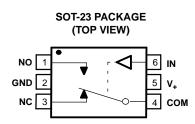


FEATURES

- Controlled Baseline
 - One Assembly/Test Site, One Fabrication Site
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- Specified Break-Before-Make Switching
- Low ON-State Resistance (1 Ω)
- Control Inputs Are 5-V Tolerant
- Low Charge Injection
- Excellent ON-State Resistance Matching
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not liited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

DESCRIPTION/ORDERING INFORMATION


Low Total Harmonic Distortion

- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22

 2000-V Human-Body Model
 - (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

APPLICATIONS

- Cell Phones
- PDAs
- Portable Instrumentation

The TS5A3159-EP is a single-pole double-throw (SPDT) analog switch that is designed to operate from 1.65 V to 5.5 V. The device offers a low ON-state resistance and an excellent ON-state resistance matching with the break-before-make feature to prevent signal distortion during the transferring of a signal from one channel to another. The device has excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

Configuration	2:1 Multiplexer/ Demultiplexer (1 × SPDT)
Number of channels	1
ON-state resistance (r _{on})	1.1 Ω
ON-state resistance match (Δr_{on})	0.1 Ω
ON-state resistance flatness (ron(flat))	0.15 Ω
Turn-on/turn-off time (t _{ON} /t _{OFF})	20 ns/15 ns
Break-before-make time (t _{BBM})	12 ns
Charge injection (Q _C)	36 pC
Bandwidth (BW)	100 MHz
OFF isolation (O _{ISO})	–65 dB at 1 MHz
Crosstalk (X _{TALK})	–66 dB at 1 MHz
Total harmonic distortion (THD)	0.01%
Leakage current (I _{NO(OFF)} /(I _{NC(OFF)})	±20 nA
Package option	6-pin DBV

Summary of Characteristics⁽¹⁾

(1) $V_+ = 5 \text{ V} \text{ and } T_A = 25^{\circ}\text{C}$

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

A

ORDERING INFORMATION

T _A	PACKAG	E ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
–55°C to 125°C	SOT (SOT-23) – DBV	Tape and reel	TS5A3159MDBVREP	JA8R	

Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at (1) www.ti.com/sc/package.

FUNCTION TABLE

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
Н	OFF	ON

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V ₊	Supply voltage range ⁽²⁾		-0.5	6.5	V
$V_{NO} \ V_{COM}$	Analog voltage range ⁽²⁾⁽³⁾⁽⁴⁾				
I _{I/OK}	Analog port diode current	V_{NO} , $V_{COM} < 0$ or V_{NO} , $V_{COM} > V_{+}$		±50	mA
I _{NO} I _{COM}	On-state switch current	V_{NO} , $V_{COM} = 0$ to V_{+}		±200	mA
	On-state peak switch current ⁽⁵⁾			±400	mA
V _{IN}	Digital input voltage range ⁽²⁾⁽³⁾		-0.5	6.5	V
I _{IK}	Digital input clamp current	V _{IN} < 0		-50	mA
	Continuous current through V ₊ or GND			±100	mA
θ_{JA}	Package thermal impedance ⁽⁶⁾			165	°C/W
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Electrical Characteristics" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2)All voltages are with respect to ground, unless otherwise specified.

The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. (3)

This value is limited to 5.5 V maximum. (4)

(5) (6) Pulse at 1-ms duration < 10% duty cycle.

The package thermal impedance is calculated in accordance with JESD 51-7.

Electrical Characteristics for 5-V Supply

 $V_{+} = 4.5$ V to 5.5 V (5 V nominal), $T_{A} = -55^{\circ}$ C to 125°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDI	TIONS	T _A	۷,	MIN -	TYP ⁽¹⁾	MAX	UNIT	
Analog Switch										
Analog signal range	V _{COM} , V _{NC} , V _{NO}					0		V+	V	
Peak ON resistance	r _{peak}	$\begin{array}{l} 0 \leq V_{NO} \text{ or } V_{NC} \leq V_{+}, \\ I_{COM} = -30 \text{ mA}, \end{array}$	Switch ON, See Figure 11	25°C Full	4.5 V		1	1.5 1.5	Ω	
ON-state resistance	r _{on}	V_{NO} or V_{NC} = 2.5 V, I_{COM} = -30 mA,	Switch ON, See Figure 11	25°C Full	4.5 V		0.75	1.1 1.3	Ω	
ON-state resistance match between channels	Δr_{on}	$V_{NO} \text{ or } V_{NC} = 2.5 \text{ V},$ $I_{COM} = -30 \text{ mA},$	Switch ON, See Figure 11	25°C	4.5 V		0.1		Ω	
ON-state resistance	r ann	$\begin{array}{l} 0 \leq V_{NO} \text{ or } V_{NC} \leq V_{+}, \\ I_{COM} = -30 \text{ mA} \end{array}$	Switch ON,	25°C	4.5 V		0.233		Ω	
flatness	r _{on(flat)}	V_{NO} or V_{NC} = 1 V, 1.5 V, 2.5 V, I_{COM} = –30 mA	See Figure 11	20 0			0.15			
NC, NO	I _{NC(OFF)} ,	V_{NC} or $V_{NO} = 4.5 V$,	Switch OFF,	25°C	55 \	-6	0.2	4	nA	
OFF leakage current	I _{NO(OFF)}	$V_{COM} = 0,$	See Figure 12	Full	5.5 V	-20		60		
NC, NO	I _{NC(ON)} ,	V_{NC} or $V_{NO} = 4.5 V$,	Switch ON,	25°C		-6	2.8	4		
ON leakage current	I _{NO(ON)}	V _{COM} = Open,	See Figure 13	Full	5.5 V	-40		70	nA	
COM		V _{NC} or V _{NO} = 4.5 V or Open,	Switch ON,	25°C		-4	0.47	7		
ON leakage current	I _{COM(ON)}	$V_{\rm COM} = 4.5$ V,	See Figure 13	Full	5.5 V	-40		80	nA	
Digital Control	Input (IN)									
Input logic high	V _{IH}			Full		2.4		5.5	V	
Input logic low	V _{IL}			Full		0		0.8	V	
Input leakage current	I _{IH} , I _{IL}	V ₁ = 5.5 V or 0		Full	5.5 V	-1		1	μΑ	

(1) $T_A = 25^{\circ}C$

TS5A3159-EP 1-Ω SPDT ANALOG SWITCH

SCDS217B-DECEMBER 2005-REVISED JANUARY 2006

Electrical Characteristics for 5-V Supply (continued)

 V_{\star} = 4.5 V to 5.5 V (5 V nominal), T_{A} = –55°C to 125°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	NDITIONS	TA	٧.	MIN TYP ⁽¹⁾	MAX	UNIT
Dynamic								
Turn-on time	t _{ON}	$V_{COM} = V_+,$ R _L = 50 Ω,	C _L = 35 pF, See Figure 15	25°C Full	4.5 V to 5.5 V	20	35 40	ns
Turn-off time	t _{OFF}	$V_{COM} = V_+,$	$C_L = 35 \text{ pF},$	25°C	4.5 V to	15	20	ns
	OFF	$R_L = 50 \Omega,$	See Figure 15	Full	5.5 V		35	
Break-before- make time	t _{BBM}	$V_{NC} = V_{NO} = V_{+}/2,$ $R_{1} = 50 \ \Omega,$	C _L = 35 pF, See Figure 16	25°C Full	4.5 V to 5.5 V	1 12	14.5	ns
Charge injection	Q _C	$C_L = 1 \text{ nF},$ $V_{GEN} = 0 \text{ V},$	See Figure 20	25°C	5 V	36		рС
NC, NO OFF capacitance	C _{NC(OFF)} , C _{NO(OFF)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 14	25°C	5 V	23		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 14	25°C	5 V	84		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_{+}$ or GND, Switch ON,	See Figure 14	25°C	5 V	84		pF
Digital input capacitance	C _{IN}	$V_{IN} = V_{+}$ or GND,	See Figure 14	25°C	5 V	2.1		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 17	25°C	5 V	100		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, See Figure 18	25°C	5 V	-65		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch ON, See Figure 19	25°C	5 V	-65		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 600 Hz to 20 kHz, See Figure 21	25°C	5 V	0.01		%
Supply		1		1	· · · · ·			
Positive supply current	I+	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	Full	5.5 V		0.1	μA

Electrical Characteristics for 3.3-V Supply

 $V_{+} = 3 \text{ V}$ to 3.6 V (3.3 V nominal), $T_{A} = -55^{\circ}\text{C}$ to 125°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	T _A	V.	MIN	TYP ⁽¹⁾	MAX	UNIT
Analog Switch									
Analog signal range	V _{COM} , V _{NC} , V _{NO}					0		V+	V
Peak ON resistance	r _{peak}	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -24 \text{ mA},$	Switch ON, See Figure 11	25°C Full	3 V		1.35	2.15 2.15	Ω
ON-state		V_{NO} or $V_{NC} = 2 V$,	Switch ON.	25°C	<u> </u>		1.15	1.7	
resistance	r _{on}	$I_{COM} = -24 \text{ mA},$	See Figure 11	Full	3 V			1.7	Ω
ON-state resistance match between channels	Δr_{on}	V_{NO} or V_{NC} = 2 V, 0.8 V, I_{COM} = -24 mA,	Switch ON, See Figure 11	25°C	3 V		0.11		Ω
ON-state	_	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$ $I_{COM} = -24 \text{ mA}$	Switch ON,	2500	3 V		0.225		Ω
resistance flatness	r _{on(flat)}	V_{NO} or $V_{NC} = 2 V$, 0.8 V, $I_{COM} = -24 \text{ mA}$	See Figure 11	25°C			0.25		
NC, NO OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}	$ \begin{array}{l} V_{NC} \text{ or } V_{NO} = 3 \ \text{V}, \\ V_{COM} = 0, \end{array} $	Switch OFF, See Figure 12	25°C	3.6 V		0.2		nA
NC, NO ON leakage current	I _{NC(ON)} , I _{NO(ON)}	V_{NC} or V_{NO} = 3 V, V_{COM} = Open,	Switch ON, See Figure 13	25°C	3.6 V		2.8		nA
COM ON leakage current	I _{COM(ON)}	V_{NC} or V_{NO} = 3 V or Open, V_{COM} = 3 V,	Switch ON, See Figure 13	25°C	3.6 V		0.47		nA
Digital Control I	nput (IN)								
Input logic high	V _{IH}			Full		2		5.5	V
Input logic low	V _{IL}			Full		0	0.6		V
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		Full	3.6 V	-1		1	μΑ

(1) $T_A = 25^{\circ}C$

TS5A3159-EP $1-\Omega$ SPDT ANALOG SWITCH

SCDS217B-DECEMBER 2005-REVISED JANUARY 2006

Electrical Characteristics for 3.3-V Supply (continued)

V₊ = 3 V to 3.6 V (3.3 V nominal), T_A = –55°C to 125°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	TA	٧,	MIN TYP ⁽¹⁾	MAX	UNIT
Dynamic								
Turn-on time	t _{ON}	$V_{COM} = V_+,$ $R_L = 50 \Omega,$	C _L = 35 pF, See Figure 15	25°C	3 V to 3.6 V	30	40	ns
		$K_{L} = 50.32,$	-	Full	3.0 V		55	
Turn-off time	t _{OFF}	$V_{COM} = V_+,$	$C_{L} = 35 \text{ pF},$	25°C	3 V to	20	25	ns
		R _L = 50 Ω,	See Figure 15	Full	3.6 V		40	-
Break-before-	t	$V_{\rm NC} = V_{\rm NO} = V_{+}/2,$	C _L = 35 pF,	25°C	3 V to	1 21	29	ns
make time	t _{BBM}	$R_L = 50 \Omega$,	See Figure 16	Full	3.6 V	1		115
Charge injection	Q _C	$C_L = 1 \text{ nF},$ $V_{GEN} = 0 \text{ V},$	See Figure 20	25°C	3.3 V	20		рС
NC, NO OFF capacitance	$\begin{array}{c} C_{NC(OFF)},\\ C_{NO(OFF)} \end{array}$	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 14	25°C	3.3 V	23		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 14	25°C	3.3 V	84		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+$ or GND, Switch ON,	See Figure 14	25°C	3.3 V	84		pF
Digital input capacitance	C _{IN}	$V_{IN} = V_+ \text{ or } GND,$	See Figure 14	25°C	3.3 V	2.1		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 17	25°C	3.3 V	100		MHz
OFF isolation	O _{ISO}	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 1 \ MHz, \end{array}$	Switch OFF, See Figure 18	25°C	3.3 V	-65		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch ON, See Figure 19	25°C	3.3 V	-65		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 600 Hz to 20 kHz, See Figure 21	25°C	3.3 V	0.015		%
Supply				•				
Positive supply current	I+	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	Full	3.6 V		0.1	μA

Electrical Characteristics for 2.5-V Supply

 V_{\star} = 2.3 V to 2.7 V (2.5 V nominal), T_{A} = –55°C to 125°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST COND	ITIONS	T _A	V.	MIN	TYP ⁽¹⁾	MAX	UNIT
Analog Switch				U					
Analog signal range	V _{COM} , V _{NC} , V _{NO}					0		V+	V
Peak ON	r	$0 \le V_{NO}$ or $V_{NC} \le V_+$,	Switch ON,	25°C	2.5 V		1.7	2.7	Ω
resistance	r _{peak}	$I_{COM} = -8 \text{ mA},$	See Figure 11	Full	2.5 V			2.9	52
ON-state	r	V_{NO} or V_{NC} = 1.8 V,	Switch ON,	25°C	2.5 V		1.45	2.3	Ω
resistance	r _{on}	$I_{COM} = -8 \text{ mA},$	See Figure 11	Full	2.5 V			2.5	22
ON-state resistance match between channels	Δr_{on}	$V_{NO} \text{ or } V_{NC}$ = 0.8 V, 1.8 V, I_{COM} = –8 mA,	Switch ON, See Figure 11	25°C	2.5 V		0.7		Ω
ON-state resistance	r	$\begin{array}{l} 0 \leq V_{NO} \text{ or } V_{NC} \leq V_{+}, \\ I_{COM} = -8 \text{ mA} \end{array}$	Switch ON,	25°C	°C 2.5 V		0.5		Ω
flatness	r _{on(flat)}	$V_{NO} \text{ or } V_{NC}$ = 0.8 V, 1.8 V, I_{COM} = –8 mA	See Figure 11	25 0			0.45		22
NC, NO OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}		Switch OFF, See Figure 12	25°C	2.7 V		0.2		nA
NC, NO ON leakage current	I _{NC(ON)} , I _{NO(ON)}	V_{NC} or V_{NO} = 2.3 V, V_{COM} = Open,	Switch ON, See Figure 13	25°C	2.7 V		2.8		nA
COM ON leakage current	I _{COM(ON)}	$V_{\rm NC}$ or $V_{\rm NO}$ = 2.3 V or Open, $V_{\rm COM}$ = 2.3 V,	Switch ON, See Figure 13	25°C	2.7 V		0.47		nA
Digital Control I	nput (IN)			i					
Input logic high	V _{IH}			Full		1.8		5.5	V
Input logic low	V _{IL}			Full		0	0.6		V
Input leakage current	I _{IH} , I _{IL}	V ₁ = 5.5 V or 0		Full	2.7 V	-1		1	μΑ

(1) $T_A = 25^{\circ}C$

TS5A3159-EP 1-Ω SPDT ANALOG SWITCH

SCDS217B-DECEMBER 2005-REVISED JANUARY 2006

Electrical Characteristics for 2.5-V Supply (continued)

 V_{\star} = 2.3 V to 2.7 V (2.5 V nominal), T_{A} = –55°C to 125°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	TA	٧.	MIN TYP ⁽¹⁾	MAX	UNIT
Dynamic								
Turn-on time	t _{ON}	$V_{COM} = V_+,$	$C_L = 35 \text{ pF},$	25°C	2.3 V to	40	55	ns
	ON	R _L = 50 Ω,	See Figure 15	Full	2.7 V		70	
Turn-off time	t _{OFF}	$V_{COM} = V_+,$	C _L = 35 pF,	25°C	2.3 V to	30	40	ns
	*OFF	R _L = 50 Ω,	See Figure 15	Full	2.7 V		55	110
Break-before-	t	$V_{NC} = V_{NO} = V_{+}/2,$	C _L = 35 pF,	25°C	2.3 V to	1 33	39	ns
make time	t _{BBM}	$R_L = 50 \Omega$,	See Figure 16	Full	2.7 V	1		115
Charge injection	Q _C	$C_L = 1 \text{ nF},$ $V_{GEN} = 0 \text{ V},$	See Figure 20	25°C	2.5 V	13		рС
NC, NO OFF capacitance	$\begin{array}{c} C_{NC(OFF)},\\ C_{NO(OFF)} \end{array}$	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 14	25°C	2.5 V	23		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 14	25°C	2.5 V	84		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_+$ or GND, Switch ON,	See Figure 14	25°C	2.5 V	84		pF
Digital input capacitance	C _{IN}	$V_{IN} = V_+ \text{ or } GND,$	See Figure 14	25°C	2.5 V	2.1		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 17	25°C	2.5 V	100		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, See Figure 18	25°C	2.5 V	-64		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch ON, See Figure 19	25°C	2.5 V	-64		dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 600 Hz to 20 kHz, See Figure 21	25°C	2.5 V	0.025		%
Supply								
Positive supply current	l+	$V_{IN} = V_+ \text{ or GND},$	Switch ON or OFF	Full	2.7 V		0.1	μΑ

Electrical Characteristics for 1.8-V Supply

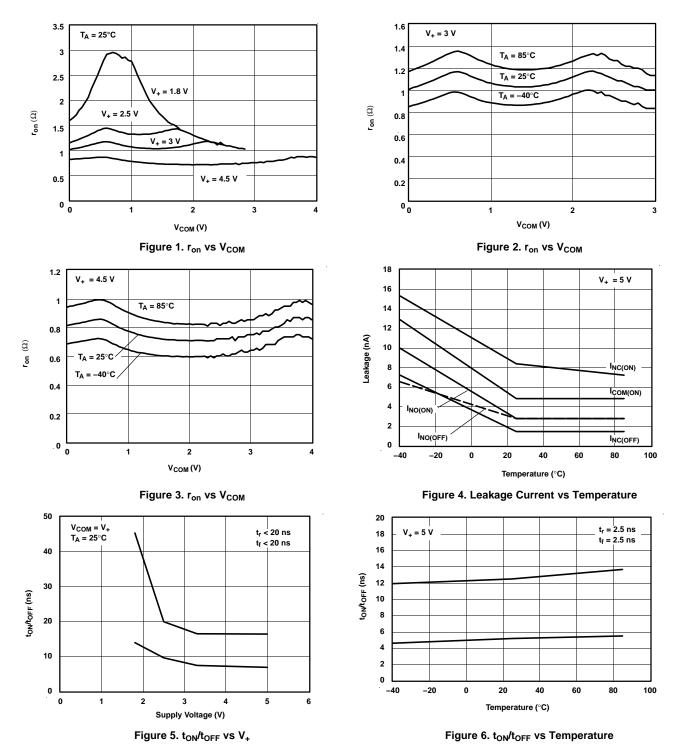
 V_{+} = 1.65 V to 1.95 V (1.8 V nominal), T_{A} = -55°C to 125°C (unless otherwise noted)

PARAMETER	SYMBOL	TEST CON	DITIONS	T _A	۷.	MIN TYP ⁽¹⁾	MAX	UNIT
Analog Switch		•						
Analog signal range	V _{COM} , V _{NC} , V _{NO}					0	V+	V
Peak ON	r .	$0 \le V_{NO} \text{ or } V_{NC} \le V_+,$	Switch ON,	25°C	1.8 V	4	4.9	Ω
resistance	r _{peak}	$I_{COM} = -2 \text{ mA},$	See Figure 11	Full	1.0 V	7		52
ON-state	r _{on}	V_{NO} or V_{NC} = 1.5 V,	Switch ON,	25°C	1.8 V	1.7	3.2	Ω
resistance	'on	$I_{COM} = -2 \text{ mA},$	See Figure 11	Full	1.0 V		4.2	
ON-state				25°C		0.7		
resistance match between channels	Δr_{on}	V_{NO} or V_{NC} = 0.6 V, 1.5 V, I_{COM} = -2 mA,	Switch ON, See Figure 11	Full	1.8 V	0.7		Ω
		$0 \le V_{NO}$ or $V_{NC} \le V_+$,		25°C		1.85		Ω
ON-state	-	$I_{COM} = -2 \text{ mA}$	Switch ON,	Full	4.0.1/	1.85		
resistance flatness	r _{on(flat)}	$V_{\rm NO} \text{ or } V_{\rm NC} = 0.6 \text{ V}, 1.5 \text{ V},$	See Figure 11	25°C	1.8 V	0.9		
		$I_{COM} = -2 \text{ mA}$		Full	-	0.9		
NC, NO OFF leakage current	I _{NC(OFF)} , I _{NO(OFF)}	V_{NC} or V_{NO} = 1.65 V, V_{COM} = 0,	Switch OFF, See Figure 12	25°C	1.95 V	0.2		nA
NC, NO ON leakage current	I _{NC(ON)} , I _{NO(ON)}	V_{NC} or V_{NO} = 1.65 V, V_{COM} = Open,	Switch ON, See Figure 13	25°C	1.95 V	2.8		nA
COM ON leakage current	I _{COM(ON)}	V_{NC} or V_{NO} = 1.65 V or Open, V_{COM} = 1.65 V,	Switch ON, See Figure 13	25°C	1.95 V	0.47		nA
Digital Control In	nput (IN)							
Input logic high	V _{IH}			Full		1.5	5.5	V
Input logic low	V _{IL}			Full		0 0.6		V
Input leakage current	I _{IH} , I _{IL}	V ₁ = 5.5 V or 0		Full	1.95 V	-1	1	μΑ

(1) $T_A = 25^{\circ}C$

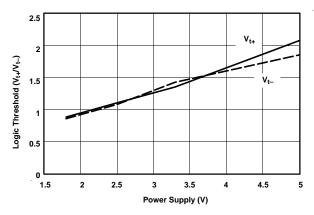
TS5A3159-EP 1-Ω SPDT ANALOG SWITCH

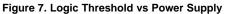
TEXAS INSTRUMENTS www.ti.com


SCDS217B-DECEMBER 2005-REVISED JANUARY 2006

Electrical Characteristics for 1.8-V Supply (continued)

 V_{\star} = 1.65 V to 1.95 V (1.8 V nominal), T_{A} = –55°C to 125°C (unless otherwise noted)


PARAMETER	SYMBOL	TEST CON	DITIONS	TA	٧,	MIN TYP ⁽¹⁾	MAX	UNIT
Dynamic					·			
Turn-on time		$V_{COM} = V_+,$	C ₁ = 35 pF,	25°C	1.65 V to	65	70	ns
rum-on time	t _{ON}	$R_{L} = 50 \Omega,$	See Figure 15	Full	1.95 V		95	ns
Turn-off time	t	$V_{COM} = V_+,$	C _L = 35 pF,	25°C	1.65 V to	40	55	ns
rum-on time	t _{OFF}	$R_L = 50 \Omega$,	See Figure 15	Full	1.95 V		70	113
Break-before-	toou	$V_{\rm NC} = V_{\rm NO} = V_{\rm +}/2,$	C _L = 35 pF,	25°C	1.65 V to	1 60	72	ns
make time	t _{BBM}	$R_L = 50 \Omega,$	See Figure 16	Full	1.95 V	0.5		113
Charge injection	Q _C	$C_L = 1 \text{ nF},$ $V_{GEN} = 0 \text{ V},$	See Figure 20	25°C	1.8 V	13		рС
NC, NO OFF capacitance	$\begin{array}{c} C_{NC(OFF)},\\ C_{NO(OFF)} \end{array}$	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch OFF,	See Figure 14	25°C	1.8 V	23		pF
NC, NO ON capacitance	C _{NC(ON)} , C _{NO(ON)}	V_{NC} or $V_{NO} = V_{+}$ or GND, Switch ON,	See Figure 14	25°C	1.8 V	84		pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V ₊ or GND, Switch ON,	See Figure 14	25°C	1.8 V	84		pF
Digital input capacitance	C _{IN}	$V_{IN} = V_{+} \text{ or GND},$	See Figure 14	25°C	1.8 V	2.1		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 17	25°C	1.8 V	100		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch OFF, See Figure 18	25°C	1.8 V	-63		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega,$ f = 1 MHz,	Switch ON, See Figure 19	25°C	1.8 V	-63		dB
Supply								
Positive supply current	I+	$V_{IN} = V_{+}$ or GND,	Switch ON or OFF	Full	1.95 V		0.1	μA


TYPICAL PERFORMANCE

TS5A3159-EP 1-Ω SPDT ANALOG SWITCH SCDS217B-DECEMBER 2005-REVISED JANUARY 2006

TYPICAL PERFORMANCE (continued)

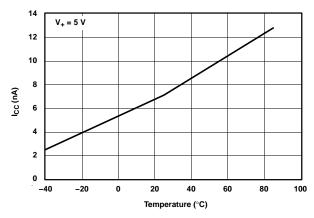


Figure 9. Power-Supply Current vs Temperature

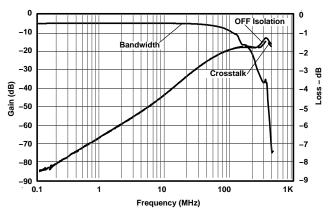


Figure 8. Frequency Response

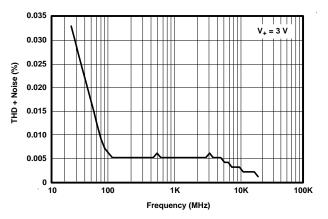


Figure 10. Total Harmonic Distortion (THD) vs Frequency

PIN DESCRIPTION

PIN NO.	NAME	DESCRIPTION					
1	NO	Normally open					
2	GND	Digital ground					
3	NC	Normally closed					
4	COM	Common					
5	V+	Power supply					
6	IN	Digital control to connect COM to NO or NC					

PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION								
V _{COM}	Voltage at COM								
V _{NC}	Voltage at NC								
V _{NO}	Voltage at NO								
r _{on}	Resistance between COM and NO ports when the channel is ON								
r _{peak}	Peak on-state resistance over a specified voltage range								
Δr_{on}	Difference of r _{on} between channels in a specific device								
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions								
I _{NC(OFF)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worst-case input and output conditions								
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state								
I _{NC(ON)}	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) open								
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open								
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO) in the ON state and the output (NO) open								
VIH	Minimum input voltage for logic high for the control input (IN)								
V _{IL}	Maximum input voltage for logic low for the control input (IN)								
V _{IN}	Voltage at IN								
I _{IH} , I _{IL}	Leakage current measured at IN								
t _{ON}	Turn-on time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON.								
t _{OFF}	Turn-off time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF.								
t _{BBM}	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO), when the control signal changes state.								
Q _C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance and ΔV_{COM} is the change in analog output voltage.								
C _{NC(OFF)}	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF								
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF								
C _{NC(ON)}	Capacitance at the NC port when the corresponding channel (NC to COM) is ON								
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON								
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NO) is ON								
C _{IN}	Capacitance of IN								
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NO to COM) in the OFF state.								
X _{TALK}	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an adjacent ON channel (NC1 to NC2). This is measured in a specific frequency and in dB.								
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB below the DC gain.								

TS5A3159-EP 1- Ω SPDT ANALOG SWITCH

SCDS217B-DECEMBER 2005-REVISED JANUARY 2006

PARAMETER DESCRIPTION (continued)

SYMBOL	DESCRIPTION						
I ₊	Static power-supply current with the control (IN) pin at V_+ or GND						
ΔI_+	This is the increase in I+ for each control (IN) input that is at the specified voltage, rather than at V+ or GND.						

TS5A3159-EP 1-Ω SPDT ANALOG SWITCH SCDS217B-DECEMBER 2005-REVISED JANUARY 2006

PARAMETER MEASUREMENT INFORMATION

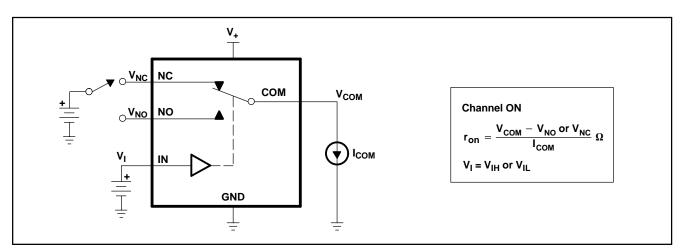


Figure 11. ON-State Resistance (ron)

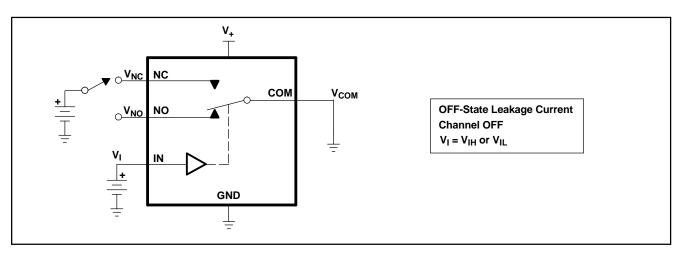


Figure 12. OFF-State Leakage Current (I_{NC(OFF)}, I_{NO(OFF)})

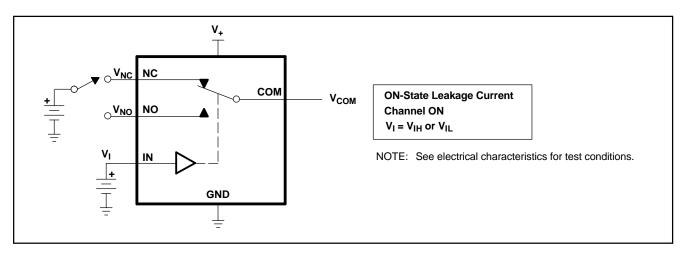
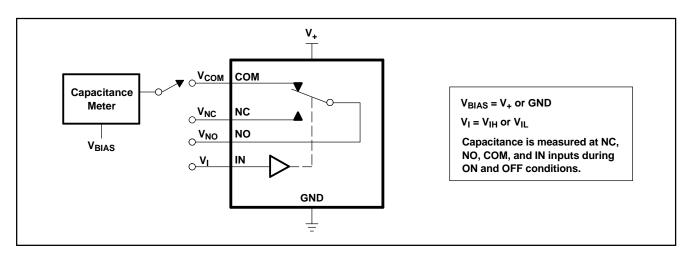
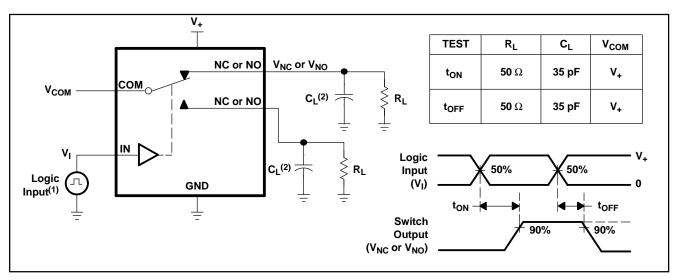
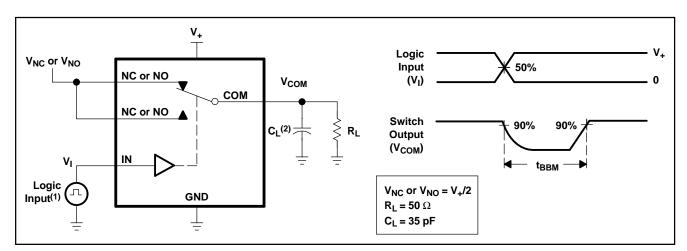


Figure 13. ON-State Leakage Current (I_{COM(ON)}, I_{NC(ON)}, I_{NO(ON)})

TS5A3159-EP 1-Ω SPDT ANALOG SWITCH SCDS217B-DECEMBER 2005-REVISED JANUARY 2006

PARAMETER MEASUREMENT INFORMATION (continued)


Figure 14. Capacitance (C₁, C_{COM(ON)}, C_{NC(OFF)}, C_{NO(OFF)}, C_{NC(ON)}, C_{NO(ON)})

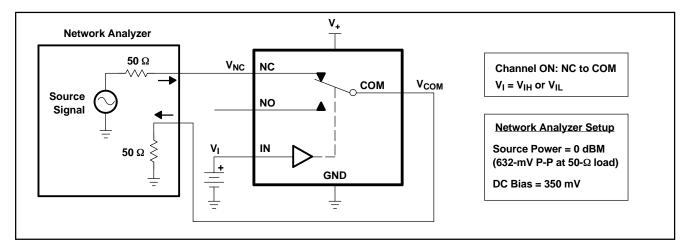
- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- (2) C_L includes probe and jig capacitance.

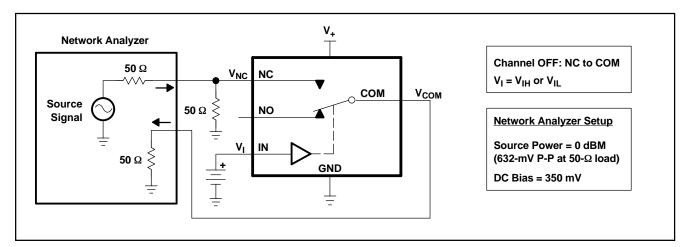
Figure 15. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

PARAMETER MEASUREMENT INFORMATION (continued)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- (2) C_L includes probe and jig capacitance.

Figure 16. Break-Before-Make Time (t_{BBM})




Figure 17. Bandwidth (BW)

TS5A3159-EP 1- Ω SPDT ANALOG SWITCH

TEXAS INSTRUMENTS www.ti.com

SCDS217B-DECEMBER 2005-REVISED JANUARY 2006

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 18. OFF Isolation (O_{ISO})

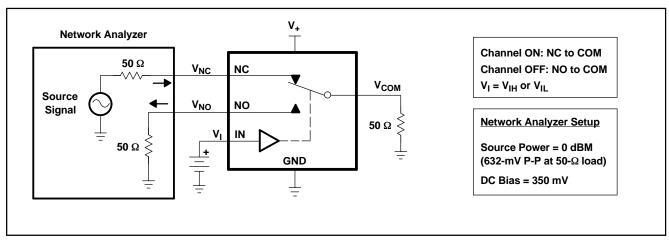
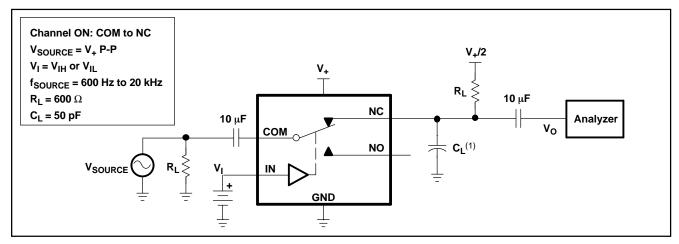
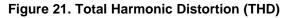



Figure 19. Crosstalk (X_{TALK})


TS5A3159-EP 1-Ω SPDT ANALOG SWITCH SCDS217B-DECEMBER 2005-REVISED JANUARY 2006

PARAMETER MEASUREMENT INFORMATION (continued)



- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r < 5 ns, t_f < 5 ns.
- (2) C_L includes probe and jig capacitance.

(1) C_L includes probe and jig capacitance.

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
TS5A3159MDBVREP	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	JA8R	Samples
V62/06613-01XE	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	JA8R	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TS5A3159-EP :

www.ti.com

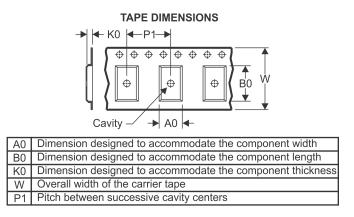
11-Apr-2013

Catalog: TS5A3159

• Automotive: TS5A3159-Q1

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects

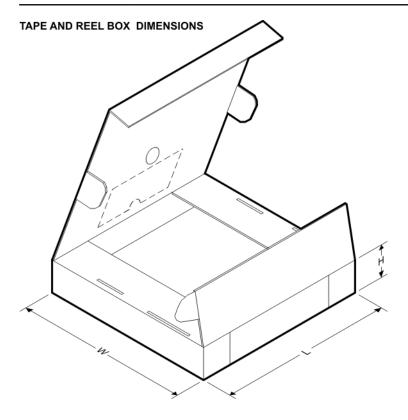

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

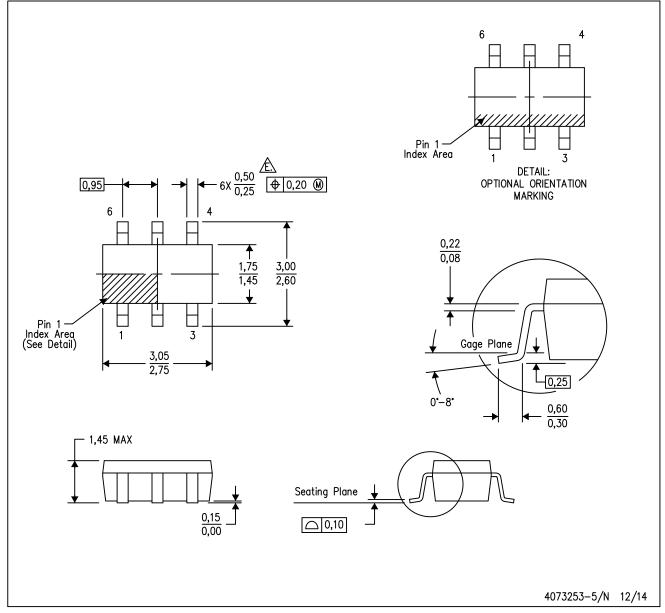

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A3159MDBVREP	SOT-23	DBV	6	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

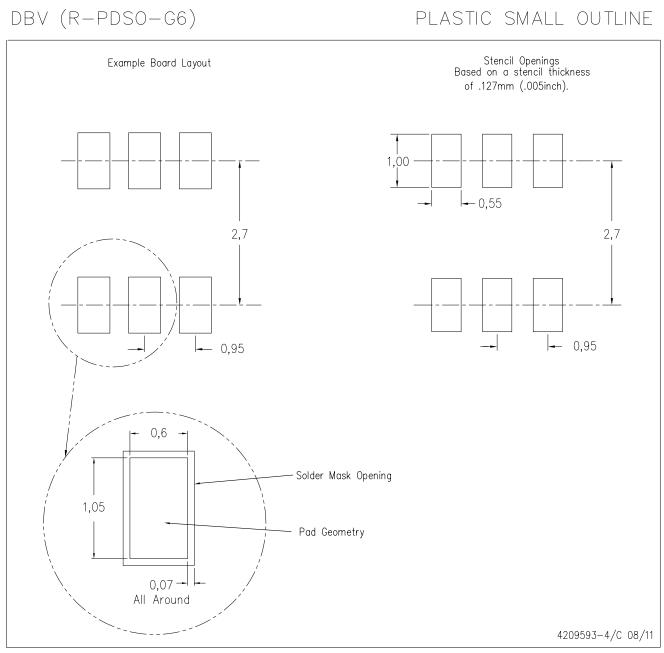
3-Aug-2017



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A3159MDBVREP	SOT-23	DBV	6	3000	202.0	201.0	28.0

DBV (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE

- NOTES:
 - A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
 - E Falls within JEDEC MO-178 Variation AB, except minimum lead width.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated