

With ±15-kV ESD (HBM) Protection

TRS3243

SLLS806B -JUNE 2007-REVISED JUNE 2015 TRS3243 3-V to 5.5-V Multichannel RS-232 Line Driver and Receiver

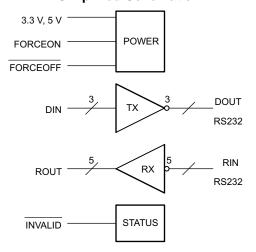
Features

- Operates With 3-V to 5.5-V V_{CC} Supply
- Single-Chip and Single-Supply Interface for IBM® PC/AT™ Serial Port
- RS-232 Bus-Pin ESD Protection of ±15 kV Using Human-Body Model (HBM)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU V.28 Standards
- Three Drivers and Five Receivers
- Operates up to 250 kbps
- Low Active Current: 300-µA Typical
- Low Standby Current: 1-µA Typical
- External Capacitors: 4 x 0.1 µF
- Accepts 5-V Logic Input With 3.3-V Supply
- Always-Active Noninverting Receiver Output (ROUT2B)
- **Operating Temperature**
 - TRS3243C: 0°C to 70°C
 - TRS3243I: –40°C to 85°C
- Serial-Mouse Driveability
- Automatic Power-Down Feature to Disable Driver Outputs When No Valid RS-232 Signal Is Sensed

2 Applications

- **Battery-Powered Systems**
- **Tablets**
- **Notebooks**
- Laptops
- Hand-Held Equipment

3 Description


The TRS3243 device consists of three line drivers, and five line receivers, which is ideal for DE-9 DTE interface. A ±15-kV ESD (HBM) protection pin-to-pin (serial-port connection pins, including GND). Flexible power features save power automatically. Special outputs ROUT2B and INVALID are always enabled to allow checking for ring indicator and valid RS232 input.

Device Information⁽¹⁾

PART NUMBER	UMBER PACKAGE BODY SIZE (
TRS3243	SSOP (28)	10.20 mm × 5.30 mm
	TSSOP (28)	9.70 mm × 4.40 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

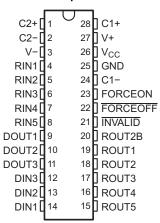
Simplified Schematic

Table of Contents

1	Features 1	8	Detailed Description 1
2	Applications 1		8.1 Overview 1
3	Description 1		8.2 Functional Block Diagram 1
4	Revision History2		8.3 Feature Description 1
5	Pin Configuration and Functions		8.4 Device Functional Modes 1
6	Specifications4	9	Application and Implementation 1
•	6.1 Absolute Maximum Ratings 4		9.1 Application Information 1
	6.2 ESD Ratings		9.2 Typical Application 1
	6.3 Recommended Operating Conditions	10	Power Supply Recommendations 1
	6.4 Thermal Information	11	Layout 1
	6.5 Electrical Characteristics—Power and Status 5		11.1 Layout Guidelines 1
	6.6 Electrical Characteristics—Driver5		11.2 Layout Example 1
	6.7 Electrical Characteristics—Receiver	12	Device and Documentation Support 1
	6.8 Switching Characteristics—Power and Status 6		12.1 Community Resources 1
	6.9 Switching Characteristics—Driver 6		12.2 Trademarks 1
	6.10 Switching Characteristics—Receiver 6		12.3 Electrostatic Discharge Caution 1
	6.11 Typical Characteristics 7		12.4 Glossary 1
7	Parameter Measurement Information 8	13	Mechanical, Packaging, and Orderable Information1

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


Changes from Revision A (September 2011) to Revision B

Page

5 Pin Configuration and Functions

DB, PW Packages 28-Pin SSOP, TSSOP Top View

Pin Functions

PIN		TVDE	DECORIDATION		
NAME	NO.	TYPE	DESCRIPTION		
C1+	28	_	Positive lead of C1 capacitor		
C1-	24	_	Negative lead on C1 capacitor		
C2+	1	_	Positive lead of C2 capacitor		
C2-	2	_	Negative lead of C2 capacitor		
DIN1	14	1			
DIN2	13	1	Logic data input (from UART)		
DIN3	12	1			
DOUT1	9	0			
DOUT2	10	0	RS232 line data output (to remote RS232 system)		
DOUT3	11	0			
FORCEOFF	22	I	Low input forces DOUT1-5, ROUT1-5 high Z per Device Functional Modes		
FORCEON	23	I	High forces drivers on. Low is automatic mode per Device Functional Modes		
GND	25	_	Ground		
INVALID	21	0	Active low output when all RIN are unpowered		
RIN1	4	1			
RIN2	5	I			
RIN3	6	I	RS232 line data input (from remote RS232 system)		
RIN4	7	1			
RIN5	8	I			
ROUT1	19	0	Logic data cutout (to LIART)		
ROUT2	18	0	Logic data output (to UART)		
ROUT2B	20	0	Always Active noninverting output for RIN2 (normally used for ring indicator)		
ROUT3	17	0			
ROUT4	16	0	Logic data output (to UART)		
ROUT5	15	0			
V+	27	0	Positive charge pump output for storage capacitor only		
V-	3	0	Negative charge pump output for storage capacitor only		
V _{CC}	26	_	Supply Voltage, Connect to 3-V to 5.5-V power supply		

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage (2)		-0.3	6	V
V ₊	Positive output supply voltage (2)		-0.3	7	V
V_	Negative output supply voltage (2)		0.3	-7	V
V ₊ - V ₋	Supply voltage difference (2)			13	V
.,	Input voltage	Driver, FORCEOFF, FORCEON	-0.3	6	
VI		Receiver	-25	25	V
.,	Outrot valta sa	Driver	-13.2	13.2	V
Vo	Output voltage	Receiver, INVALID	-0.3	V _{CC} + 0.3	V
T _J	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 RIN , DOUT, and GND pins ⁽¹⁾	±15000	
	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 All other pins ⁽¹⁾	±3000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	±1000	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

(see Figure 8)(1)

				MIN	NOM	MAX	UNIT
.,	Complete sea			3	3.3	3.6	
vcc	Supply voltage		V _{CC} = 5 V	4.5	5	5.5	V
\/	V Debugged and a start black land in a decade and	DIN, FORCEOFF,	$V_{CC} = 3.3 \text{ V}$	2		5.5	V
V _{IH}	Driver and control high-level input voltage	FORCEON	$V_{CC} = 5 V$	2.4		5.5	V
V_{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FORCE	DIN, FORCEOFF, FORCEON			0.8	V
V_{I}	Driver and control input voltage	DIN, FORCEOFF, FORCE	EON	0		5.5	V
V_{I}	Receiver input voltage			-25		25	V
T. On another than a sin to some another			TRS3243C	0		70	°C
T _A	Operating free-air temperature		TRS3243I	-40		85	J

⁽¹⁾ Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

6.4 Thermal Information

		TRS3	243	
THERMAL METRIC ⁽¹⁾		DB (SSOP)	PW (TSSOP)	UNIT
		16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	62	62	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

⁽²⁾ All voltages are with respect to network GND.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics—Power and Status

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 8)

	PARAMETER	TEST CONDITIONS	MIN TYP(2) MAX	UNIT
	Supply current Automatic power down disabled	No load, $\overline{\text{FORCEOFF}}$ and $\overline{\text{FORCEON}}$ at V_{CC} . $T_A = 25^{\circ}\text{C}$	0.0	3 1	mA
I _{CC}	Supply current Powered off	No load, FORCEOFF at GND. T _A = 25°C	,	I 10	
	Supply current Automatic power down enabled	No load, $\overline{\text{FORCEOFF}}$ at V_{CC} , FORCEON at GND, All RIN are open or grounded, All DIN are grounded. $T_A = 25^{\circ}\text{C}$		10	μΑ
I _I	Input leakage current of FORCEOFF, FORCEON	$V_I = V_{CC}$ or V_I at GND	±0.01	l ±1	μΑ
V _{IT+}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}		2.7	٧
V _{IT-}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}	-2.7		٧
V _T	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, FORCEOFF = V _{CC}	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	I _{OH} = -1 mA, FORCEON = GND, FORCEOFF = V _{CC}	V _{CC} – 0.6		V
V _{OL}	INVALID low-level output voltage	I_{OL} = 1.6 mA, FORCEON = GND, FORCEOFF = V_{CC}		0.4	٧

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

6.6 Electrical Characteristics—Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 8)

	PARAMETER TEST CONDITIONS			MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to GND		5	5.4		V
V_{OL}	Low-level output voltage	All DOUT at $R_L = 3 \text{ k}\Omega$ to GND		-5	-5.4		V
Vo	Output voltage (mouse driveability)	DIN1 = DIN2 = GND, DIN3 = V DOUT1 = DOUT2 = 2.5 mA	CC, 3 kΩ to GND at DOUT3,	±5			V
I _{IH}	High-level input current	$V_I = V_{CC}$			±0.01	±1	μΑ
I_{IL}	Low-level input current	V _I at GND			±0.01	±1	μΑ
V_{hys}	Input hysteresis					±1	V
	Short-circuit output	V _{CC} = 3.6 V,	V _O = 0 V		. 25	.00	A
los	current ⁽³⁾	V _{CC} = 5.5 V,	V _O = 0 V		±35	±60	mA
r _o	Output resistance	$V_{CC} = 0 \text{ V}, V_{+} = 0 \text{ V}, \text{ and } V_{-} = 0 \text{ V},$	V _O = ±2 V	300	10M		Ω
			$V_O = \pm 12 \text{ V}, \qquad V_{CC} = 3 \text{ to } 3.6 \text{ V}$			±25	
l _{off}	Output leakage current	FORCEOFF = GND,	$V_{O} = \pm 10 \text{ V}, \qquad V_{CC} = 4.5 \text{ to } 5.5$			±25	μΑ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Short-circuit durations must be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

6.7 Electrical Characteristics—Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 8)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = -1 mA	V _{CC} - 0.6	V _{CC} - 0.1		V
V_{OL}	Low-level output voltage	I _{OH} = 1.6 mA			0.4	V
V _{IT+}	Positive-going input threshold voltage	V _{CC} = 3.3 V		1.6	2.4	V
		V _{CC} = 5 V		1.9	2.4	V
V	No gotive going input throughold voltage	V _{CC} = 3.3 V	0.6	1.1		V
V _{IT} _	Negative-going input threshold voltage	V _{CC} = 5 V	0.8	1.4		V
V_{hys}	Input hysteresis (V _{IT+} – V _{IT} –)			0.5		V
I _{off}	Output leakage current (except ROUT2B)	FORCEOFF = 0 V		±0.05	±10	μΑ
r _l	Input resistance	$V_I = \pm 3 \text{ V or } \pm 25 \text{ V}$	3	5	7	kΩ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

6.8 Switching Characteristics—Power and Status

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 7)

PARAMETER		TEST CONDITIONS	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	V _{CC} = 5 V	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	V _{CC} = 5 V	30	μs
t _{en}	Supply enable time	V _{CC} = 5 V	100	μs

⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25 ^{\circ}\text{C}$.

6.9 Switching Characteristics—Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 8) TRS3243C, TRS3243I

	PARAMETER	TEST CONDITIONS			TYP ⁽²⁾ MAX	UNIT
	Maximum data rate	$R_L = 3 \text{ k}\Omega$ One DOUT switching,	C _L = 1000 pF See Figure 3	150	250	kbps
t _{sk(p)}	Pulse skew ⁽³⁾	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega$	C _L = 150 pF to 2500 pF See Figure 5		100	ns
CD/4=\	Slew rate, transition region (see Figure 3)	region $ \begin{array}{c} V_{CC} = 3.3 \text{ V}, \\ R_L = 3 \text{ k}\Omega \text{ to 7 k}\Omega \end{array} $	C _L = 150 pF to 1000 pF	6	30	1////
SR(tr)			C _L = 150 pF to 2500 pF	4	30	V/µs

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V + 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

6.10 Switching Characteristics—Receiver

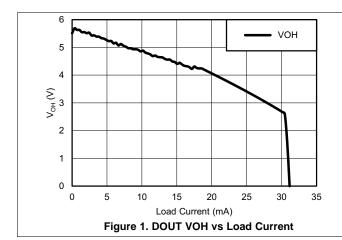
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾

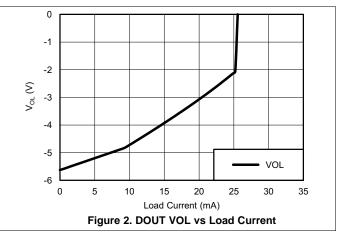
	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	$C_L = 150 \text{ pF},$	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	See Figure 5	150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega,$	200	ns
t _{dis}	Output disable time	See Figure 6	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 5	50	ns

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V \pm 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V \pm 0.5 V.

All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25 ^{\circ}\text{C}$.

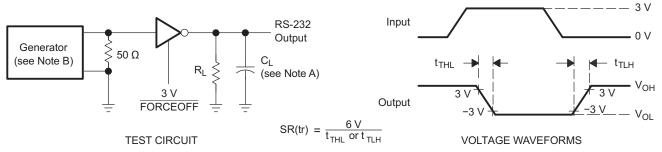
All typical values are at $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$, and $T_A = 25 ^{\circ}\text{C}$.


Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device.

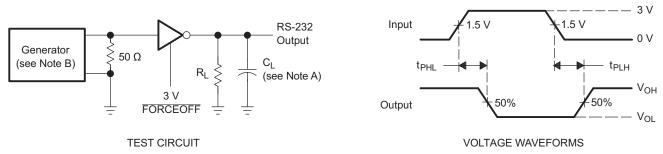

All typical values are at $V_{CC}=3.3~V$ or $V_{CC}=5~V$, and $T_A=25^{\circ}C$. Pulse skew is defined as $|t_{PLH}-t_{PHL}|$ of each channel of the same device.

6.11 Typical Characteristics

 $V_{CC} = 3.3 \text{ V}$



Submit Documentation Feedback


TEXAS INSTRUMENTS

7 Parameter Measurement Information

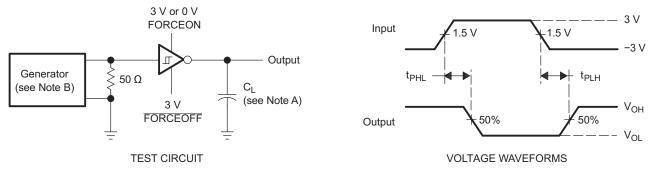
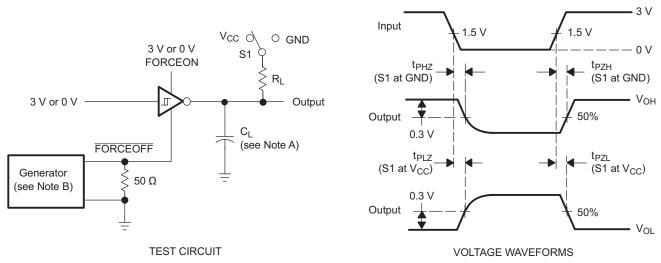

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbps, (MAX3243C/I) and 1 Mbit/s (MAX3243FC/I), $Z_O = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \ ns$, $t_f \le 10 \ ns$.

Figure 3. Driver Slew Rate

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbps, (MAX3243C/I) and 1 Mbit/s (MAX3243FC/I), $Z_O = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \ ns$, $t_f \le 10 \ ns$.

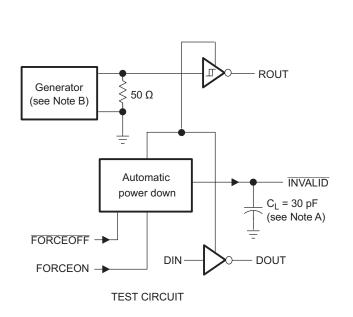
Figure 4. Driver Pulse Skew

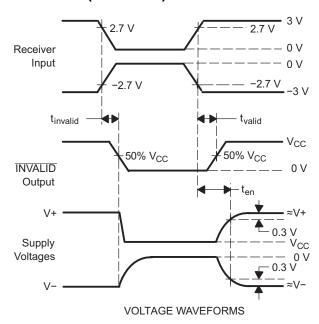


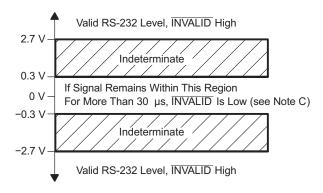
- A. C₁ includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 5. Receiver Propagation Delay Times

Parameter Measurement Information (continued)



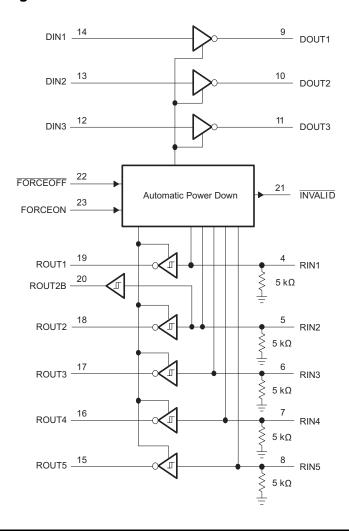

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: $Z_O = 50 \ \Omega$, 50% duty cycle, $t_r \le 10 \ ns$, $t_r \le 10 \ ns$.
- C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- D. t_{PZL} and t_{PZH} are the same as t_{en} .


Figure 6. Receiver Enable and Disable Times

Parameter Measurement Information (continued)

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 5 kbps, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.
- C. Automatic power down disables drivers and reduces supply current to 1 µA.

Figure 7. INVALID Propagation Delay Times and Supply Enabling Time



8 Detailed Description

8.1 Overview

The TRS3243 device consists of three line drivers, five line receivers, and a dual charge-pump circuit with ±15-kV ESD (HBM) protection pin-to-pin (serial-port connection pins, including GND). The TRS3243 device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. This combination of drivers and receivers matches what is needed for the typical serial port used in an IBM PC, AT, or compatible device. The charge pump and four small external capacitors allow operation from one 3-V to 5.5-V supply. In addition, the device includes an always-active noninverting output (ROUT2B), which allows applications using the ring indicator to transmit data while the device is powered down. Flexible control options for power management are available when the serial port is inactive. The automatic power-down feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low, both drivers and receivers (except ROUT2B) are shut off, and the supply current is reduced to 1 µA. Disconnecting the serial port or turning off the peripheral drivers causes the automatic power-down condition to occur. Automatic power down can be disabled when FORCEON and FORCEOFF are high and must be done when driving a serial mouse. With automatic power down enabled, the device is activated automatically when a valid signal is applied to any receiver input. The INVALID output is used to notify the user if an RS-232 signal is present at any receiver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V, is less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 µs. INVALID is low (invalid data) if all receiver input voltages are between -0.3 V and 0.3 V for more than 30 us.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Automatic Power Down

Automatic power down can be used to automatically save power when the receivers are unconnected or when they are connected to a powered <u>down remote</u> RS232 port. FORCEON being high overrides automatic power down and the drivers are <u>active</u>. FORCEOFF being low overrides FORCEON and powers down all outputs except for ROUT2B and INVALID.

8.3.2 Charge Pump

The charge pump increases, inverts, and regulates voltage at V+ and V- pins. The charge pump requires four external capacitors.

8.3.3 RS232 Driver

Three drivers interface standard logic level to RS232 levels. All DIN inputs must be valid high or low.

8.3.4 RS232 Receiver

Five receivers interface RS232 levels to standard logic levels. An open input results in a high output on ROUT. Each RIN input includes an internal standard RS232 load.

8.3.5 ROUT2B Receiver

ROUT2B is an always-active, noninverting output of RIN2 input, which allows applications using the ring indicator to transmit data while the device is powered down.

8.3.6 Invalid Input Detection

The INVALID output goes active low when all RIN inputs are unpowered. The INVALID output goes inactive high when any RIN input is connected to an active RS232 voltage level.

8.4 Device Functional Modes

Table 1. Each Driver⁽¹⁾

	INP	UTS		OUTPUT				
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS			
X	X	L	X	Z	Powered off			
L	Н	Н	X	Н	Normal operation with			
Н	Н	Н	X	L	automatic power down disabled			
L	L	Н	YES	Н	Normal operation with			
Н	L	Н	YES	L	automatic power down enabled			
X	L	Н	NO	Z	Power off by automatic power down feature			

(1) H = high level, L = low level, X = irrelevant, Z = high impedance, YES = any RIN valid, NO = all RIN invalid

Table 2. Each Receiver(1)

	INPUTS		OUTPUTS	RECEIVER STATUS			
RIN	FORCEON	FORCEOFF	ROUT				
Х	X	L	Z	Powered off			
L	Х	Н	Н				
Н	Х	Н	L	Normal operation			
Open	Х	Н	Н				

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

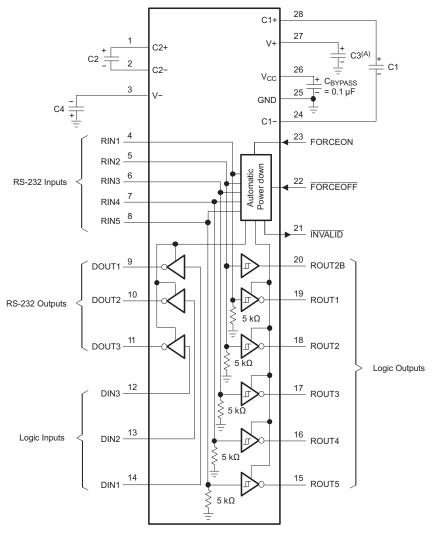
Table 3. INVALID and ROUT2B Outputs(1)

	INP	PUTS		OUT	PUTS		
VALID RIN RS-232 LEVEL	RIN2	FORCEON	FORCEOFF	INVALID	ROUT2B	OUTPUT STATUS	
YES	L	Х	Х	Н	L	Aluxova Activa	
YES	Н	X	X	Н	Н	Always Active	
YES	OPEN	Х	X	Н	L	Aluxova Activa	
NO	OPEN	Х	X	L	L	Always Active	

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), OPEN = input disconnected or connected driver off, YES = any RIN valid, NO = all RIN invalid

9 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TRS3221 device is designed to convert single-ended signals into RS232-compatible signals, and vice-versa.

This device can be used in any application where an RS232 line driver or receiver is required. One benefit of this device is its ESD protection, which helps protect other components on the board when the RS232 lines are tied to a physical connector. The device also features an automatic power-down circuit.

9.2 Typical Application

- A. C3 can be connected to V_{CC} or GND.
- B. Resistor values shown are nominal.
- C. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they must be connected as shown.

Figure 8. Typical Operating Circuit and Capacitor Values

Typical Application (continued)

9.2.1 Design Requirements

- $\ensuremath{\text{V}_{\text{CC}}}$ minimum is 3 V and maximum is 5.5 V
- Maximum recommended bit rate is 250 kbps

Table 4. V_{CC} versus Capacitor Values

V _{cc}	C1	C2, C3, C4
$3.3 \text{ V} \pm 0.3 \text{ V}$	0.1 μF	0.1 μF
5 V ± 0.5 V	0.047 μF	0.33 μF
3 V to 5.5 V	0.1 μF	0.47 μF

9.2.2 Detailed Design Procedure

It is recommended to add capacitors as shown in Figure 8.

All DIN, FORCEOFF and FORCEON inputs must be connected to valid low or high logic levels.

Select capacitor values based on V_{CC} level for best performance.

9.2.3 Application Curve

 V_{CC} = 3.3 V

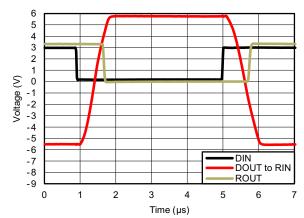


Figure 9. Driver to Receiver Loopback Timing Waveform

Copyright © 2007-2015, Texas Instruments Incorporated Product Folder Links: TRS3243

10 Power Supply Recommendations

V_{CC} must be between 3 V and 5.5 V. Charge pump capacitors must be chosen using Table 4.

11 Layout

11.1 Layout Guidelines

Keep the external capacitor traces short. This is more important on C1 and C2 nodes that have the fastest rise and fall times.

Figure 10 shows only critical layout sections. Input and output traces will vary in shape and size depending on the customer application. FORCEON and FORCEOFF must be pulled up to VCC or GND through a pullup resistor, depending on which configuration is desired upon powerup.

11.2 Layout Example

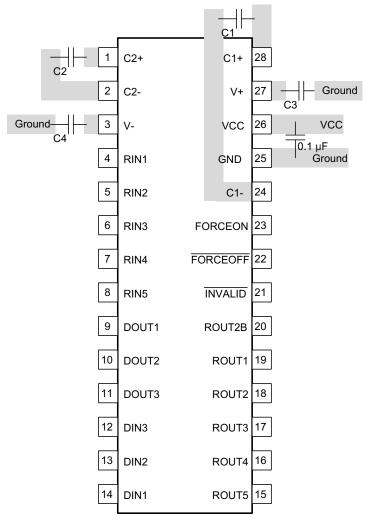


Figure 10. Layout Diagram

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments.

PC/AT is a trademark of IBM.

IBM is a registered trademark of IBM.

All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

12-Jun-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing		Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TRS3243CDBR	ACTIVE	SSOP	DB	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TRS3243C	Samples
TRS3243CPW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RS43C	Samples
TRS3243CPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	RS43C	Samples
TRS3243IDB	ACTIVE	SSOP	DB	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TRS3243I	Samples
TRS3243IDBR	ACTIVE	SSOP	DB	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TRS3243I	Samples
TRS3243IPW	ACTIVE	TSSOP	PW	28	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS43I	Samples
TRS3243IPWR	ACTIVE	TSSOP	PW	28	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS43I	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

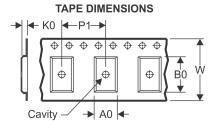
PACKAGE OPTION ADDENDUM

12-Jun-2015

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

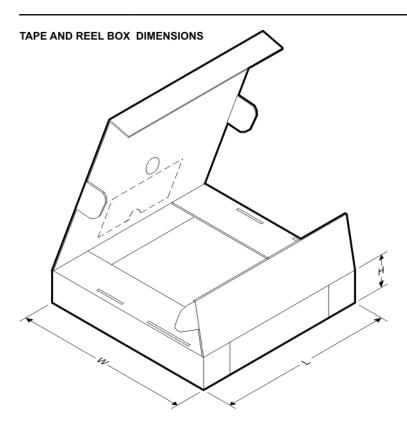

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 12-Jun-2015

TAPE AND REEL INFORMATION

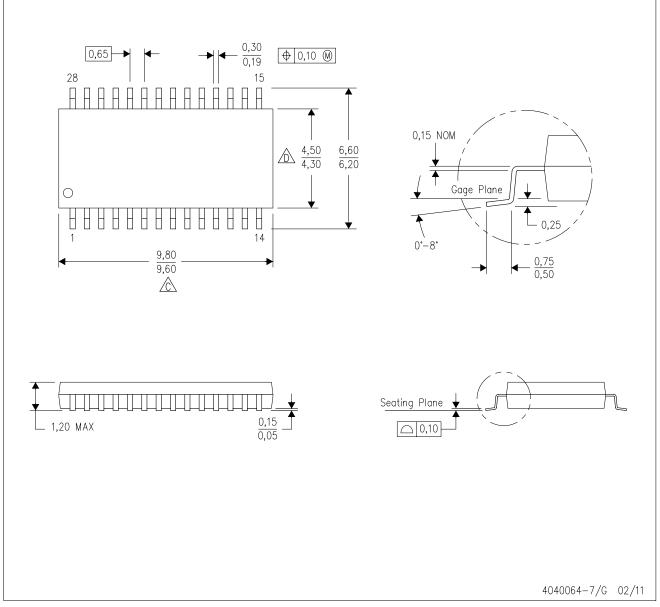
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All dimensions are nomina	l											
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRS3243CDBR	SSOP	DB	28	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TRS3243CPWR	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
TRS3243IDBR	SSOP	DB	28	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
TRS3243IPWR	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1
TRS3243IPWR	TSSOP	PW	28	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1

www.ti.com 12-Jun-2015

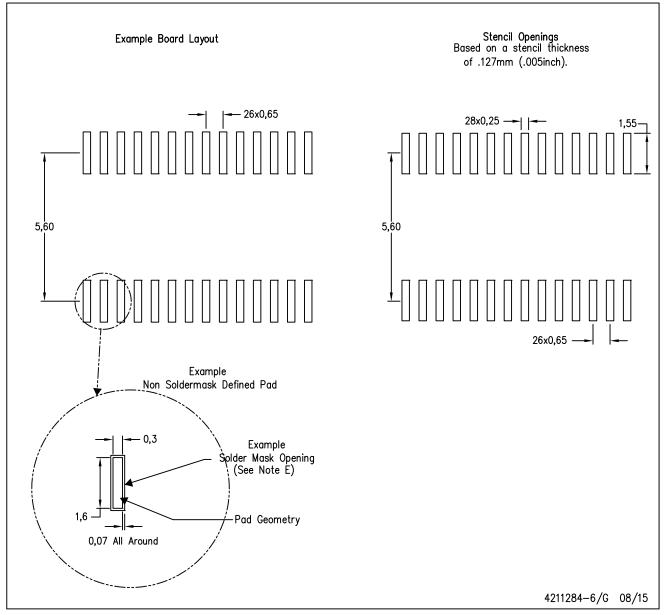


*All dimensions are nominal

7 til dilliciololio ale nomina							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRS3243CDBR	SSOP	DB	28	2000	367.0	367.0	38.0
TRS3243CPWR	TSSOP	PW	28	2000	367.0	367.0	38.0
TRS3243IDBR	SSOP	DB	28	2000	367.0	367.0	38.0
TRS3243IPWR	TSSOP	PW	28	2000	367.0	367.0	38.0
TRS3243IPWR	TSSOP	PW	28	2000	367.0	367.0	38.0

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

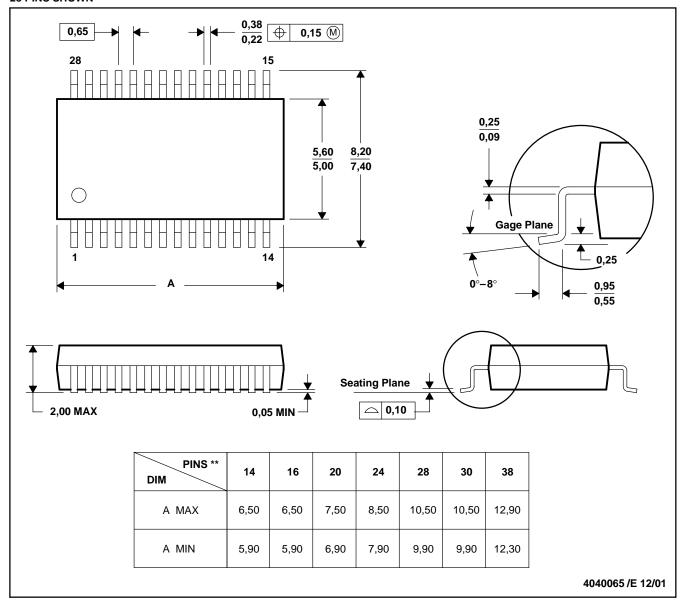

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G28)

PLASTIC SMALL OUTLINE

NOTES:


- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.