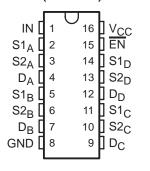
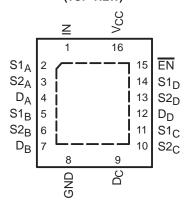
- Low Differential Gain and Phase (D_G = 0.2%, D_P = 0.1° Typ)
- Wide Bandwidth (B_W = 500 MHz Typ)
- Low Crosstalk (X_{TALK} = −80 dB Typ)
- Bidirectional Data Flow, With Near-Zero Propagation Delay
- Low and Flat ON-State Resistance (r_{on} = 3 Ω Typ, r_{on(flat)} = 1 Ω Typ)
- V_{CC} Operating Range From 3 V to 3.6 V
- I_{off} Supports Partial-Power-Down Mode Operation
- Data and Control Inputs Provide Undershoot Clamp Diode
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Suitable for Both RGB and Composite Video Switching


description/ordering information

The TI video switch TS3V340 is a 4-bit 1-of-2 multiplexer/demultiplexer with a single


switch-enable (\overline{EN}) input. When \overline{EN} is low, the switch is enabled, and the D port is connected to the S port. When \overline{EN} is high, the switch is disabled, and the high-impedance state exists between the D and S ports. The select (IN) input controls the data path of the multiplexer/demultiplexer.

Low differential gain and phase makes this switch ideal for composite and RGB video applications. The device has a wide bandwidth and low crosstalk, making it suitable for high-frequency applications as well.

D, DBQ, DGV, OR PW PACKAGE (TOP VIEW)

RGY PACKAGE (TOP VIEW)

ORDERING INFORMATION

TA	PACKAG	Ε [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
	QFN – RGY	Tape and reel	TS3V340RGYR	TF340		
	2010 5	Tube	TS3V340D	T00\/0.40		
	SOIC - D	Tape and reel	TS3V340DR	TS3V340		
-40°C to 85°C	SSOP (QSOP) – DBQ	Tape and reel	TS3V340DBQR	TF340		
	TSSOP – PW	Tube	TS3V340PW	TE240		
	1550P - PW	Tape and reel	TS3V340PWR	TF340		
	TVSOP - DGV	Tape and reel	TS3V340DGVR	TF340		

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TS3V340 QUAD SPDT HIGH-BANDWIDTH VIDEO SWITCH WITH LOW AND FLAT ON-STATE RESISTANCE

SCDS172A - JULY 2004 - REVISED DECEMBER 2004

description/ordering information (continued)

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} feature ensures that damaging current will not backflow through the device when it is powered down. This switch maintains isolation during power off.

To ensure the high-impedance state during power up or power down, \overline{EN} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE

INP	JTS	INPUT/OUTPUT	FUNCTION			
EN	IN	D	FUNCTION			
L	L	S1	D port = S1 port			
L	Н	S2	D port = S2 port			
Н	X	Z	Disconnect			

PIN DESCRIPTION

PIN NAME	DESCRIPTION
S1, S2	Analog video I/Os
D	Analog video I/Os
IN	Select input
EN	Switch-enable input

TS3V340 QUAD SPDT HIGH-BANDWIDTH VIDEO SWITCH WITH LOW AND FLAT ON-STATE RESISTANCE SCDS172A - JULY 2004 - REVISED DECEMBER 2004

PARAMETER DEFINITIONS

PARAMETER	DESCRIPTION
RON	Resistance between the D and S ports, with the switch in the ON state
loz	Output leakage current measured at the D and S ports, with the switch in the OFF state
IOS	Short-circuit current measured at the I/O pins
v_{IN}	Voltage at IN
VEN	Voltage at EN
C _{IN}	Capacitance at the control (EN, IN) inputs
COFF	Capacitance at the analog I/O port when the switch is OFF
CON	Capacitance at the analog I/O port when the switch is ON
VIH	Minimum input voltage for logic high for the control (EN, IN) inputs
V_{IL}	Maximum input voltage for logic low for the control (EN, IN) inputs
V_{IK}	I/O and control (EN, IN) inputs diode clamp voltage
VI	Voltage applied to the D or S pins when D or S is the switch input
Vo	Voltage applied to the D or S pins when D or S is the switch output
lіН	Input high leakage current of the control (EN, IN) inputs
I _Ι L	Input low leakage current of the control (EN, IN) inputs
lį	Current into the D or S pins when D or S is the switch input
IO	Current into the D or S pins when D or S is the switch output
l _{off}	Output leakage current measured at the D or S ports, with $V_{CC} = 0$
^t pds	Propagation delay measured between $S1_X$ and $S2_X$ under the specified conditions, measured from 50% of the digital input to 90% of the analog output
BW	Frequency response of the switch in the ON state, measured at –3 dB
XTALK	Unwanted signal coupled from channel to channel. Measured in –dB. X _{TALK} = 20 log V _O /V _I . This is a nonadjacent crosstalk.
O _{IRR}	OFF isolation is the resistance (measured in –dB) between the input and output with the switch OFF.
D_{G}	Magnitude variation between analog input and output pins when the switch is ON and the DC offset of composite video signal varies at the analog input pin. In NTSC standard, the frequency of the video signal is 3.58 MHz, and DC offset is from 0 to 0.714 V.
D _P	Phase variation between analog input and output pins when the switch is ON and the DC offset of composite video signal varies at the analog input pin. In NTSC standard, the frequency of the video signal is 3.58 MHz, and DC offset is from 0 to 0.714 V.
ICC	Static power-supply current
ICCD	Variation of I _{CC} for a change in frequency in the control (EN, IN) inputs
ΔlCC	Increase in supply current for each control input that is at the specified voltage level, rather than V _{CC} or GND

IN ___

EN —

functional diagram (positive logic)

DA 2 S1A 3 S2A DB 7 5 S1B DC 9 11 S1C DD 12 14 S1D A 13 S2D

Control Logic

TS3V340 QUAD SPDT HIGH-BANDWIDTH VIDEO SWITCH WITH LOW AND FLAT ON-STATE RESISTANCE

SCDS172A - JULY 2004 - REVISED DECEMBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	. -0.5 V to 4.6 V
Control input voltage range, V _{IN} (see Notes 1 and 2)	\dots -0.5 V to 7 V
Switch I/O voltage range, V _{I/O} (see Notes 1, 2, and 3)	\dots -0.5 V to 7 V
Control input clamp current, I _{IK} (V _{IN} < 0)	
I/O port clamp current, $I_{I/OK}$ ($V_{I/O} < 0$)	
ON-state switch current, I _{I/O} (see Note 4)	
Continuous current through V _{CC} or GND terminals	±100 mA
Package thermal impedance, θ _{JA} (see Note 5): D package	73°C/W
(see Note 5): DBQ package	90°C/W
(see Note 5): DGV package	120°C/W
(see Note 5): PW package	108°C/W
(see Note 6): RGY package	39°C/W
Storage temperature range, T _{stq}	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltages are with respect to ground, unless otherwise specified.

- 2. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 3. V_I and V_O are used to denote specific conditions for V_{I/O}.
- 4. I_I and I_O are used to denote specific conditions for I_{I/O}.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.
- 6. The package thermal impedance is calculated in accordance with JESD 51-5.

recommended operating conditions (see Note 7)

		MIN	MAX	UNIT
Vcc	Supply voltage	3	3.6	V
VIH	High-level control input voltage (EN, IN)	2	5.5	V
VIL	Low-level control input voltage (EN, IN)	0	0.8	V
VO	Analog I/O voltage	0	5.5	V
TA	Operating free-air temperature	-40	85	°C

NOTE 7: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

TS3V340 QUAD SPDT HIGH-BANDWIDTH VIDEO SWITCH WITH LOW AND FLAT ON-STATE RESISTANCE

SCDS172A - JULY 2004 - REVISED DECEMBER 2004

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)[†]

PARAMETER			MIN	TYP‡	MAX	UNIT			
VIK	EN, IN	V _{CC} = 3 V,	$I_{IN} = -18 \text{ mA}$					-1.8	V
lіН	EN, IN	$V_{CC} = 3.6 \text{ V},$	V _{IN} and V _{EN} = 5.5 V					±1	μΑ
Iμ	EN, IN	V _{CC} = 3.6 V,	V _{IN} and V _{EN} = GND					±1	μΑ
I _{OZ} §		V _{CC} = 3.6 V,	$V_0 = 0 \text{ to } 5.5 \text{ V},$	$V_{I} = 0,$	Switch OFF			±1	μΑ
IOS¶		$V_{CC} = 3.6 \text{ V},$	$V_{O} = 0.5 V_{CC}$	$V_{I} = 0,$	Switch ON	50			mA
I _{off}		$V_{CC} = 0$,	$V_0 = 0 \text{ to } 5.5 \text{ V},$	V _I = 0				1	μΑ
ICC		$V_{CC} = 3.6 \text{ V},$	$I_{I/O} = 0$,	Switch ON or OFF			0.7	1.5	mA
∆lcc	EN, IN	$V_{CC} = 3.6 \text{ V},$	One input at 3 V,	One input at 3 V, Other inputs at V _{CC} or GND				30	μΑ
ICCD		V _{CC} = 3.6 V, D and S ports open,	V _{EN} = GND, V _{IN} input switching 50	% duty cycle				0.35	mA/ MHz
C _{IN}	EN, IN	V_{IN} or $V_{EN} = 5.5 V$,	3.3 V or 0,	f = 1 MHz			2.5	3.5	pF
	D port	V 55V 22V 220	£ 4 MII-	Outrotte enen	Constant OFF		5.5	7	
COFF	S port	$V_{I} = 5.5 \text{ V}, 3.3 \text{ V}, \text{ or } 0,$	f = 1 MHZ,	Outputs open,	Switch OFF		3.5	5	pF
CON	•	V _I = 5.5 V, 3.3 V, or 0,	f = 1 MHz,	Outputs open,	Switch ON		10.5	14	pF
r _{on} #		Vaa - 2 V	V _I = 1 V,	I _O = 13 mA			3	6	Ω
'on"		VCC = 3 V	V _I = 2 V,	$I_O = 26 \text{ mA}$			3	6	22
ron(flat)		V _{CC} = 3.3 V,	$V_I = 0$ to V_{CC} ,	I _O = 26 mA			1		Ω

[†] V_I, V_O, I_I, and I_O refer to I/O pins.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V, R_L = 75 Ω , C_L = 20 pF (unless otherwise noted) (see Figures 6 and 7)

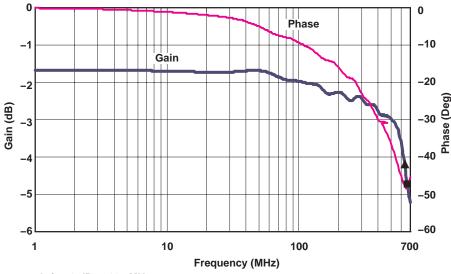
PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP	MAX	UNIT
tpd(s)	IN	D		2	5	ns
ton	IN or EN	S		4	7	ns
^t OFF	IN or EN	S		2	7	ns

dynamic characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS							
DG [≮]	$R_L = 150 \Omega$,	f = 3.58 MHz,	3.58 MHz, See Figure 7				%		
D _P ☆	$R_L = 150 \Omega$,	f = 3.58 MHz,	See Figure 7		C	.1	٥		
BW	$R_L = 150 \Omega$,	See Figure 8			5	00	MHz		
XTALK	$R_L = 150 \Omega$,	f = 10 MHz,	$R_{IN} = 10 \Omega$,	See Figure 9	_	30	dB		
O _{IRR}	$R_L = 150 \Omega$,	f = 10 MHz,	See Figure 10		_	60	dB		

[‡] All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_A = 25°C.

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$ (unless otherwise noted), $T_A = 25^{\circ}\text{C}$.


[§] For I/O ports, the parameter I_{OZ} includes the input leakage current.

The los test is applicable to only one ON channel at a time. The duration of this test is less than 1 s.

[#] Measured by the voltage drop between the D and S terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (D or S) terminals.

^{||} r_{on(flat)} is the difference of r_{on} in a given channel at specified voltages.

[★]D_G and D_P are expressed in absolute magnitude.

- ▲ Gain -3 dB at 627 MHz■ Phase at -3-dB Frequency, -47 Deg
 - Figure 1. Gain/Phase vs Frequency

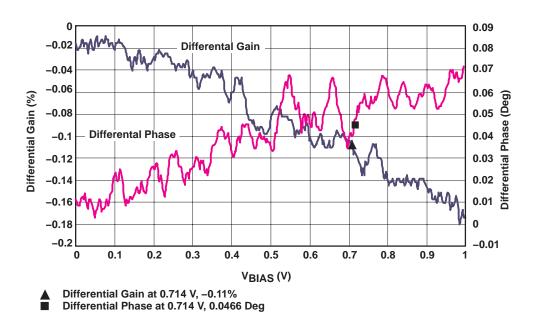
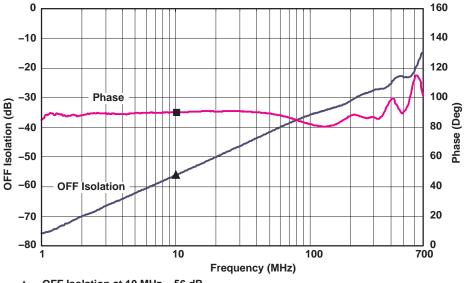



Figure 2. Differential Gain/Phase vs VBIAS

- ▲ OFF Isolation at 10 MHz, -56 dB
- Phase at 10 MHz, 90 Deg

Figure 3. OFF Isolation vs Frequency

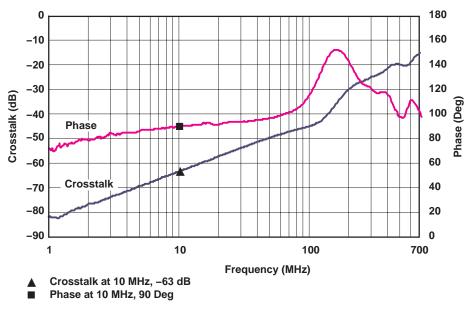


Figure 4. Crosstalk vs Frequency

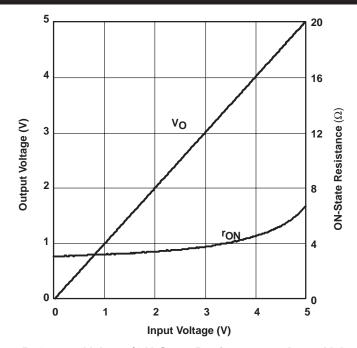
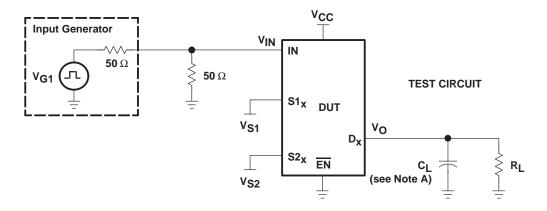
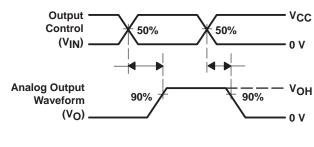
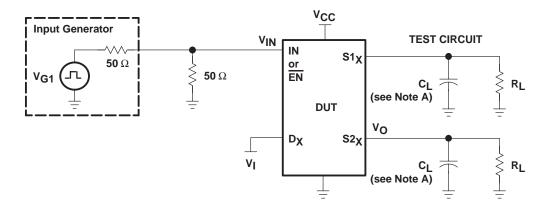




Figure 5. Output Voltage/ON-State Resistance vs Input Voltage

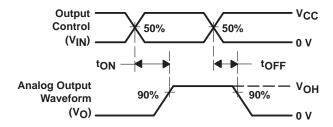
PARAMETER MEASUREMENT INFORMATION

TEST	VCC	RL	CL	V _{S1}	V _{S2}
tuala	3.3 V \pm 0.3 V	75	20 pF	GND	VCC
^t pds	3.3 V \pm 0.3 V	75	20 pF	VCC	GND

VOLTAGE WAVEFORMS t_{pd(s)} TIMES

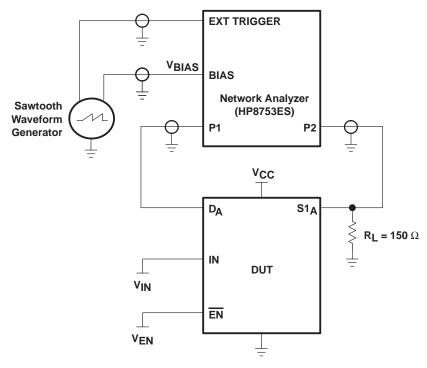

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns. $t_f \leq$ 2.5 ns.
- C. The outputs are measured one at a time, with one transition per measurement.


Figure 6. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

TEST	VCC	RL	CL	٧ _I	
ton/toff	3.3 V \pm 0.3 V	75 Ω	20 pF	VCC	


 $\begin{tabular}{ll} VOLTAGE WAVEFORMS \\ t_{ON} \ AND \ t_{OFF} \ TIMES \\ \end{tabular}$

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- C. The outputs are measured one at a time, with one transition per measurement.

Figure 7. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTE: For additional information on measurement method, refer to the TI application report, *Measuring Differential Gain and Phase*, literature number SLOA040.

Figure 8. Test Circuit for Differential Gain/Phase Measurement

Differential gain and phase is measured at the output of the ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and D_A is the input, the output is measured at $S1_A$.

HP8753ES setup

Average = 20

RBW = 300 Hz

ST = 1.381 s

P1 = -7 dBM

CW frequency = 3.58 MHz

sawtooth waveform generator setup

 $V_{BIAS} = 0 \text{ to } 1 \text{ V}$

Frequency = 0.905 Hz

PARAMETER MEASUREMENT INFORMATION

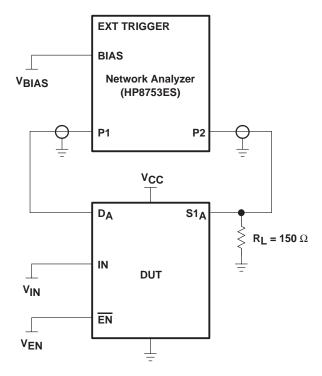
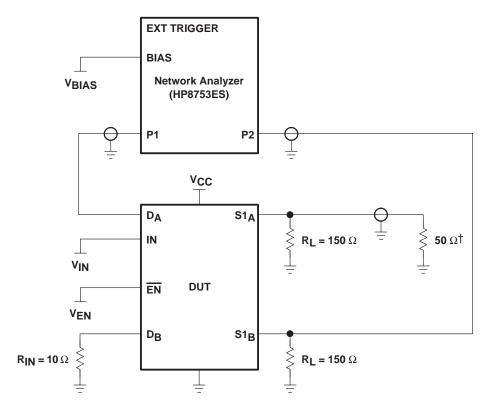


Figure 9. Test Circuit for Frequency Response (B_W)


The frequency response is measured at the output of the ON channel. For example, when $V_{IN}=0$, $V_{EN}=0$, and D_A is the input, the output is measured at S1_A. All unused analog I/O ports are left open.

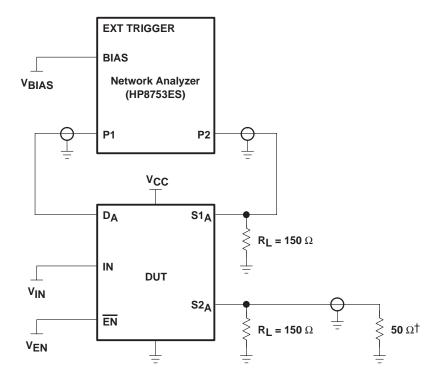
HP8753ES setup

Average = 4 RBW = 3 kHz V_{BIAS} = 0.35 V ST = 2 s P1 = 0 dBM

PARAMETER MEASUREMENT INFORMATION

 $^{^{\}dagger}\,\text{A}$ 50- $\!\Omega$ termination resistor is needed for the network analyzer.

Figure 10. Test Circuit for Crosstalk (X_{TALK})


The crosstalk is measured at the output of the nonadjacent ON channel. For example, when $V_{IN}=0$, $V_{EN}=0$, and D_A is the input, the output is measured at S1_B. All unused analog input (D) ports and output (S) ports are connected to GND through 10- Ω and 50- Ω pulldown resistors, respectively.

HP8753ES setup

Average = 4 RBW = 3 kHz V_{BIAS} = 0.35 V ST = 2 s P1 = 0 dBM

PARAMETER MEASUREMENT INFORMATION

 † A 50- $\!\Omega$ termination resistor is needed for the network analyzer.

Figure 11. Test Circuit for OFF Isolation (OIRR)

The OFF isolation is measured at the output of the OFF channel. For example, when $V_{IN} = V_{CC}$, $V_{EN} = 0$, and D_A is the input, the output is measured at S1_A. All unused analog input (D) ports are left open, and output (S) ports are connected to GND through 50- Ω pulldown resistors.

HP8753ES setup

Average = 4 RBW = 3 kHz V_{BIAS} = 0.35 V ST = 2 s P1 = 0 dBM

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TS3V340D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS3V340	Samples
TS3V340DBQR	ACTIVE	SSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TF340	Samples
TS3V340DGVR	ACTIVE	TVSOP	DGV	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TF340	Samples
TS3V340DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS3V340	Samples
TS3V340DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TS3V340	Samples
TS3V340PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TF340	Samples
TS3V340PWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TF340	Samples
TS3V340PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TF340	Samples
TS3V340PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TF340	Samples
TS3V340RGYR	ACTIVE	VQFN	RGY	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TF340	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

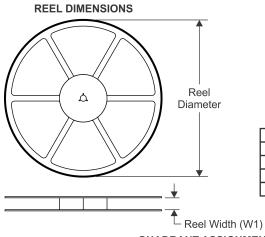
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

10-Jun-2014

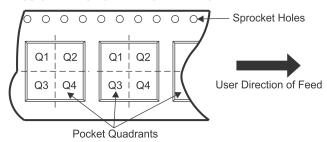
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

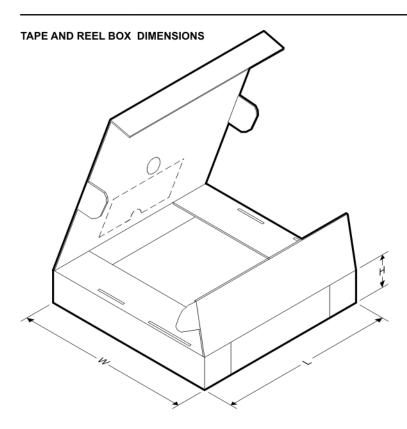
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Oct-2016


TAPE AND REEL INFORMATION

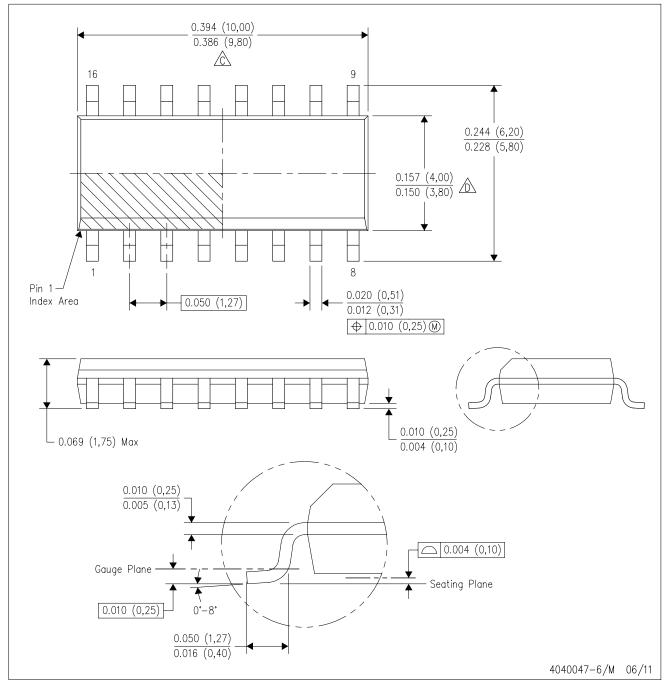
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3V340DBQR	SSOP	DBQ	16	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
TS3V340DGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
TS3V340DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TS3V340PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TS3V340RGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

www.ti.com 18-Oct-2016

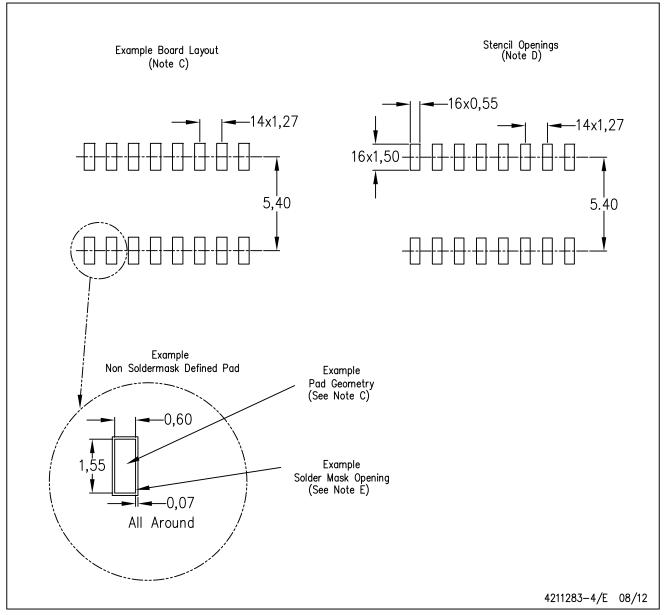


*All dimensions are nominal

All difficions die nominal											
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)				
TS3V340DBQR	SSOP	DBQ	16	2500	340.5	338.1	20.6				
TS3V340DGVR	TVSOP	DGV	16	2000	367.0	367.0	35.0				
TS3V340DR	SOIC	D	16	2500	333.2	345.9	28.6				
TS3V340PWR	TSSOP	PW	16	2000	367.0	367.0	35.0				
TS3V340RGYR	VQFN	RGY	16	3000	367.0	367.0	35.0				

D (R-PDS0-G16)

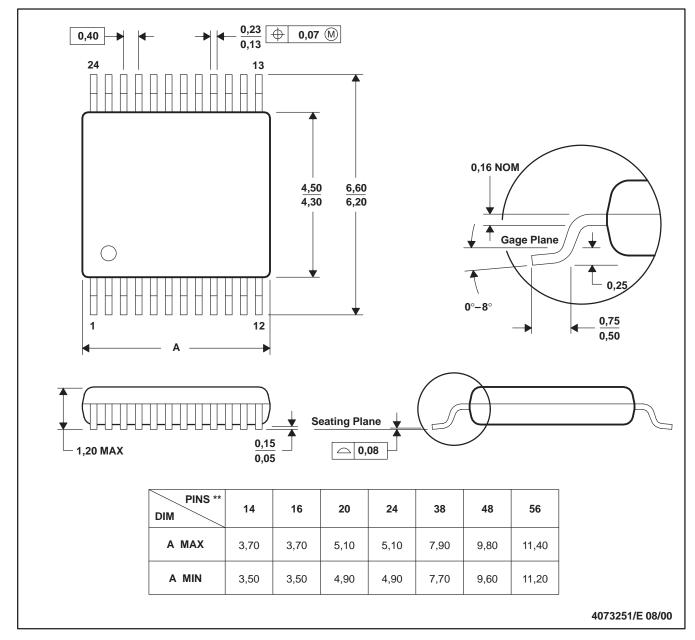
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

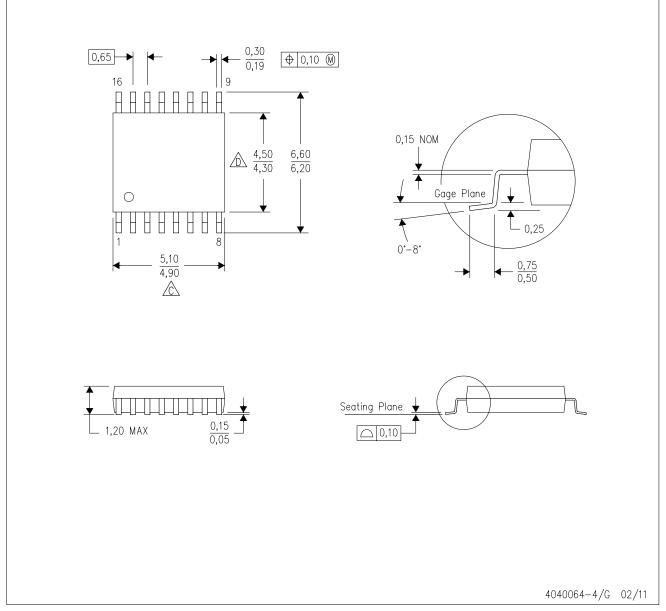
PLASTIC SMALL OUTLINE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

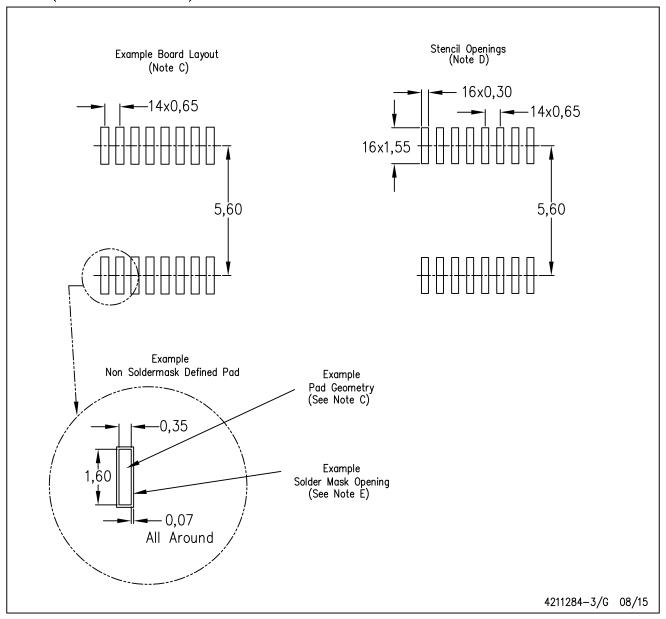

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

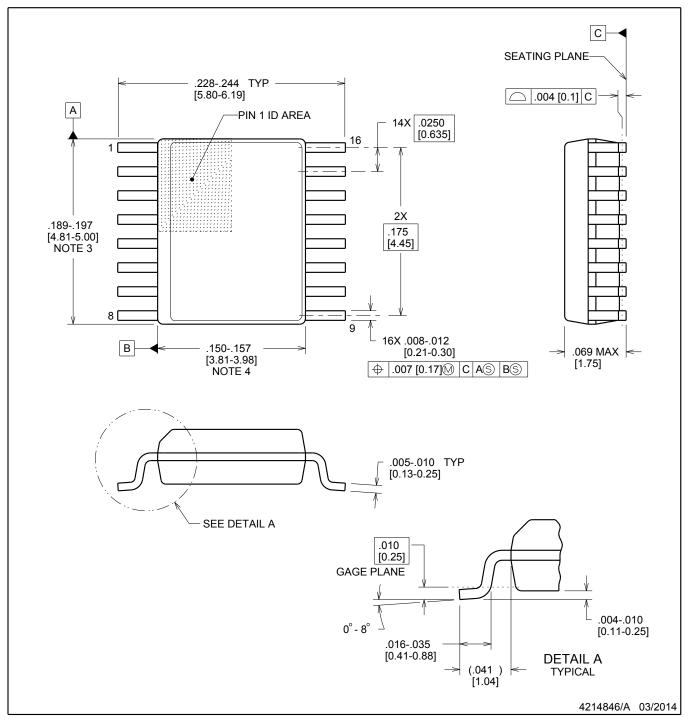


- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

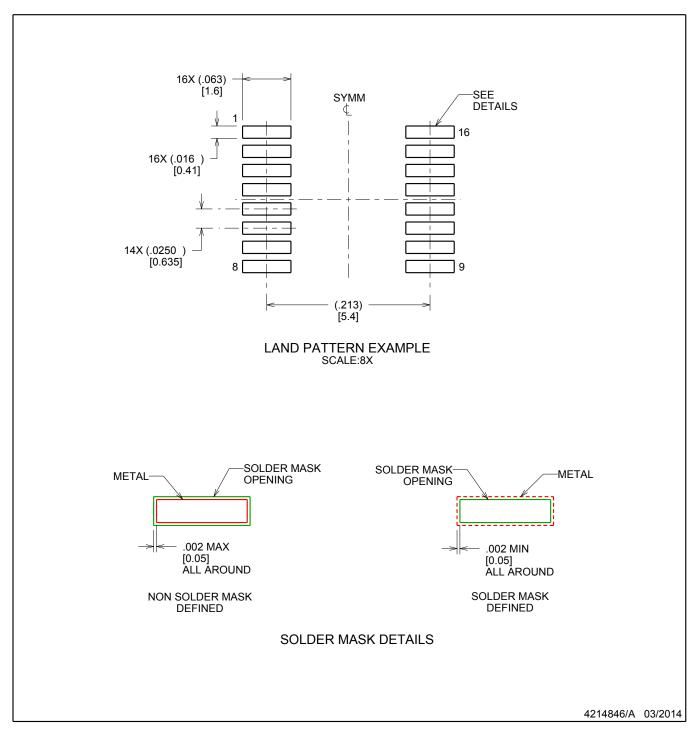
PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

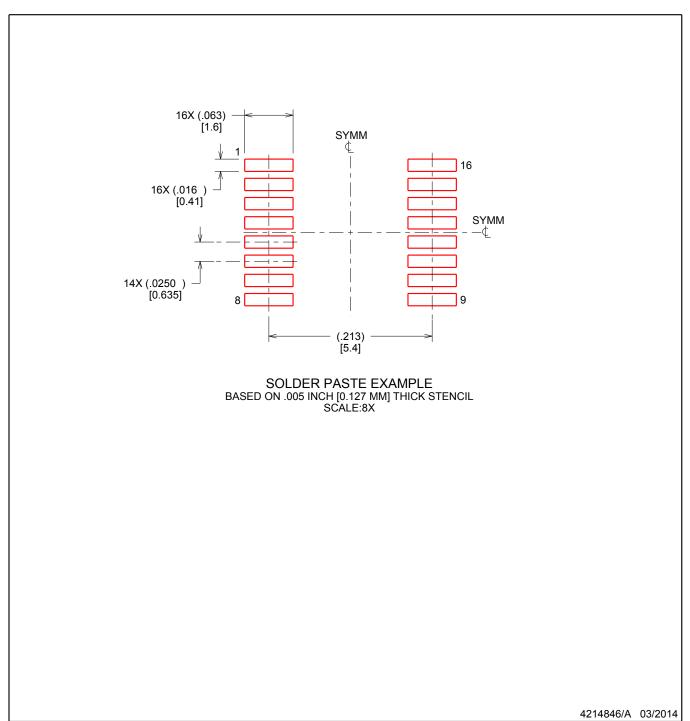
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



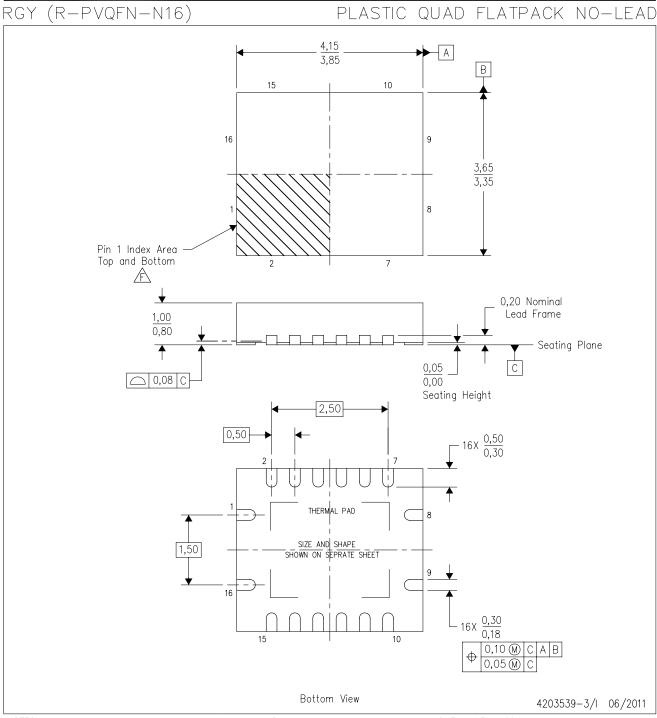
- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
- 4. This dimension does not include interlead flash.5. Reference JEDEC registration MO-137, variation AB.



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



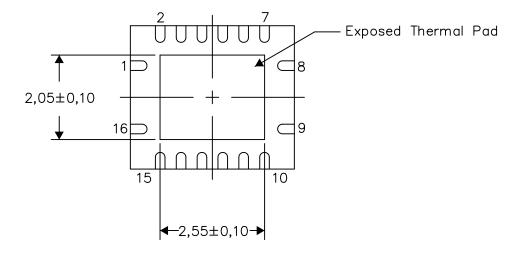
NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

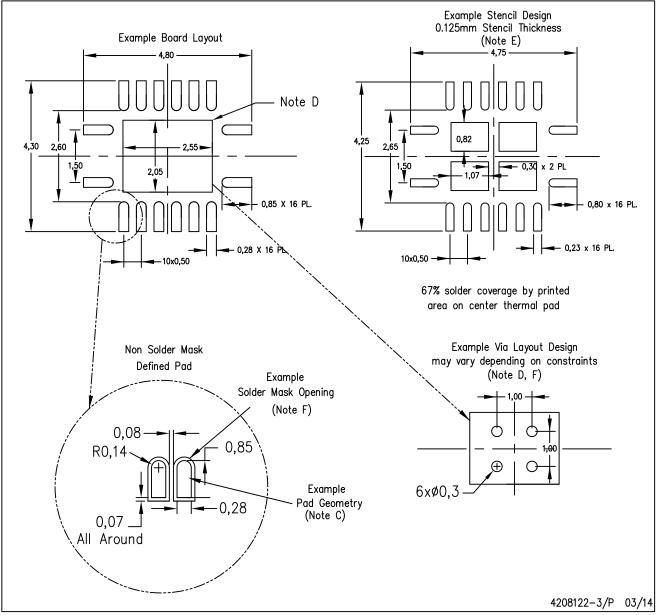
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4206353-3/P 03/14

NOTE: All linear dimensions are in millimeters

RGY (R-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.