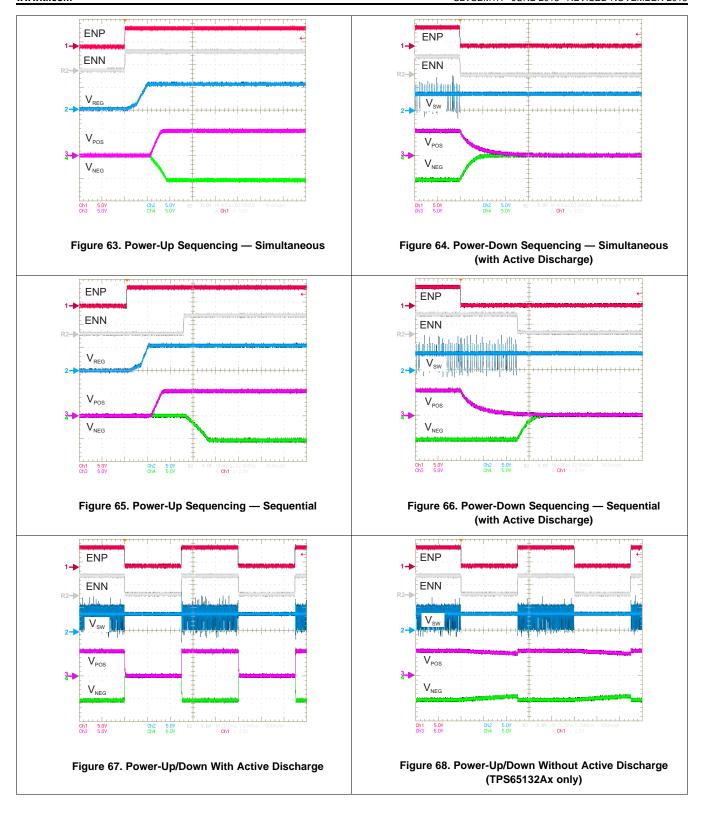
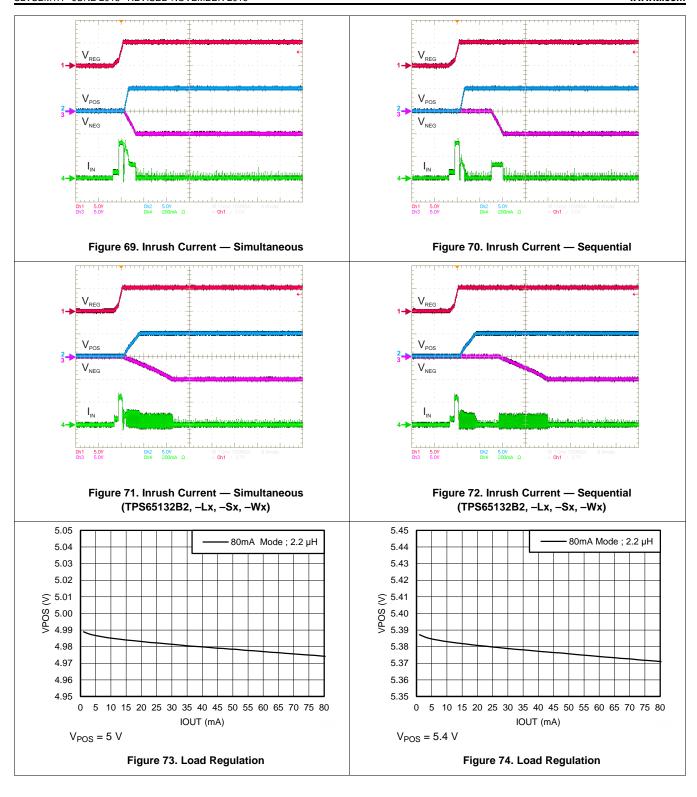


Table 15. Table Of Graphs

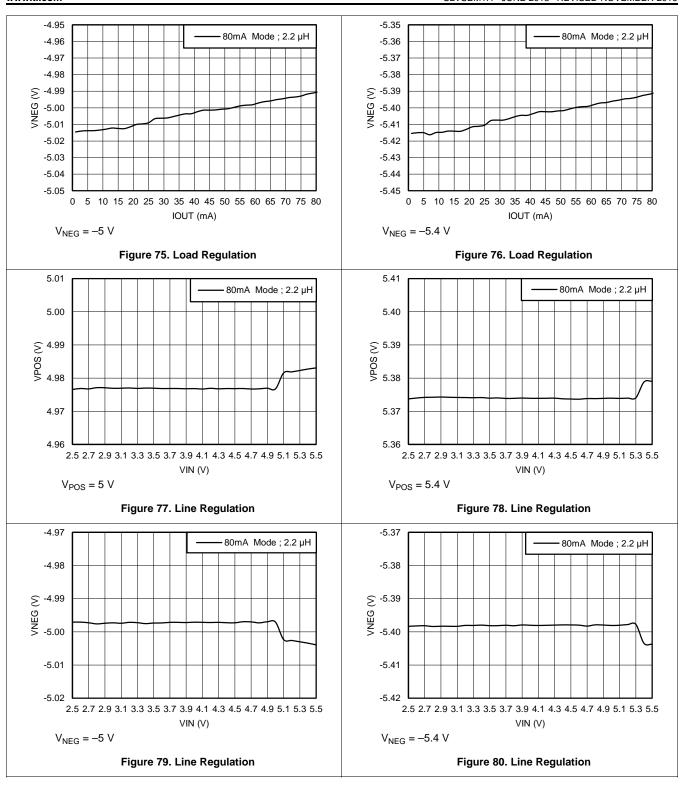

PARAMETER	CONDITIONS	Figure
EFFICIENCY		·
Efficiency vs. Output Current	± 5.0 V — 80mA Mode — L = 2.2 μH	Figure 52
Efficiency vs. Output Current	± 5.4 V — 80mA Mode — L = 2.2 μH	Figure 53
CONVERTERS WAVEFOR	RMS	
V _{NEG} Output Ripple	I_{NEG} = 4 mA / 40 mA / 80 mA — 80mA Mode — C_{OUT} = 10 μF	Figure 54
V _{NEG} Output Ripple	I_{NEG} = 4 mA / 40 mA / 80 mA — 80mA Mode — C_{OUT} = 2 × 10 μ F	Figure 55
V _{POS} Output Ripple	I _{POS} = 150 mA — 80mA Mode	Figure 56
LOAD TRANSIENT		,
Load Transient	V_{IN} = 2.9 V — I_{POS} = $-I_{NEG}$ = 10 mA \rightarrow 70 mA \rightarrow 10 mA — 80mA Mode — L = 2.2 μ H	Figure 57
Load Transient	V_{IN} = 3.7 V — I_{POS} = $-I_{NEG}$ = 10 mA \rightarrow 70 mA \rightarrow 10 mA — 80mA Mode — L = 2.2 μ H	Figure 58
Load Transient	V_{IN} = 4.5 V — I_{POS} = $-I_{NEG}$ = 10 mA \rightarrow 70 mA \rightarrow 10 mA — 80mA Mode — L = 2.2 μ H	Figure 59
LINE TRANSIENT		
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V $-$ I _{POS} = $-$ I _{NEG} = 0 mA $-$ 80mA Mode $-$ L = 2.2 μ H	Figure 60
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V $-$ I _{POS} = -I _{NEG} = 40 mA $-$ 80mA Mode $-$ L = 2.2 μ H	Figure 61
Line Transient	V_{IN} = 2.8 V \rightarrow 4.5 V \rightarrow 2.8 V \rightarrow I_{POS} = $-I_{NEG}$ = 70 mA \rightarrow 80mA Mode \rightarrow L = 2.2 μ H	Figure 62
POWER SEQUENCING		
Power-up Sequencing	Simultaneous — no load	Figure 63
Power-down Sequencing	Simultaneous — no load with Active Discharge	Figure 64
Power-up Sequencing	Sequential — no load	Figure 65
Power-down Sequencing	Sequential — no load with Active Discharge	Figure 66
Power-up/down Sequencing	Simultaneous — no load with Active Discharge	Figure 67
Power-up/down Sequencing	Simultaneous — no load without Active Discharge	Figure 68
INRUSH CURRENT		
Inrush Current	Simultaneous — no load — 80mA Mode	Figure 69
Inrush Current	Sequential — no load — 80mA Mode	Figure 70
Inrush Current	Simultaneous — no load — 80mA Mode — TPS65132B2, -Lx, -Sx, -Tx, -Wx	Figure 71
Inrush Current	Sequential — no load — 80mA Mode — TPS65132B2, -Lx, -Sx, -Tx, -Wx	Figure 72
LOAD REGULATION		
V _{POS} vs Output Current	V_{POS} = 5.0 V — 80mA Mode — I_{POS} = 0 mA to 80 mA — L = 2.2 μ H	Figure 73
V _{POS} vs Output Current	V_{POS} = 5.4 V — 80mA Mode — I_{POS} = 0 mA to 80 mA — L = 2.2 μ H	Figure 74
V _{NEG} vs Output Current	$V_{NEG} = -5.0 \text{ V} - 80 \text{mA} \text{ Mode} - I_{NEG} = 0 \text{ mA to } 80 \text{ mA} - L = 2.2 \mu\text{H}$	Figure 75
V _{NEG} vs Output Current	$V_{NEG} = -5.4 \text{ V} - 80 \text{mA} \text{ Mode} - I_{NEG} = 0 \text{ mA to } 80 \text{ mA} - L = 2.2 \mu\text{H}$	Figure 76
LINE REGULATION		
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.0 V — 80mA Mode — I_{POS} = 60 mA — L = 2.2 μ H	Figure 77
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.4 V — 80mA Mode — I_{POS} = 60 mA — L = 2.2 μ H	Figure 78
V _{NEG} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{NEG} = -5.0 V — 80mA Mode — I_{NEG} = 60 mA — L = 2.2 μ H	Figure 79
V _{NEG} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{NEG} = -5.4 V — 80mA Mode — I_{NEG} = 60 mA — L = 2.2 μ H	Figure 80

 $\label{eq:NOTE} \textbf{In this section, } I_{\text{OUT}} \text{ means that the outputs are loaded with } I_{\text{POS}} = -I_{\text{NEG}} \text{ simultaneously.}$




Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated



Product Folder Links: TPS65132

Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

Copyright © 2013–2016, Texas Instruments Incorporated

Submit Documentation Feedback

9.2.3 High-current Applications (≤ 150 mA)

The TPS65132Sx version allows output current up to 150 mA on both V_{POS} and V_{NEG} when the SYNC pin is pulled HIGH. If the SYNC pin is pulled LOW, the TPS65132Sx can be programmed to 40mA or 80mA mode with the APPS bit to lower the output current capability of the V_{NEG} rail if needed (in the case the efficiency is an important parameter). See *Low-current Applications* (\leq 40 mA) and *Mid-current Applications* (\leq 80 mA) for more details about the 40mA and 80mA modes.

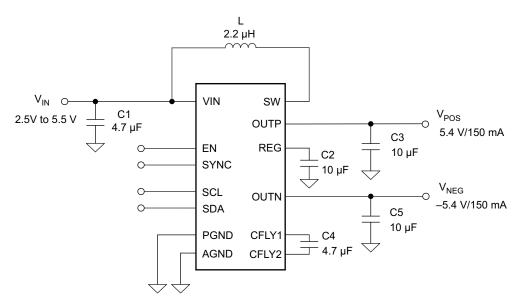


Figure 81. Typical Application Circuit For High Current

9.2.3.1 Design Requirements

Table 16. Design Parameters

PARAMETERS	EXAMPLE VALUES
Input Voltage Range	2.5 V to 5.5 V
Output Voltages	4.0 V to 6.0 V, -4.0 V to -6.0 V
Output Current Rating	150 mA
Boost Converter Switching Frequency	1.8 MHz
Negative Charge Pump Switching Frequency	1.0 MHz

9.2.3.2 Detailed Design Procedure

The design procedure and BOM list of the TPS65132Sx is identical to the 80mA mode. Please refer to the *Mid-current Applications* ($\leq 80 \text{ mA}$) for more details about the general component selection.

9.2.3.2.1 **Sequencing**

The output rails (V_{POS} and V_{NEG}) are enabled and disabled using an external logic signal on the EN pin. The power-up and power-down sequencing events are programmable. Please refer to *Programmable Sequencing Scenarios* for the different sequencing as well as *Registers* for the programming options. Figure 98 to Figure 103 show the typical sequencing waveforms.

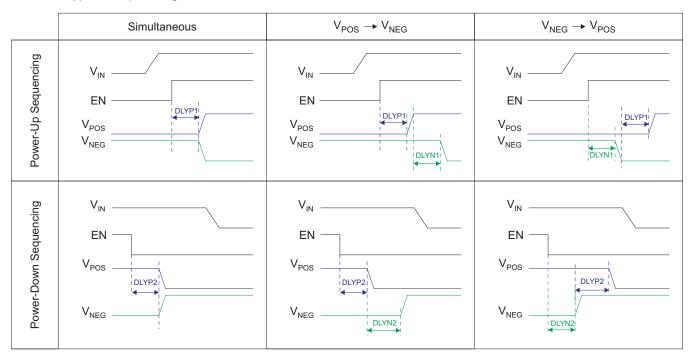


Figure 82. Programmable Sequencing Scenarios

NOTE

- In the case where the UVLO falling threshold is triggered while the enable signal is still HIGH (EN), all converters will be shut down instantaneously and both V_{POS} and V_{NEG} output rails will be actively discharged to GND.
- The power-up and power-down sequencing must be finalized (all delays have passed) before re-toggling the EN pin.

9.2.3.2.2 SYNC = HIGH

When the SYNC pin is pulled HIGH, the boost converter voltage increases instantaneously to allow enough headroom to deliver the 150 mA. See Figure 88 to Figure 91 for detailed waveforms.

When SYNC pin is pulled LOW, the boost converter keeps its offset for 300 μ s typically, and during this time, the device is still capable if supplying 150 mA on both output rail. After these 300 μ s have passed, current limit settles at 40 mA or 80 mA maximum, depending on the application mode it is programmed to (40mA or 80mA — see *Low-current Applications* (\leq 40 mA) and *Mid-current Applications* (\leq 80 mA) for more details) and the boost output voltage regulates down to its nominal value.

9.2.3.2.3 Startup

The TPS65132Sx can startup with SYNC = HIGH, however, the boost offset as well as the 150 mA output current capability will only be available as soon as the last rail to start is in regulation.

9.2.3.3 Application Curves

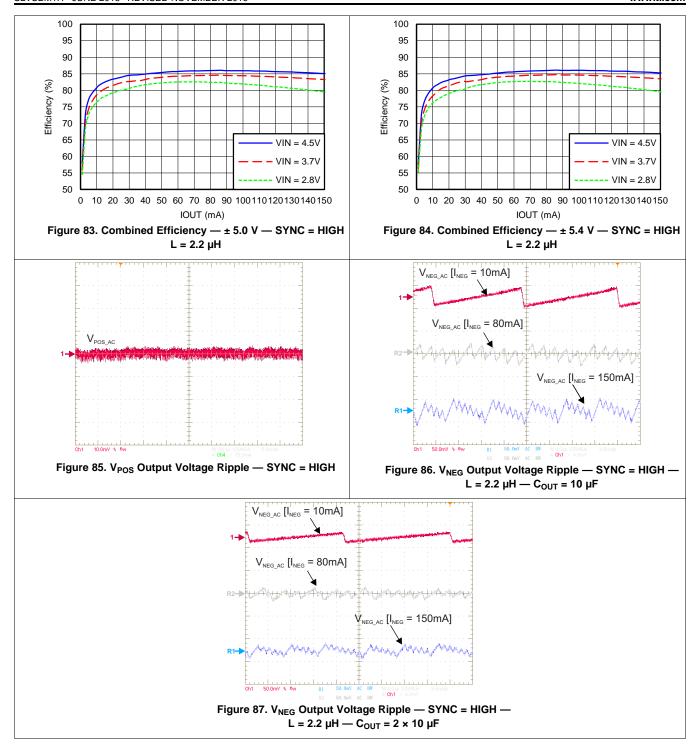
 V_{IN} = 3.7 V, V_{POS} = 5.4 V, V_{NEG} = -5.4 V, unless otherwise noted

Table 17. Component List For Typical Characteristics Circuits

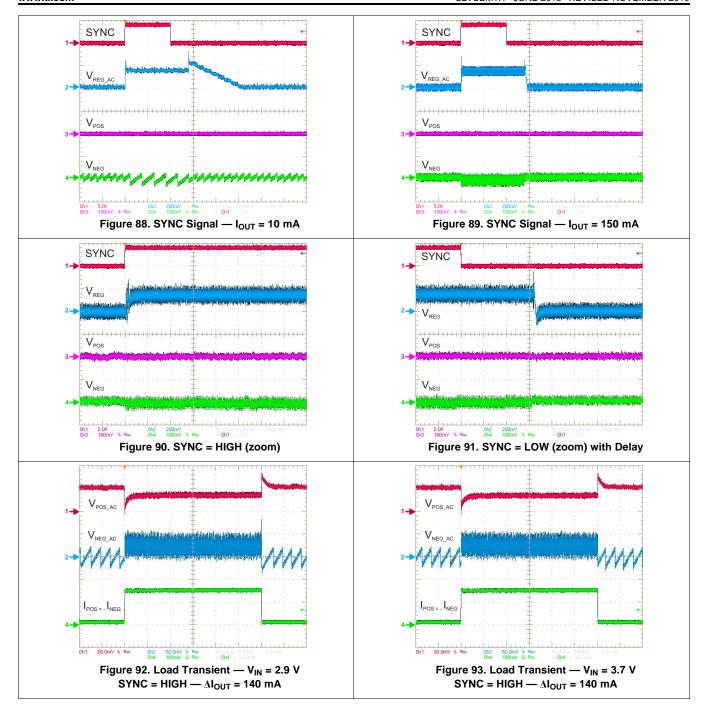
REFERENCE	DESCRIPTION	MANUFACTURER AND PART NUMBER		
	2.2 µF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C225KAAD		
С	4.7 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61C475KAAJ		
	10 μF, 16 V, 0603, X5R, ceramic	Murata - GRM188R61E106MA73		
L	2.2 μH, 2.4 A, 130 mΩ, 2.5 mm × 2.0 mm × 1.0 mm	Toko - DFE252010C (1269AS-H-2R2N=P2)		
U1	TPS65132SYFF	Texas Instruments		

Table 18. Table Of Graphs

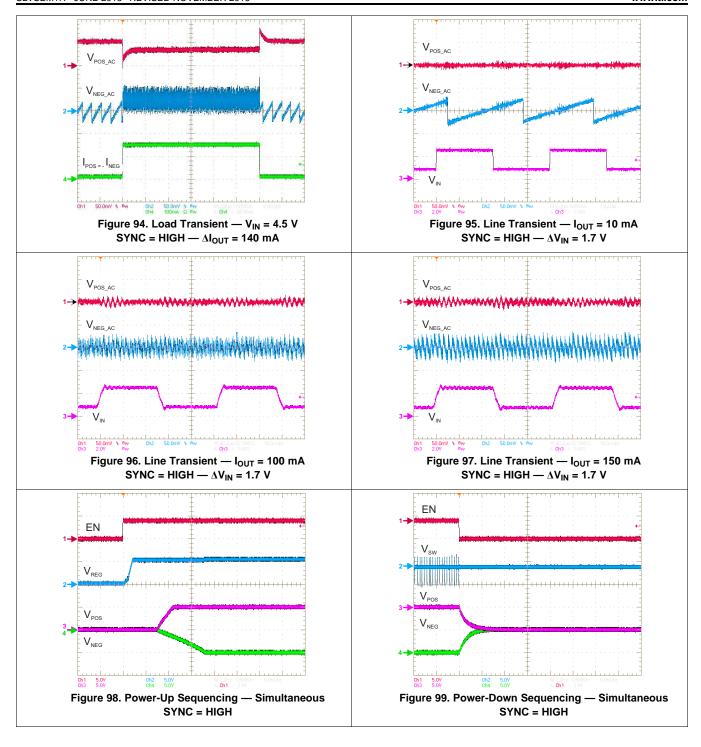
PARAMETER	CONDITIONS	Figure
EFFICIENCY		
Efficiency vs. Output Current	± 5.0 V — SYNC = HIGH — L = 2.2 μH	Figure 83
Efficiency vs. Output Current	± 5.4 V — SYNC = HIGH — L = 2.2 μH	Figure 84
CONVERTERS W	AVEFORMS	
V _{POS} Output Ripple	I _{POS} = 150 mA — SYNC = HIGH	Figure 85
V _{NEG} Output Ripple	I_{NEG} = 10mA / 80 mA / 150 mA — SYNC = HIGH — C_{OUT} = 10 μ F	Figure 86
V _{NEG} Output Ripple	I_{NEG} = 4 mA / 40 mA / 80 mA — SYNC = HIGH — C_{OUT} = 2 × 10 μ F	Figure 87
SYNC = HIGH Sig	nal	
SYNC = HIGH	$I_{POS} = -I_{NEG} = 10 \text{ mA}$	Figure 88
SYNC = HIGH	$I_{POS} = -I_{NEG} = 150 \text{ mA}$	Figure 89
SYNC = HIGH Zoom	$I_{POS} = -I_{NEG} = 10 \text{ mA}$	Figure 90
SYNC = LOW Zoom	$I_{POS} = -I_{NEG} = 10 \text{ mA}$	Figure 91
LOAD TRANSIEN	Т	
Load Transient	V_{IN} = 2.9 V — I_{POS} = $-I_{NEG}$ = 10 mA \rightarrow 150 mA \rightarrow 10 mA — SYNC = HIGH — L = 2.2 μ H	Figure 92
Load Transient	V_{IN} = 3.7 V — I_{POS} = $-I_{NEG}$ = 10 mA \rightarrow 150 mA \rightarrow 10 mA — SYNC = HIGH — L = 2.2 μ H	Figure 93
Load Transient	V_{IN} = 4.5 V — I_{POS} = $-I_{NEG}$ = 10 mA \rightarrow 150 mA \rightarrow 10mA — SYNC = HIGH — L = 2.2 μ H	Figure 94
LINE TRANSIENT		
Line Transient	$V_{\text{IN}} = 2.8 \text{ V} \rightarrow 4.5 \text{ V} \rightarrow 2.8 \text{ V} - I_{\text{POS}} = -I_{\text{NEG}} = 10 \text{ mA} - \text{SYNC} = \text{HIGH} - L = 2.2 \mu\text{H}$	Figure 95
Line Transient	$V_{\text{IN}} = 2.8 \text{ V} \rightarrow 4.5 \text{ V} \rightarrow 2.8 \text{ V} - I_{\text{POS}} = -I_{\text{NEG}} = 100 \text{ mA} - \text{SYNC} = \text{HIGH} - L = 2.2 \mu\text{H}$	Figure 96
Line Transient	$V_{\text{IN}} = 2.8 \text{ V} \rightarrow 4.5 \text{ V} \rightarrow 2.8 \text{ V} - I_{\text{POS}} = -I_{\text{NEG}} = 150 \text{ mA} - \text{SYNC} = \text{HIGH} - L = 2.2 \mu\text{H}$	Figure 97
POWER SEQUEN	CING	
Power-up Sequencing	Simultaneous — no load	Figure 98
Power-down Sequencing	Simultaneous — no load with Active Discharge	Figure 99
Power-up Sequencing	Sequential $(V_{POS} \rightarrow V_{NEG})$ — no load	Figure 100
Power-down Sequencing	Sequential ($V_{NEG} \rightarrow V_{POS}$) — no load with Active Discharge	Figure 101
Power-up Sequencing	Sequential $(V_{NEG} \rightarrow V_{POS})$ — no load	Figure 102
Power-down Sequencing	Sequential $(V_{POS} \rightarrow V_{NEG})$ — no load with Active Discharge	Figure 103

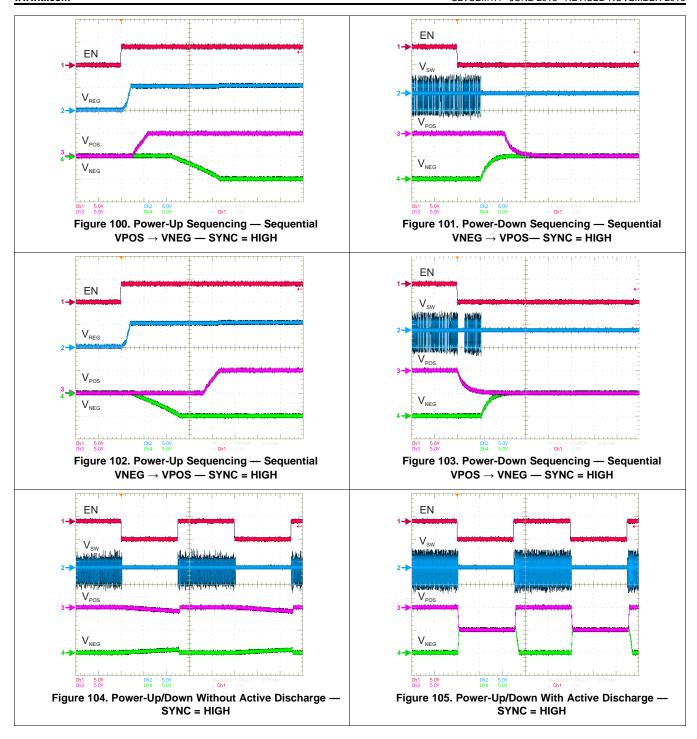

Table 18. Table Of Graphs (continued)

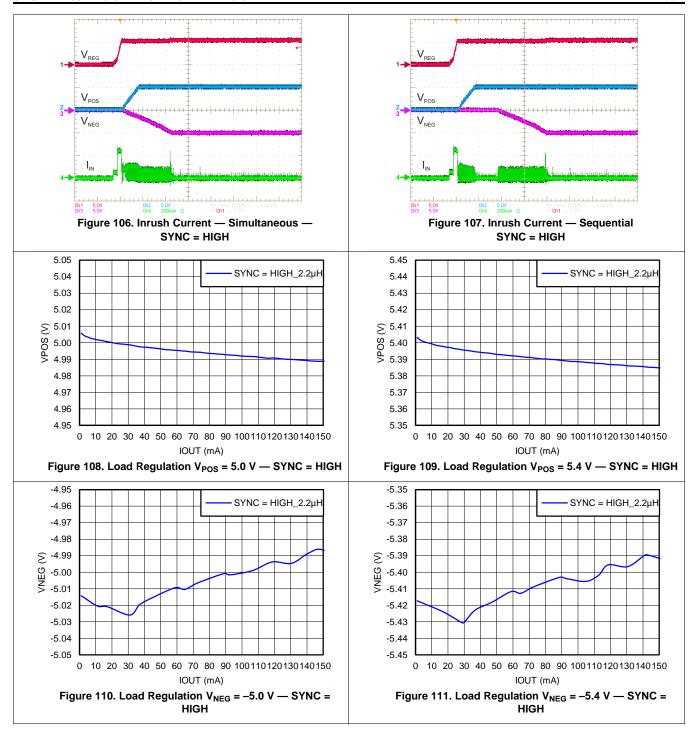
PARAMETER	CONDITIONS	Figure					
Power-up/down Sequencing	Simultaneous — no load without Active Discharge	Figure 104					
Power-up/down Sequencing	Simultaneous — no load with Active Discharge						
INRUSH CURREN	Т						
Inrush Current	Simultaneous — no load — SYNC = HIGH — L = 2.2 µH	Figure 106					
Inrush Current	Sequential — no load — SYNC = HIGH — L = 2.2 μH	Figure 107					
LOAD REGULATI	ON						
V _{POS} vs Output Current	$V_{POS} = 5.0 \text{ V} - \text{SYNC} = \text{HIGH} - I_{POS} = 0 \text{ mA to } 150 \text{ mA} - L = 2.2 \mu\text{H}$	Figure 108					
V _{POS} vs Output Current	$V_{POS} = 5.4 \text{ V} - \text{SYNC} = \text{HIGH} - I_{POS} = 0 \text{ mA to } 150 \text{ mA} - L = 2.2 \mu\text{H}$	Figure 109					
V _{NEG} vs Output Current	V_{NEG} = -5.0 V — SYNC = HIGH — I_{NEG} = 0 mA to 150 mA — L = 2.2 μ H	Figure 110					
V _{NEG} vs Output Current	V_{NEG} = -5.4 V — SYNC = HIGH — I_{NEG} = 0 mA to 150 mA — L = 2.2 μ H	Figure 111					
LINE REGULATIO	N .						
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.0 V — SYNC = HIGH — I_{POS} = 120 mA — L = 2.2 μ H	Figure 112					
V _{POS} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{POS} = 5.4 V — SYNC = HIGH — I_{POS} = 120 mA — L = 2.2 μ H	Figure 113					
V _{NEG} vs Output Voltage	V_{IN} = 2.5 V to 5.5 V — V_{NEG} = -5.0 V — SYNC = HIGH — I_{NEG} = 120 mA — L = 2.2 μ H	Figure 114					
V _{NEG} vs Output Voltage	$V_{IN} = 2.5 \text{ V to } 5.5 \text{ V} - V_{NEG} = -5.4 \text{ V} - \text{SYNC} = \text{HIGH} - I_{NEG} = 120 \text{ mA} - L = 2.2 \mu\text{H}$	Figure 115					


 $\label{eq:NOTE} \textbf{In this section, } I_{\text{OUT}} \text{ means that the outputs are loaded with } I_{\text{POS}} = -I_{\text{NEG}} \text{ simultaneously.}$

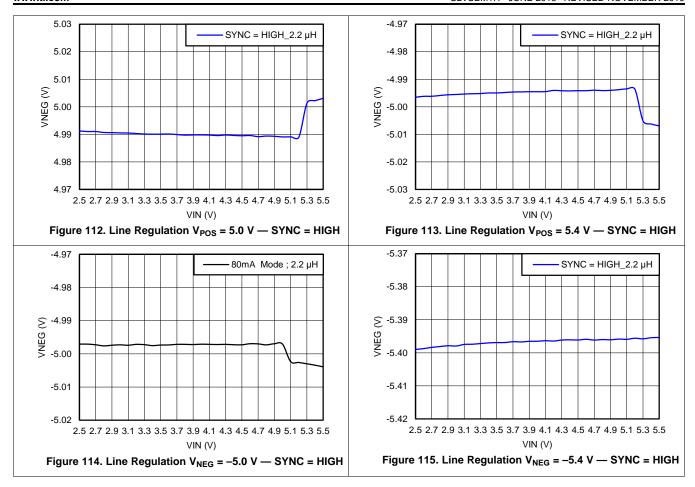
Submit Documentation Feedback Product Folder Links: TPS65132






Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

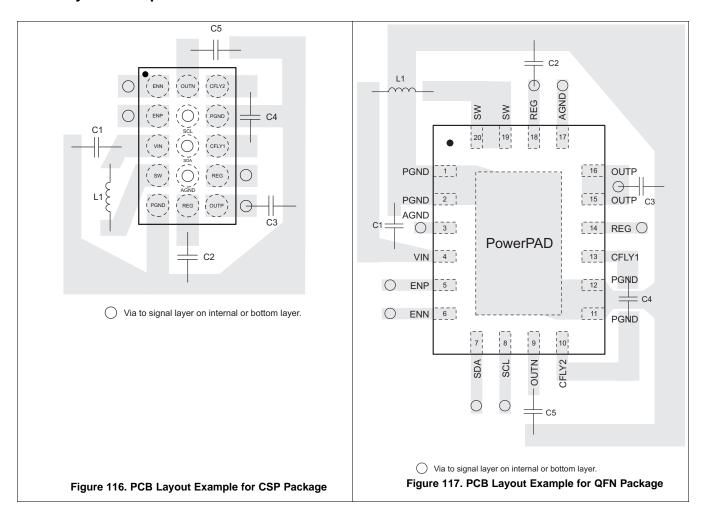


Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

10 Power Supply Recommendations

The devices are designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input supply must be well regulated. A ceramic input capacitor with a value of 4.7 μ F is a typical choice.


11 Layout

11.1 Layout Guidelines

PCB layout is an important task in the power supply design. Good PCB layout minimizes EMI and allows very good output voltage regulation. For the TPS65132 the following PCB layout guidelines are recommended.

- Keep the power ground plane on the top layer (all capacitor grounds and PGND pins must be connected together with one uninterrupted ground plane).
- AGND and PGND must be connected together on the same ground plane.
- Place the flying capacitor as close as possible to the IC.
- Always avoid vias when possible. They have high inductance and resistance. If vias are necessary, always use more than one in parallel to decrease parasitics especially for power lines.
- Connect REG pins together.
- For **high dv/dt** signals (switch pin traces): keep copper area to a minimum to prevent making unintentional parallel plate capacitors with other traces or to a ground plane. Best to route signal and return on same layer.
- For **high di/dt** signals: keep traces short, wide and closely spaced. This will reduce stray inductance and decrease the current loop area to help prevent EMI.
- Keep input capacitor close to the IC with low inductance traces.
- Keep trace from switching node pin to inductor short if possible: it reduces EMI emissions and noise that may couple into other portions of the converter.
- Isolate analog signal paths from power paths.

11.2 Layout Example

Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

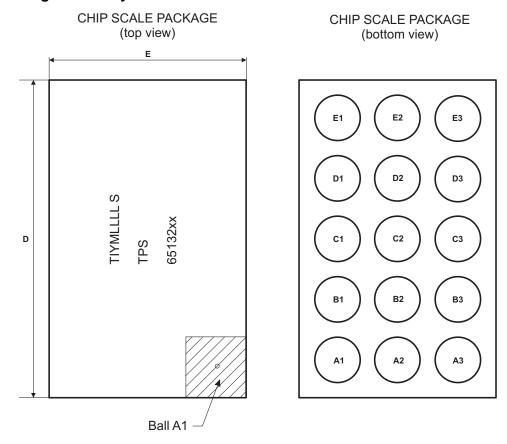
All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossary.


This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

13.1 CSP Package Summary

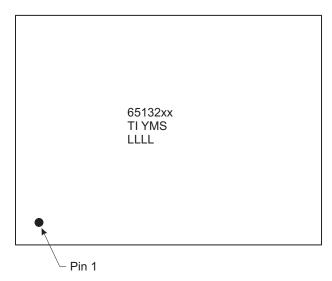
Code:

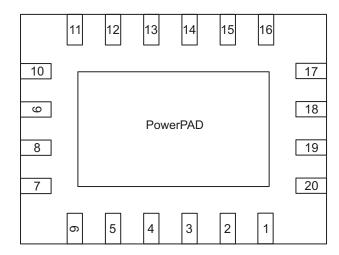
- TI -- TI letters
- YM -- Year-Month date code
- · LLLL -- Lot trace code
- S -- Assembly site code
- xx -- Revision code (contains alpha-numeric characters can be left blank), refer to the Ordering Information section for detailed information)

13.1.1 Chip Scale Package Dimensions

The TPS65132 device is available in a 15-bump chip scale package (YFF, NanoFree™). The package dimensions are given as:

- D = 2108 \pm 30 μ m
- E = 1514 \pm 30 μ m


Submit Documentation Feedback


CSP Package Summary (continued)

13.1.2 RVC Package Summary

QFN PACKAGE (top view)

QFN PACKAGE (bottom view)

Code:

- TI -- TI letters
- · YM -- Year-Month date code
- · LLLL -- Lot trace code
- · S -- Assembly site code
- $\bullet~$ xx -- Revision code (contains alpha-numeric characters can be left blank), refer to the Ordering Information section for detailed information)

Product Folder Links: TPS65132

Copyright © 2013-2016, Texas Instruments Incorporated

18-Nov-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS65132A0YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132A0	Samples
TPS65132AYFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132A	Samples
TPS65132B0YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132B0	Samples
TPS65132B2YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132B2	Samples
TPS65132B5YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132B5	Samples
TPS65132BYFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132B	Samples
TPS65132L0YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132L0	Samples
TPS65132L0YFFT	ACTIVE	DSBGA	YFF	15	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132L0	Samples
TPS65132LYFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132L	Samples
TPS65132SYFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132S	Samples
TPS65132T6YFFR	ACTIVE	DSBGA	YFF	15	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132T6	Samples
TPS65132T6YFFT	ACTIVE	DSBGA	YFF	15	250	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	TPS 65132T6	Samples
TPS65132WRVCR	ACTIVE	WQFN	RVC	20	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	65132YA	Samples
TPS65132WRVCT	ACTIVE	WQFN	RVC	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	65132YA	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

18-Nov-2016

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

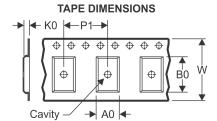
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

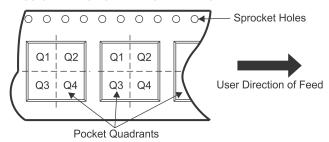
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

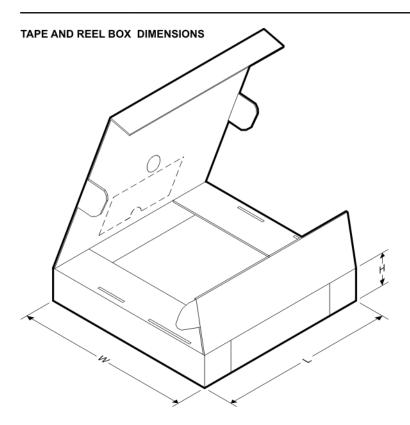

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

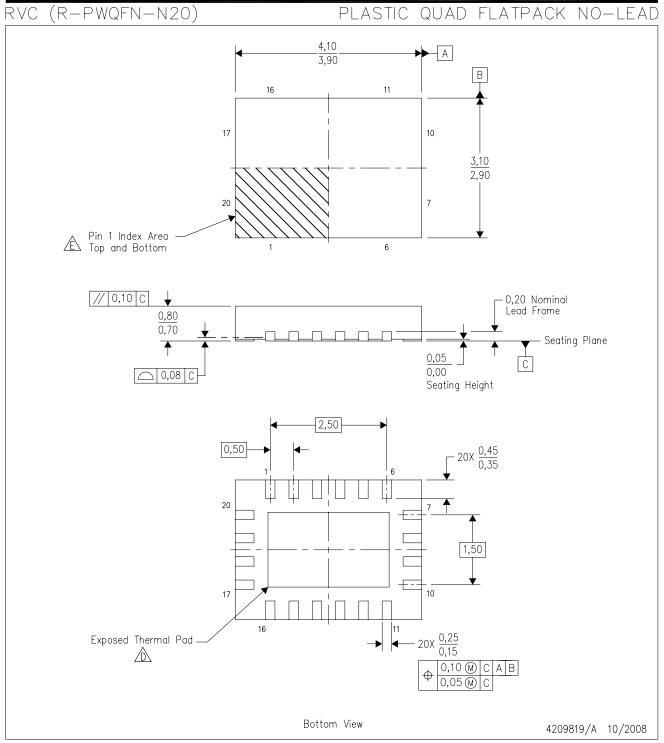
www.ti.com 11-Feb-2018


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS65132A0YFFR	DSBGA	YFF	15	3000	178.0	9.2	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132A0YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132B0YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132B2YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132B5YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132BYFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132L0YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132L0YFFT	DSBGA	YFF	15	250	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132LYFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132SYFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132T6YFFR	DSBGA	YFF	15	3000	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132T6YFFT	DSBGA	YFF	15	250	180.0	8.4	1.61	2.21	0.7	4.0	8.0	Q1
TPS65132WRVCR	WQFN	RVC	20	3000	330.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1
TPS65132WRVCT	WQFN	RVC	20	250	180.0	12.4	3.3	4.3	1.1	8.0	12.0	Q1

www.ti.com 11-Feb-2018

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS65132A0YFFR	DSBGA	YFF	15	3000	220.0	220.0	35.0
TPS65132A0YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132B0YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132B2YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132B5YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132BYFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132L0YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132L0YFFT	DSBGA	YFF	15	250	182.0	182.0	20.0
TPS65132LYFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132SYFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132T6YFFR	DSBGA	YFF	15	3000	182.0	182.0	20.0
TPS65132T6YFFT	DSBGA	YFF	15	250	182.0	182.0	20.0
TPS65132WRVCR	WQFN	RVC	20	3000	552.0	367.0	36.0
TPS65132WRVCT	WQFN	RVC	20	250	552.0	185.0	36.0

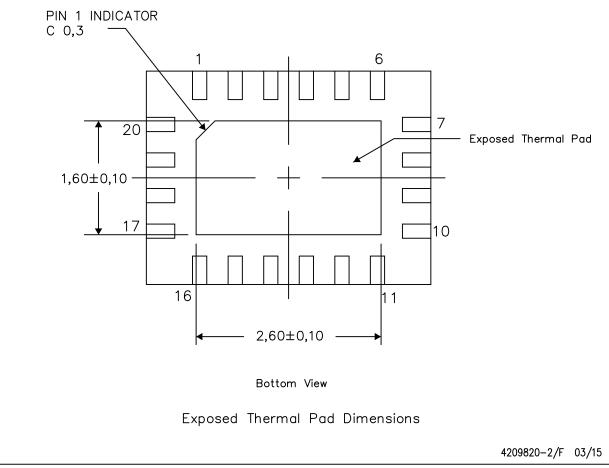
- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance.

 See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
 - See the Product bata sheet is actual regarding the exposed thermal pad dimensions.

 Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.

 The Pin 1 identifiers are either a molded, marked, or metal feature.

RVC (R-PWQFN-N20)

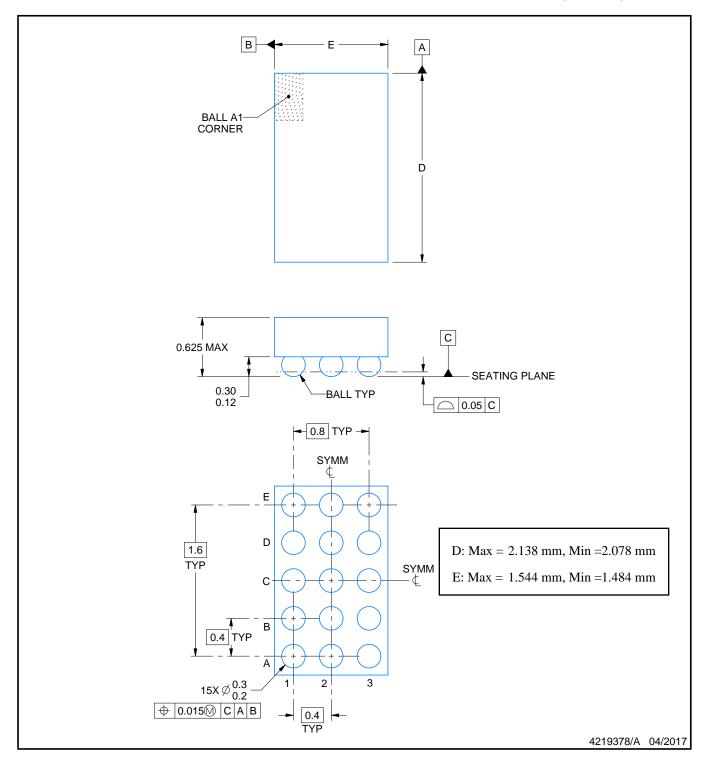

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

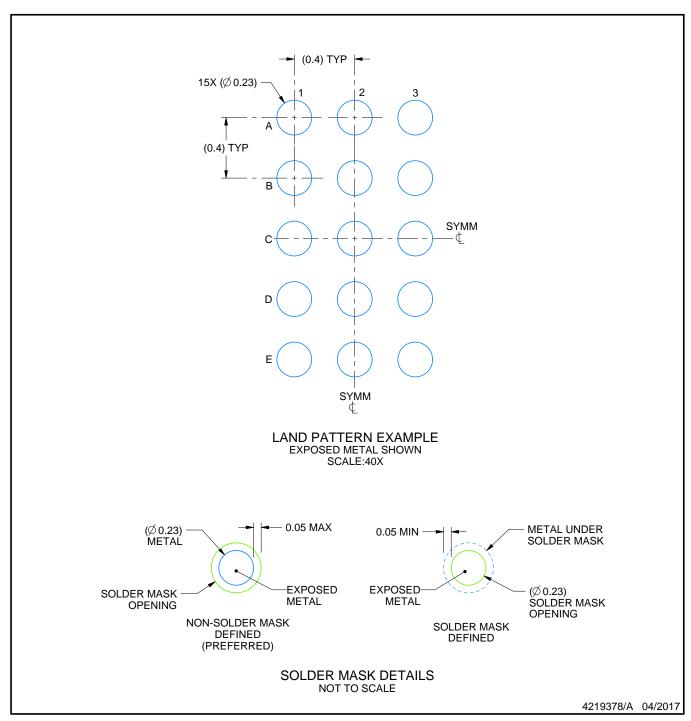
For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



NOTE: All linear dimensions are in millimeters

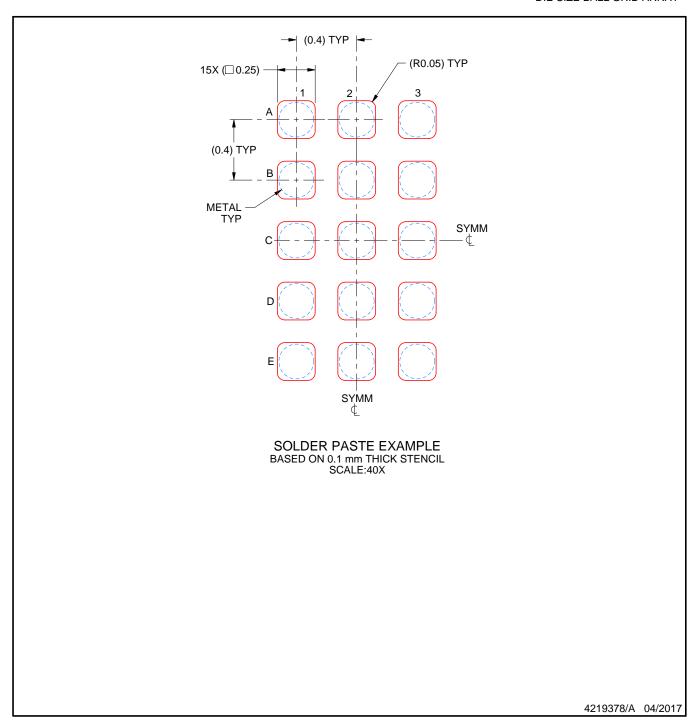
DIE SIZE BALL GRID ARRAY



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.