

TS5A3359

SCDS214E - OCTOBER 2005 - REVISED JANUARY 2016

TS5A3359 1-Ω SP3T Bidirectional Analog Switch 5-V/3.3-V Single-Channel 3:1 Multiplexer and Demultiplexer

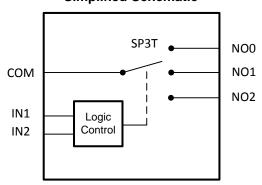
Features

- Isolation in Power-Down Mode, $V_{CC} = 0$
- Specified Break-Before-Make Switching
- Low ON-State Resistance (1 Ω)
- Control Inputs Are 5.5-V Tolerant
- Low Charge Injection (5 pC $V_{CC} = 1.8 \text{ V}$)
- **Excellent ON-State Resistance Matching**
- Low Total Harmonic Distortion (THD)
- 1.65-V to 5.5-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Cell Phones
- **PDAs**
- Portable Instrumentation
- Audio and Video Signal Routing
- Low-Voltage Data Acquisition Systems
- Communication Circuits
- Modems
- Hard Drives
- Computer Peripherals
- Wireless Terminals and Peripherals

3 Description


The TS5A3359 device is a bidirectional, single channel, single-pole triple-throw (SP3T) analog switch that is designed to operate from 1.65 V to 5.5 V. This device provides a signal switching solution while maintaining excellent signal integrity, which makes the TS5A3359 suitable for a wide range of applications in various markets including personal electronics, test and measurement equipment, and portable instrumentation. The device maintains the signal integrity by its low ON-state resistance, excellent ON-state resistance matching, and total harmonic distortion (THD) performance. To prevent signal distortion during the transferring of a signal from one channel to another, the TS5A3359 device also has a specified break-before-make feature. The device consumes very low power and provides isolation when $V_{CC} = 0$.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
T05 A 22504	US8 (8)	2.30 mm × 2.00 mm
TS5A33591	DSBGA (8)	0.00 mm × 0.00 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

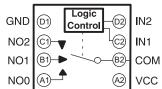
Simplified Schematic

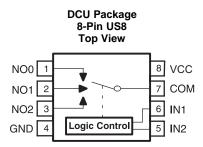
Table of Contents

1	Features 1		8.1 Overview	22
2	Applications 1		8.2 Functional Block Diagram	22
3	Description 1		8.3 Feature Description	22
4	Revision History2		8.4 Device Functional Modes	<u>22</u>
5	Pin Configuration and Functions	9	Application and Implementation	23
6	Specifications4		9.1 Application Information	23
U	6.1 Absolute Maximum Ratings		9.2 Typical Application	23
	6.2 ESD Ratings	10	Power Supply Recommendations	25
	6.3 Recommended Operating Conditions	11	Layout	25
	6.4 Thermal Information		11.1 Layout Guidelines	
	6.5 Electrical Characteristics for 5-V Supply		11.2 Layout Example	
	6.6 Electrical Characteristics for 3.3-V Supply	12	Device and Documentation Support	26
	6.7 Electrical Characteristics for 2.5-V Supply		12.1 Community Resource	
	6.8 Electrical Characteristics for 1.8-V Supply		12.2 Trademarks	26
	6.9 Typical Characteristics		12.3 Electrostatic Discharge Caution	26
7	Parameter Measurement Information		12.4 Glossary	26
8	Detailed Description	13	Mechanical, Packaging, and Orderable Information	26

4 Revision History

С	Changes from Revision D (May 2015) to Revision E	Page
•	Added T _J Junction Temperature to the <i>Absolute Maximum Ratings</i>	
С	changes from Revision C (June 2008) to Revision D	
_	· ,	Page
•		


Product Folder Links: TS5A3359


Submit Documentation Feedback

5 Pin Configuration and Functions

YZP Package 8-Pin DSBGA Bottom View

Pin Functions

	PIN		I/O	DESCRIPTION
NAME	DCU	YZP	1/0	DESCRIPTION
NO0	1	A1	I/O	Normally open
NO1	2	B1	I/O	Normally open
NO2	3	C1	I/O	Normally open
GND	4	D1	_	Ground
IN2	5	D2	1	Digital control to connect COM to NO
IN1	6	C2	1	Digital control to connect COM to NO
СОМ	7	B2	I/O	Common
VCC	8	A2	_	Power supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)

			MII	N MAX	UNIT
V _{CC}	Supply voltage ⁽³⁾		-0.	5 6.5	V
$V_{NO} \ V_{COM}$	Analog voltage ⁽³⁾ (4) (5)		-0.	$V_{CC} + 0.5$	V
I_{K}	Analog port diode current	V_{NO} , $V_{COM} < 0$	-50)	mA
I _{NO}	On-state switch current	V V - 0 to V	-20	0 200	mA
I _{COM}	On-state switch current	V_{NO} , $V_{COM} = 0$ to V_{CC}	-40	0 400	IIIA
V_{I}	Digital input voltage (3) (4)		-0.	5 6.5	V
I _{IK}	Digital input clamp current	V ₁ < 0	-5)	mA
I _{CC}	Continuous current through V _{CC}			100	mA
I_{GND}	Continuous current through GND		-10	0 100	mA
T _{stg}	Storage temperature		-6	5 150	°C
T_{J}	Junction temperature			150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- 2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
- (3) All voltages are with respect to ground, unless otherwise specified.
- (4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (5) This value is limited to 5.5-V maximum.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC}		1.65	5.5	V
$V_{NO} \ V_{COM}$	Analog voltage	0	V _{CC}	V
V_{I}	Digital input voltage	0	V _{CC}	V

6.4 Thermal Information

		TS5.	TS5A3359		
	THERMAL METRIC ⁽¹⁾	DCU (US8)	YZP (DSBGA)	UNIT	
		8 PINS	8 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	204.2	105.8	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	76.2	1.6	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	82.9	10.8	°C/W	
ΨЈТ	Junction-to-top characterization parameter	7.6	3.1	°C/W	
ΨЈВ	Junction-to-board characterization parameter	82.5	10.8	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics for 5-V Supply

 V_{CC} = 4.5 V to 5.5 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PARAM	METER	TEST COI	NDITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG SWIT	ГСН								
Analog signal range	V _{COM} , V _{NO}					0		V _{CC}	V
Peak ON resistance	r _{peak}	$0 \le (V_{NO}) \le V_{CC},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 18	25°C Full	4.5 V		8.0	1.1 1.5	Ω
ON-state resistance	r _{on}	$V_{NO} = 2.5 \text{ V},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 18	25°C Full	4.5 V		0.7	0.9	Ω
ON-state				25°C			0.1	0.1	
resistance match between channels	Δr_{on}	$V_{NO} = 2.5 \text{ V},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 18	Full	4.5 V			0.1	Ω
ON-state		$0 \le (V_{NO}) \le V_{CC},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 18	25°C			0.15		
resistance	r _{on(flat)}	V _{NO} = 1 V, 1.5 V, 2.5	Switch ON,	25°C	4.5 V		0.1	0.25	Ω
flatness		$V_{COM} = -100 \text{ mA},$	See Figure 18	Full				0.25	
	1	V _{NO} = 1 V or 4.5 V,	Switch OFF,	25°C	5.5 V	-20	5	20	nA
NO OFF leakage	I _{NO(OFF)}	$V_{COM} = 1 \text{ V to } 4.5 \text{ V},$	See Figure 19	Full	3.5 V	-150		150	шА
current	I _{NO(PWROFF)}	$V_{NO} = 0 \text{ to } 5.5 \text{ V},$	Switch OFF,	25°C	0 V	-1	0.8	1	μA
	NO(FWROIT)	$V_{COM} = 5.5 \text{ V to } 0,$	See Figure 19	Full		-25		25	<u> </u>
NO ON leakage current	I _{NO(ON)}	$V_{NO} = 1 \text{ V or } 4.5 \text{ V},$ $V_{COM} = \text{Open},$	Switch ON, See Figure 19	25°C Full	5.5 V	-30 -220	5	30 220	nA
		V _{NO} = 4.5 V or 1 V,	Switch OFF,	25°C		-25	8	25	
COM	I _{COM(OFF)}	$V_{COM} = 1 \text{ V or } 4.5 \text{ V},$	See Figure 19	Full	5.5 V	-250		250	nA
OFF leakage current	1	$V_{COM} = 0 \text{ to } 5.5 \text{ V},$	Switch OFF,	25°C	0 V	-8	0.1	8	
	COM(PWROFF)	$V_{NO} = 5.5 \text{ V to } 0,$	See Figure 19	Full	0 V	-50		50	μA
COM		V _{NO} = Open,	Switch ON,	25°C	5.5.1/	-30	5	30	1
ON leakage current	I _{COM(ON)}	$V_{COM} = 1 \text{ V or } 4.5 \text{ V},$	See Figure 19	Full	5.5 V	-220		220	nA
DIGITAL CONT	TROL INPUTS (IN1, IN2) ⁽²⁾							
Input logic high	V _{IH}			Full		2.4		5.5	V
Input logic low	V_{IL}			Full		0		8.0	V
Input leakage	I_{IH} , I_{IL}	V _I = 5.5 V or 0		25°C	5.5 V	-2		2	nA
current	11 17 TIL	, 2.2 . 3. 3		Full		-20		20	

¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

⁽²⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

Electrical Characteristics for 5-V Supply (continued)

 V_{CC} = 4.5 V to 5.5 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PARAN	METER	TEST CO	NDITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT	
DYNAMIC										
Towns and these		$V_{COM} = V_{CC}$	$C_L = 35 \text{ pF},$	25°C	5 V	1	2.5	21		
Turnon time	t _{ON}	$R_L = 50 \Omega$,	See Figure 22	Full	4.5 V to 5.5 V	1		23.5	ns	
Turnoff time		$V_{COM} = V_{CC}$	C _L = 35 pF,	25°C	5 V	1	6	10.5		
rumon time	t _{OFF}	$R_L = 50 \Omega$,	See Figure 22	Full	4.5 V to 5.5 V	1		12	ns	
Break-before-	t	$V_{NO} = V_{CC}$	$C_L = 35 \text{ pF},$	25°C	5 V	0.5	8.5	18	ns	
make time	t _{BBM}	$R_L = 50 \Omega$,	See Figure 23	Full	4.5 V to 5.5 V	0.5		23	115	
Charge injection	$Q_{\mathbb{C}}$	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 27	25°C	5 V		20		рС	
NO OFF capacitance	$C_{NO(OFF)}$	$V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 21	25°C	5 V		18		pF	
COM OFF capacitance	$C_{COM(OFF)}$	V _{COM} = V _{CC} or GND, Switch OFF,	See Figure 21	25°C	2.5 V		54		pF	
NO ON capacitance	C _{NO(ON)}	V _{NO} = V _{CC} or GND, Switch ON,	See Figure 21	25°C	5 V		78		pF	
COM ON capacitance	C _{COM(ON)}	V _{COM} = V _{CC} or GND, Switch ON,	See Figure 21	25°C	5 V		78		pF	
Digital input capacitance	C _I	$V_I = V_{CC}$ or GND,	See Figure 21	25°C	5 V		2.5		pF	
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 24	25°C	5 V		75		MHz	
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, $f = 1 MHz$,	Switch OFF, See Figure 25	25°C	5 V		-64		dB	
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, $f = 1 MHz$,	Switch ON, See Figure 26	25°C	5 V		-64		dB	
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 28	25°C	5 V		0.005%			
SUPPLY								*		
Positive supply	l	$V_I = V_{CC}$ or GND,	Switch ON or OFF	25°C	5 E V		16	50	n^	
current	I _{CC}	v1 = vCC or GIVD,	SWILCH ON OF OFF	Full 5.5 V			1200		nA	

Submit Documentation Feedback

Product Folder Links: TS5A3359

6.6 Electrical Characteristics for 3.3-V Supply

 $V_{cc} = 3 \text{ V}$ to 3.6 V. $T_{A} = -40^{\circ}\text{C}$ to 85°C (unless otherwise noted)⁽¹⁾

PARAM	IETER	TEST CO	NDITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
ANALOG SWIT	СН								
Analog signal range	V _{COM} , V _{NO}					0		V _{CC}	V
Peak ON resistance	r _{peak}	$0 \le (V_{NO}) \le V_{CC},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 18	25°C Full	3 V		1.3	1.6	Ω
ON-state resistance	r _{on}	$V_{NO} = 2 \text{ V},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 18	25°C Full	3 V		1.2	1.6	Ω
ON-state	33		25°C			0.1	0.15		
resistance match between channels	Δr_{on}	$I_{COM} = -100 \text{ mA},$	See Figure 18	Full	3 V			0.15	Ω
ON-state		$0 \le (V_{NO}) \le V_{CC},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 18	25°C	2.1/		0.2		
resistance flatness	r _{on(flat)}	$V_{NO} = 2 \text{ V}, 0.8 \text{ V},$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 18	25°C Full	3 V		0.2	0.35	Ω
NO	I _{NO(OFF)}	V _{NO} = 1 V or 3 V, V _{COM} = 1 V to 3 V,	Switch OFF, See Figure 19	25°C Full	3.6 V	-15 -30	3	15 30	nA
OFF leakage current	I _{NO(PWROFF)}	$V_{NO} = 0 \text{ to } 3.6 \text{ V},$ $V_{COM} = 3.6 \text{ V to } 0,$	Switch OFF, See Figure 19	25°C Full	0 V	-1 -10	0.2	1 10	μA
NO ON leakage	1	$V_{NO} = 1 \text{ V or } 3 \text{ V},$	Switch ON,	25°C	3.6 V	-10 -15	3	15	nA
current	I _{NO(ON)}	V _{COM} = Open,	See Figure 19	Full	3.0 V	-40		40	IIA
COM OFF leakage	I _{COM(OFF)}	$\begin{split} V_{NO} &= 0 \text{ V to } 3.6 \text{ V}, \\ V_{COM} &= 1 \text{ V or} \\ V_{NO} &= 3.6 \text{ V to } 0, \\ V_{COM} &= 3 \text{ V}, \end{split}$	Switch OFF, See Figure 19	25°C Full	3.6 V	-15 -75	3	15 75	nA
current	I _{COM(PWROFF)}	$V_{COM} = 0 \text{ to } 3.6 \text{ V},$ $V_{NO} = 3.6 \text{ V to } 0,$	Switch OFF, See Figure 19	25°C Full	0 V	-1 -20	0.2	1 20	μΑ
COM ON leakage current	I _{COM(ON)}	V _{NO} = Open, V _{COM} = 1 V or 3 V,	Switch ON, See Figure 19	25°C Full	3.6 V	-15 -40	4	15 40	nA
DIGITAL CONT	ROL INPUTS (IN1. IN2) ⁽²⁾							
	V _{IH}	. ,		Full		2		5.5	V
Input logic low	V _{IL}			Full		0		0.8	V
Input leakage current	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C Full	3.6 V	-2 -20		20	nA

The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

Electrical Characteristics for 3.3-V Supply (continued)

 V_{CC} = 3 V to 3.6 V, T_{A} = $-40^{\circ}C$ to 85°C (unless otherwise noted) $^{(1)}$

DFF BBM CC NO(OFF)	$\begin{split} &V_{COM} = V_{CC}, \\ &R_L = 50~\Omega, \\ &V_{COM} = V_{CC}, \\ &R_L = 50~\Omega, \\ &V_{NO} = V_{CC}, \\ &R_L = 50~\Omega, \\ &V_{GEN} = 0, \\ &V_{RGEN} = 0, \\ &V_{NO} = V_{CC} \text{ or GND,} \\ &Switch OFF, \end{split}$	C _L = 35 pF, See Figure 22 C _L = 35 pF, See Figure 22 C _L = 35 pF, See Figure 23 C _L = 1 nF, See Figure 27	25°C Full 25°C Full 25°C Full	3.3 V 3 V to 3.6 V 3.3 V 3 V to 3.6 V 3.3 V 3 V to 3.6 V	1 1 1 1 0.5	16 6	30.5 34 11.5 12.5 26	ns ns
DFF BBM CC NO(OFF)	$\begin{aligned} R_L &= 50 \ \Omega, \\ V_{COM} &= V_{CC}, \\ R_L &= 50 \ \Omega, \\ V_{NO} &= V_{CC}, \\ R_L &= 50 \ \Omega, \\ V_{GEN} &= 0, \\ R_{GEN} &= 0, \\ V_{NO} &= V_{CC} \ \text{or GND}, \end{aligned}$	See Figure 22 $C_L = 35 \text{ pF},$ See Figure 22 $C_L = 35 \text{ pF},$ See Figure 23 $C_L = 1 \text{ nF},$	Full 25°C Full 25°C Full	3 V to 3.6 V 3.3 V 3 V to 3.6 V 3.3 V	1 1 1 0.5	6	34 11.5 12.5 26	ns
DFF BBM CC NO(OFF)	$\begin{aligned} &V_{COM} = V_{CC}, \\ &R_L = 50 \ \Omega, \end{aligned}$ $\begin{aligned} &V_{NO} = V_{CC}, \\ &R_L = 50 \ \Omega, \end{aligned}$ $\begin{aligned} &V_{GEN} = 0, \\ &R_{GEN} = 0, \end{aligned}$ $V_{NO} = V_{CC} \text{ or GND}, \end{aligned}$	$C_L = 35 \text{ pF},$ See Figure 22 $C_L = 35 \text{ pF},$ See Figure 23 $C_L = 1 \text{ nF},$	25°C Full 25°C Full	3.3 V 3 V to 3.6 V 3.3 V	1 1 0.5		11.5 12.5 26	ns
ISBM ICC NO(OFF)	$R_{L} = 50 \Omega,$ $V_{NO} = V_{CC},$ $R_{L} = 50 \Omega,$ $V_{GEN} = 0,$ $R_{GEN} = 0,$ $V_{NO} = V_{CC} \text{ or GND},$	See Figure 22 $C_L = 35 \text{ pF},$ See Figure 23 $C_L = 1 \text{ nF},$	Full 25°C Full	3 V to 3.6 V 3.3 V	1 0.5		12.5 26	
IBM IC NO(OFF)	$V_{NO} = V_{CC},$ $R_L = 50 \Omega,$ $V_{GEN} = 0,$ $R_{GEN} = 0,$ $V_{NO} = V_{CC} \text{ or GND},$	C _L = 35 pF, See Figure 23 C _L = 1 nF,	25°C Full	3.3 V	0.5	13	26	
C NO(OFF)	$R_L = 50 \Omega$, $V_{GEN} = 0$, $R_{GEN} = 0$, $V_{NO} = V_{CC}$ or GND,	See Figure 23 C _L = 1 nF,	Full			13	_	ns
NO(OFF)	$V_{GEN} = 0,$ $R_{GEN} = 0,$ $V_{NO} = V_{CC}$ or GND,	C _L = 1 nF,		3 V to 3.6 V	0.5			
NO(OFF)	$R_{GEN} = 0,$ $V_{NO} = V_{CC} \text{ or GND},$		0500		0.0		30	
NO(OFF)			25°C	3.3 V		12		рС
	Owned Of F,	See Figure 21	25°C	3.3 V		18		pF
	$V_{COM} = V_{CC}$ or GND, Switch OFF,	See Figure 21	25°C	3.3 V		55		pF
	$V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 21	25°C	3.3 V		78		pF
	$V_{COM} = V_{CC}$ or GND, Switch ON,	See Figure 21	25°C	3.3 V		78		pF
1	$V_I = V_{CC}$ or GND,	See Figure 21	25°C	3.3 V		2.5		pF
	$R_L = 50 \Omega$, Switch ON,	See Figure 24	25°C	3.3 V		73		MHz
	$R_L = 50 \Omega$, f = 1 MHz,	Switch OFF, See Figure 25	25°C	3.3 V		-64		dB
	$R_L = 50 \Omega$, f = 1 MHz,	Switch ON, See Figure 26	25°C	3.3 V		-64		dB
	$R_L = 600 \ \Omega,$ $C_L = 50 \ pF,$	f = 20 Hz to 20 kHz, See Figure 28	25°C	3.3 V		0.01%		
cc	$V_I = V_{CC}$ or GND,	Switch ON or OFF	25°C	3.6 V		2	20	nA
NAME OF TAXABLE PROPERTY.	O(ON) OM(ON) V SO ALK	$\begin{array}{lll} \text{OM(OFF)} & \text{Switch OFF,} \\ \\ \text{O(ON)} & \text{V}_{\text{NO}} = \text{V}_{\text{CC}} \text{ or GND,} \\ \text{Switch ON,} \\ \\ \text{OM(ON)} & \text{V}_{\text{COM}} = \text{V}_{\text{CC}} \text{ or GND,} \\ \\ \text{Switch ON,} \\ \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} \text{ or GND,} \\ \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} \text{ or GND,} \\ \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} \text{ or GND,} \\ \\ \text{Switch ON,} \\ \\ \text{Switch ON,} \\ \\ \text{SO} & \text{F} = 1 \text{ MHz,} \\ \\ \text{ALK} & \text{F}_{\text{L}} = 50 \Omega, \\ \text{f} = 1 \text{ MHz,} \\ \\ \text{ID} & \text{R}_{\text{L}} = 600 \Omega, \\ \\ \text{C}_{\text{L}} = 50 \text{ pF,} \\ \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	OM(OFF) Switch OFF, See Figure 21 25 °C O(ON) $V_{NO} = V_{CC}$ or GND, Switch ON, See Figure 21 25 °C OM(ON) $V_{COM} = V_{CC}$ or GND, See Figure 21 25 °C $V_{I} = V_{CC}$ or GND, See Figure 21 25 °C $V_{I} = V_{CC}$ or GND, See Figure 21 25 °C $V_{I} = V_{CC}$ or GND, See Figure 24 25 °C $V_{I} = V_{CC}$ or GND, See Figure 24 25 °C $V_{I} = V_{CC}$ or GND, See Figure 24 25 °C $V_{I} = V_{CC}$ or GND, See Figure 24 25 °C $V_{I} = V_{CC}$ or GND, See Figure 24 25 °C $V_{I} = V_{CC}$ or GND, See Figure 24 25 °C $V_{I} = V_{CC}$ or GND, See Figure 24 25 °C $V_{I} = V_{CC}$ or GND, See Figure 25 25 °C $V_{I} = V_{CC}$ or GND, See Figure 25 25 °C $V_{I} = V_{CC}$ or GND, See Figure 25 25 °C $V_{I} = V_{CC}$ or GND, See Figure 26 25 °C	OM(OFF) Switch OFF, See Figure 21 25°C 3.3 V O(ON) $V_{NO} = V_{CC}$ or GND, Switch ON, See Figure 21 25°C 3.3 V OM(ON) $V_{COM} = V_{CC}$ or GND, Switch ON, See Figure 21 25°C 3.3 V $V_{I} = V_{CC}$ or GND, See Figure 21 25°C 3.3 V $V_{I} = V_{CC}$ or GND, See Figure 24 25°C 3.3 V $V_{I} = V_{CC}$ or GND, Switch OFF, See Figure 25 25°C 3.3 V $V_{I} = V_{CC}$ or GND, Switch ON, See Figure 26 25°C 3.3 V $V_{I} = V_{CC}$ or GND, Switch ON, See Figure 28 25°C 3.3 V	OM(OFF) Switch OFF, See Figure 21 25 °C 3.3 °V O(ON) $V_{NO} = V_{CC}$ or GND, Switch ON, See Figure 21 25 °C 3.3 °V OM(ON) $V_{COM} = V_{CC}$ or GND, See Figure 21 25 °C 3.3 °V $V_{I} = V_{CC}$ or GND, See Figure 21 25 °C 3.3 °V $V_{I} = V_{CC}$ or GND, See Figure 24 25 °C 3.3 °V $V_{I} = V_{CC}$ or GND, Switch OFF, See Figure 25 25 °C 3.3 °V $V_{I} = V_{CC}$ or GND, Switch ON, See Figure 26 25 °C 3.3 °V $V_{I} = V_{CC}$ or GND, See Figure 28 25 °C 3.3 °V	OM(OFF) Switch OFF, See Figure 21 25 °C 3.3 V 35 O(ON) $V_{NO} = V_{CC}$ or GND, Switch ON, See Figure 21 25 °C 3.3 V 78 OM(ON) $V_{COM} = V_{CC}$ or GND, See Figure 21 25 °C 3.3 V 78 $V_{I} = V_{CC}$ or GND, See Figure 21 25 °C 3.3 V 2.5 $V_{I} = V_{CC}$ or GND, See Figure 24 25 °C 3.3 V 73 $V_{I} = V_{CC}$ or GND, Switch OFF, See Figure 25 25 °C 3.3 V -64 $V_{I} = V_{CC}$ or GND, Switch ON, See Figure 26 25 °C 3.3 V -64 $V_{I} = V_{CC}$ or GND, See Figure 28 25 °C 3.3 V 0.01%	OM(OFF) Switch OFF, See Figure 21 25 °C 3.3 V 35 O(ON) $V_{NO} = V_{CC}$ or GND, Switch ON, See Figure 21 25 °C 3.3 V 78 OM(ON) $V_{COM} = V_{CC}$ or GND, See Figure 21 25 °C 3.3 V 78 $V_{I} = V_{CC}$ or GND, See Figure 21 25 °C 3.3 V 2.5 $V_{I} = V_{CC}$ or GND, See Figure 24 25 °C 3.3 V 73 So $R_{L} = 50 \Omega$, Switch OFF, See Figure 25 25 °C 3.3 V -64 ALK $R_{L} = 50 \Omega$, Switch ON, See Figure 26 25 °C 3.3 V -64 ID $R_{L} = 600 \Omega$, CL = 50 pF, See Figure 28 25 °C 3.3 V 0.01%

Product Folder Links: TS5A3359

Submit Documentation Feedback

6.7 Electrical Characteristics for 2.5-V Supply

 V_{CC} = 2.3 V to 2.7 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PARAM	IETER	TEST CON	IDITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG SWIT	СН								
Analog signal range	V _{COM} , V _{NO}					0		V _{CC}	V
Peak ON	r .	$0 \le (V_{NO}) \le V_{CC}$	Switch ON,	25°C	2.3 V		1.8	2.5	Ω
resistance	r _{peak}	$I_{COM} = -8 \text{ mA},$	See Figure 18	Full	2.5 V			2.7	12
ON-state	r _{on}	$V_{NO} = 1.8 V,$	Switch ON,	25°C	2.3 V		1.5	2	Ω
resistance	·on	$I_{COM} = -8 \text{ mA},$	See Figure 18	Full	2.0 1			2.4	
ON-state		\/ 10\/	Switch ON	25°C				0.2	
resistance match between channels	Δr_{on}	$V_{NO} = 1.8 \text{ V},$ $I_{COM} = -8 \text{ mA},$	Switch ON, See Figure 18	Full	2.3 V			0.2	Ω
ON-state	_	$0 \le (V_{NO}) \le V_{CC},$ $I_{COM} = -8 \text{ mA},$	Switch ON, See Figure 18	25°C	0.0.1/		0.6		
resistance flatness	r _{on(flat)}	V _{NO} = 0.8 V, 1.8 V	Switch ON,	25°C	2.3 V		0.6	1	Ω
		$I_{COM} = -8 \text{ mA},$	See Figure 18	Full				1	
	I _{NO(OFF)}	$V_{NO} = 0.5 \text{ V or } 2.3 \text{ V},$	Switch OFF,	25°C	2.7 V	-15	3	15	nA
NO OFF leakage	NO(OFF)	$V_{COM} = 0.5 \text{ V to } 2.3 \text{ V},$	See Figure 19	Full		-30		30	
current	I _{NO(PWROFF)}	$V_{NO} = 0$ to 2.7 V,	Switch OFF,	25°C	0 V	-1	0.1	1	μA
	NO(I WINOIT)	$V_{COM} = 2.7 \text{ V to } 0,$	See Figure 19	Full		-10		10	
NO ON leakage	l	$V_{NO} = 0.5 \text{ V or } 2.3 \text{ V},$	Switch ON,	25°C	2.7 V	-15	3	15	nA
current	I _{NO(ON)}	V _{COM} = Open,	See Figure 19	Full	Z.1 V	-35		35	<u>.</u>
	1	$V_{NO} = 0.3 \text{ V to } 2.3 \text{ V},$	Switch OFF,	25°C	2.7 V	-15	3	15	nA
COM OFF leakage	I _{COM(OFF)}	$V_{COM} = 0.5 \text{ V or } 2.3 \text{ V},$	See Figure 19	Full	2.7 V	-60		60	ПА
current	la a	$V_{COM} = 0 \text{ to } 2.7 \text{ V},$	Switch OFF,	25°C	0 V	-1	0.1	1	μA
	I _{COM(PWROFF)}	$V_{NO} = 2.7 \text{ V to } 0,$	See Figure 19	Full	U V	-10		10	μΑ
COM		V _{NO} = Open,	Switch ON,	25°C	071/	-15	3.5	15	
ON leakage current	I _{COM(ON)}	$V_{COM} = 0.5 \text{ V or } 2.2 \text{ V},$	See Figure 19	Full	2.7 V	-40		40	nA
DIGITAL CONT	ROL INPUTS (IN1, IN2) ⁽²⁾							
Input logic high	V_{IH}			Full		1.8		5.5	V
Input logic low	V_{IL}			Full		0		0.6	V
Input leakage	I _{IH} , I _{IL}	V _I = 5.5 V or 0		25°C	2.7 V	1		1	nA
current	'IH' IL	V ₁ = 0.0 V 01 0		Full	Z.1 V	10		10	шА

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

 ⁽²⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

Electrical Characteristics for 2.5-V Supply (continued)

 V_{CC} = 2.3 V to 2.7 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PARAMETER		TEST CO	NDITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
DYNAMIC				•				<u> </u>	
Turnon time	+	$V_{COM} = V_{CC}$	C _L = 35 pF,	25°C	2.5 V	2	4.5	43	no
rumon time	t _{ON}	$R_L = 50 \Omega$,	See Figure 22	Full	2.3 V to 2.7 V	2		47.5	ns
Turnoff time	t	$V_{COM} = V_{CC}$	$C_L = 35 \text{ pF},$	25°C	2.5 V	2	8.5	11	ns
rumon ume	t _{OFF}	$R_L = 50 \Omega$,	See Figure 22	Full	2.3 V to 2.7 V	2		12.5	113
Break-before-	t _{BBM}	$V_{NO} = V_{CC}$	$C_L = 35 pF,$	25°C	2.5 V	0.5	18.5	38.5	ns
make time	4BIM	$R_L = 50 \Omega$,	See Figure 23	Full	2.3 V to 2.7 V	0.5		43	110
Charge injection	Q_C	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 27	25°C	2.5 V		8		рС
NO OFF capacitance	$C_{NO(OFF)}$	$V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 21	25°C	2.5 V		18.5		pF
COM OFF capacitance	$C_{\text{COM(OFF)}}$	V _{COM} = V _{CC} or GND, Switch OFF,	See Figure 21	25°C	2.5 V		55		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 21	25°C	2.5 V	78			pF
COM ON capacitance	C _{COM(ON)}	V _{COM} = V _{CC} or GND, Switch ON,	See Figure 21	25°C	2.5 V		78		pF
Digital input capacitance	C _I	$V_I = V_{CC}$ or GND,	See Figure 21	25°C	2.5 V		3		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 24	25°C	2.5 V		73		MHz
OFF isolation	O _{ISO}	$R_L = 50 \Omega$, f = 1 MHz,	Switch OFF, See Figure 25	25°C	2.5 V		-64		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, $f = 1 MHz$,	Switch ON, See Figure 26	25°C	2.5 V	-64			dB
Total harmonic distortion	THD	$R_L = 600 \Omega,$ $C_L = 50 pF,$	f = 20 Hz to 20 kHz, See Figure 28	25°C	2.5 V		0.03%		
SUPPLY									
Positive supply current	I _{CC}	$V_I = V_{CC}$ or GND,	Switch ON or OFF	25°C Full	2.7 V		1	10 250	nA

6.8 Electrical Characteristics for 1.8-V Supply

 V_{CC} = 1.65 V to 1.95 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

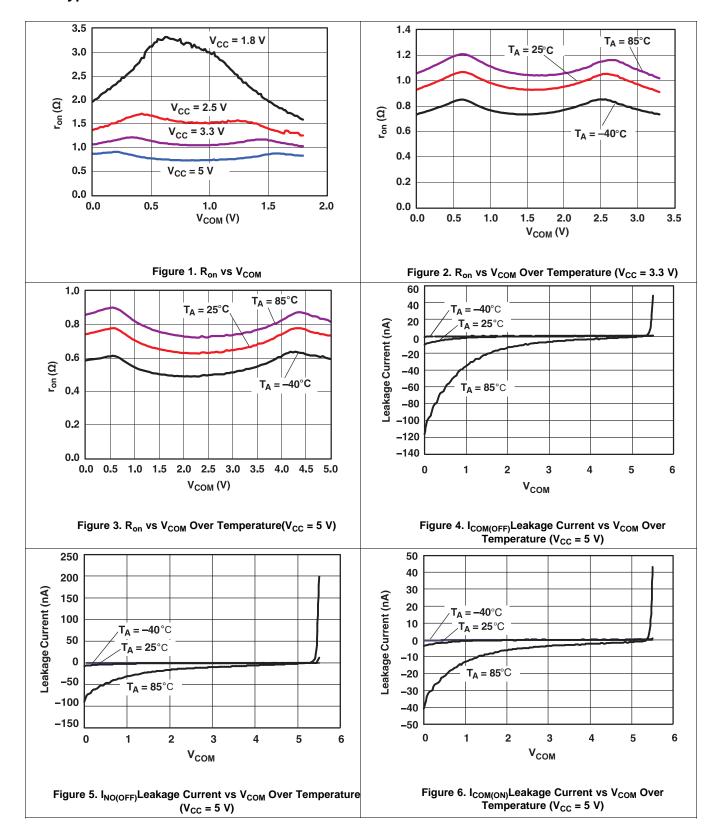
PARAM	ETER	TEST CON	DITIONS	T _A	V _{CC}	MIN	TYP	MAX	UNIT
ANALOG SWIT	ГСН								
Analog signal range	V _{COM} , V _{NO}					0		V _{CC}	V
Peak ON resistance	r _{peak}	$0 \le (V_{NO}) \le V_{CC},$ $I_{COM} = -2 \text{ mA},$	Switch ON, See Figure 18	25°C Full	1.65 V		5	30	Ω
ON-state resistance	r _{on}	V _{NO} = 1.5 V, I _{COM} = -2 mA,	Switch ON, See Figure 18	25°C Full	1.65 V		2	2.5	Ω
ON-state			Good rigulation	25°C			0.15	0.4	
resistance match between channels	Δr_{on}	$V_{NO} = 1.5 \text{ V},$ $I_{COM} = -2 \text{ mA},$	Switch ON, See Figure 18	Full	1.65 V			0.4	Ω
ON-state		$0 \le (V_{NO}) \le V_{CC},$ $I_{COM} = -2 \text{ mA},$	Switch ON, See Figure 18	25°C			5	Ω	
resistance flatness	r _{on(flat)}	$V_{NO} = 0.6 \text{ V}, 1.5 \text{ V}$ $I_{COM} = -2 \text{ mA},$	Switch ON, See Figure 18	25°C Full	1.65 V		4.5 5		
NO	I _{NO(OFF)}	V _{NO} =0.3 V or 1.65 V, V _{COM} = 0.3 V to 1.65 V,	Switch OFF, See Figure 19	25°C Full	1.95 V	-15 -30	3	15	15 30 nA
OFF leakage current	I _{NO(PWROFF)}	$V_{NO} = 0 \text{ to } 1.95 \text{ V},$	Switch OFF,	25°C	0 V	-30 -1	0.1	1	μA
NO	-NO(FWNOIT)	$V_{COM} = 1.95 \text{ V to } 0,$ $V_{NO} = 0.3 \text{ V or } 1.65 \text{ V},$	See Figure 19 Switch ON,	Full 25°C		–15 –15	3	15 15	
ON leakage current	I _{NO(ON)}	$V_{\text{NO}} = 0.3 \text{ Vol 1.63 V},$ $V_{\text{COM}} = \text{Open},$	See Figure 19	Full	1.95 V	-30		30	nA
СОМ	I _{COM(OFF)}	$V_{NO} = 0.3 \text{ V to } 1.65 \text{ V},$ $V_{COM} = 0.3 \text{ V or } 1.65 \text{ V},$	Switch OFF, See Figure 19	25°C Full	1.95 V	–15 –50	3	15 50	nA
OFF leakage current	I _{COM(PWROF}	V _{COM} = 0 to 1.95 V, V _{NO} = 1.95 V to 0,	Switch OFF, See Figure 19	25°C Full	0 V	-1 -10	0.1	1	μA
COM	F)	$V_{NO} = Open,$	Switch ON,	25°C	4.05.1/	-10 -15	3	15	A
ON leakage current	I _{COM(ON)}	$V_{COM} = 0.3 \text{ V or } 1.65 \text{ V},$		Full	1.95 V	-30		30	nA
DIGITAL CONT	ROL INPUTS	(IN1, IN2) ⁽²⁾						1	
Input logic high	V _{IH}			Full		1.5		5.5	V
Input logic low	V_{IL}			Full		0		0.6	V
Input leakage current	$I_{IH},\ I_{IL}$	V _I = 5.5 V or 0		25°C Full	1.95 V	-2 -20		20	nA

⁽¹⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

⁽²⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

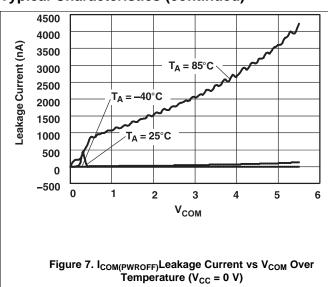
Electrical Characteristics for 1.8-V Supply (continued)

 V_{CC} = 1.65 V to 1.95 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾


PARAMETER		TEST CO	NDITIONS	TA	V _{CC}	MIN	TYP	MAX	UNIT
DYNAMIC									
T 4:		$V_{COM} = V_{CC}$	$C_1 = 35 pF$,	25°C	1.8 V	3	38.5	85	
Turnon time	t _{ON}	$R_L = 50 \Omega$	See Figure 22	Full	1.65 V to 1.95 V	3		90	ns
Turnoff time		$V_{COM} = V_{CC}$	$C_L = 35 \text{ pF},$	25°C	1.8 V	2	8.5	16	
rumon time	t _{OFF}	$R_L = 50 \Omega$,	$R_L = 50 \Omega$, See Figure 22	Full	1.65 V to 1.95 V	2		18	ns
Break-before-	t	$V_{NO} = V_{CC}$	$C_L = 35 pF$,	25°C	1.8 V	1	33	75	ns
make time	t _{BBM}	$R_L = 50 \Omega$,	See Figure 23	Full	1.65 V to 1.95 V	1		80	115
Charge injection	$Q_{\mathbb{C}}$	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF, See Figure 27	25°C	1.8 V		5		pC
NO OFF capacitance	$C_{NO(OFF)}$	$V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 21	25°C	1.8 V		18.5		pF
COM OFF capacitance	C _{COM(OFF)}	$V_{COM} = V_{CC}$ or GND, Switch OFF,	See Figure 21	25°C	1.8 V		55		pF
NO ON capacitance	C _{NO(ON)}	$V_{NO} = V_{CC}$ or GND, Switch ON,	See Figure 21	25°C	1.8 V		78		pF
COM ON capacitance	C _{COM(ON)}	$V_{COM} = V_{CC}$ or GND, Switch ON,	See Figure 21	25°C	1.8 V		78		pF
Digital input capacitance	C _I	$V_I = V_{CC}$ or GND,	See Figure 21	25°C	1.8 V		3		pF
Bandwidth	BW	$R_L = 50 \Omega$, Switch ON,	See Figure 24	25°C	1.8 V		73		MHz
OFF isolation	O _{ISO}	$\begin{aligned} R_L &= 50 \ \Omega, \\ f &= 1 \ M \ Hz \ , \end{aligned}$	Switch OFF, See Figure 25	25°C	1.8 V		-64		dB
Crosstalk	X _{TALK}	$R_L = 50 \Omega$, $f = 1 MHz$,	Switch ON, See Figure 26	25°C	1.8 V		-64		dB
Total harmonic distortion	THD	$R_L = 600 \ \Omega,$ $C_L = 50 \ pF,$	f = 20 Hz to 20 kHz, See Figure 28	25°C	1.8 V		0.08%		
SUPPLY									
Positive supply current	I _{CC}	$V_I = V_{CC}$ or GND,	Switch ON or OFF	25°C Full	1.95 V		1	200	nA

Product Folder Links: TS5A3359

Copyright © 2005–2016, Texas Instruments Incorporated



6.9 Typical Characteristics

TEXAS INSTRUMENTS

Typical Characteristics (continued)

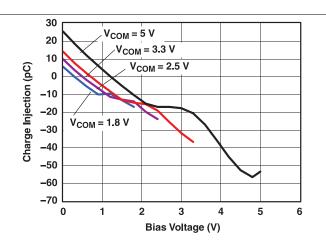


Figure 8. Charge Injection (Q $_{\rm C}$) vs V $_{\rm COM}$

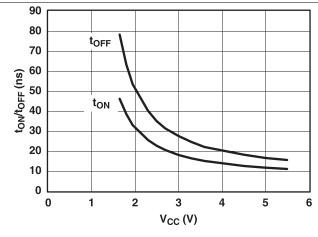
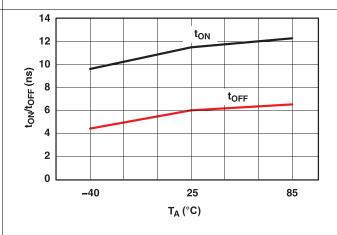


Figure 9. t_{ON} and t_{OFF} vs Supply Voltage



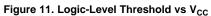
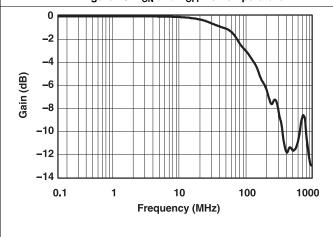
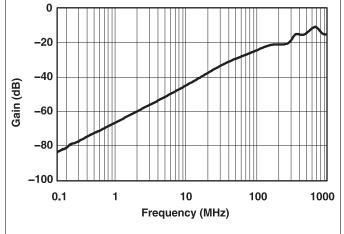


Figure 10. T_{ON} and T_{OFF} vs Temperature




Figure 12. Bandwidth $(V_{CC} = 5 V)$

Submit Documentation Feedback

Copyright © 2005–2016, Texas Instruments Incorporated

Typical Characteristics (continued)

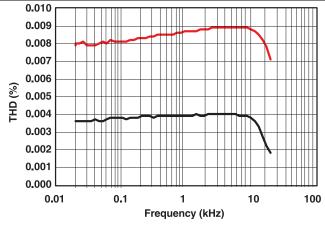
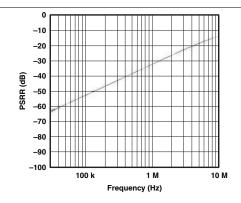



Figure 13. Off Isolation $(V_{CC} = 5 V)$

Figure 14. Total Harmonic Distortion vs Frequency $(V_{CC} = 5 V)$

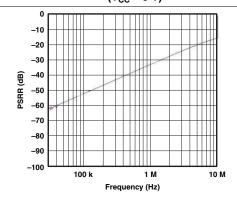


Figure 15. Com Port to No2 PSRR, $In1 = V_{CC}$, $In2 = V_{CC}$ ($V_{CC} = 5$ V)

Figure 16. Com Port to No0 PSRR, In1 = V_{CC} , In2 = V_{CC} (V_{CC} = 5 V)

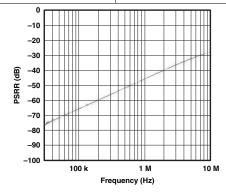


Figure 17. Com Port Hi-Z PSRR, In1 = 0 V, $In2 = 0 V (V_{CC} = 5 V)$

Copyright © 2005–2016, Texas Instruments Incorporated

Product Folder Links: *TS5A3359*

Submit Documentation Feedback

7 Parameter Measurement Information

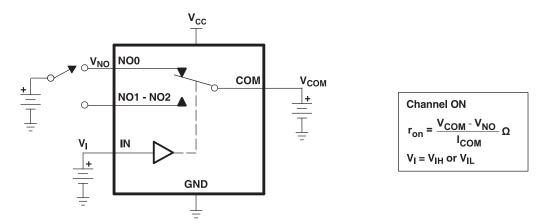


Figure 18. ON-State Resistance (R_{on})

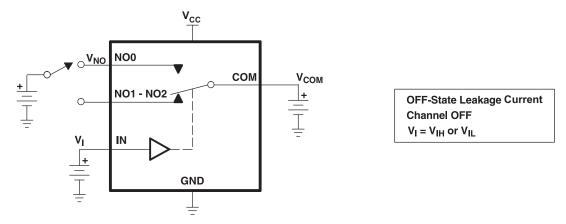


Figure 19. OFF-State Leakage Current ($I_{NC(OFF)}$, $I_{NO(OFF)}$, $I_{NO(PWROFF)}$, $I_{COM(PWROFF)}$)

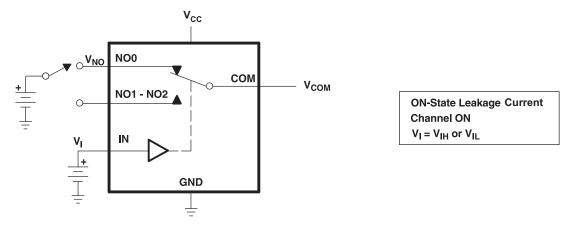


Figure 20. ON-State Leakage Current (I_{COM(ON)}, I_{NO(ON)})

Parameter Measurement Information (continued)

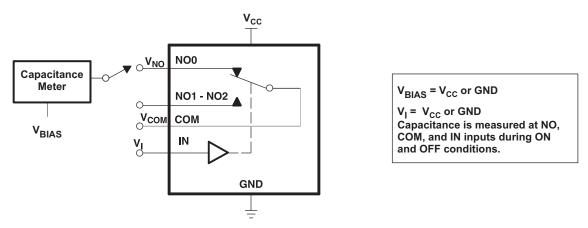
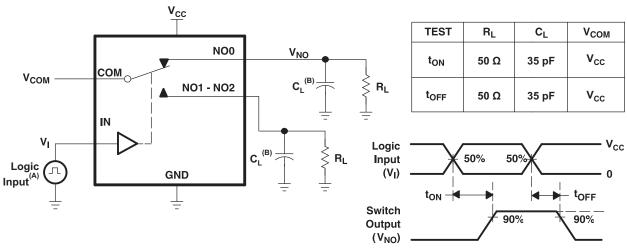



Figure 21. Capacitance (C_I, $C_{COM(ON)}$, $C_{NO(OFF)}$, $C_{COM(OFF)}$, $C_{NO(ON)}$)



- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, ZO = 50 Ω , $t_r < 5$ ns, $t_f < 5$ ns.
- B. C_L includes probe and jig capacitance.

Figure 22. Turnon (t_{ON}) and Turnoff Time (t_{OFF})

Parameter Measurement Information (continued)

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, ZO = 50 Ω , $t_r < 5$ ns, $t_f < 5$ ns.
- B. C_L includes probe and jig capacitance.

Figure 23. Break-Before-Make Time (t_{BBM})

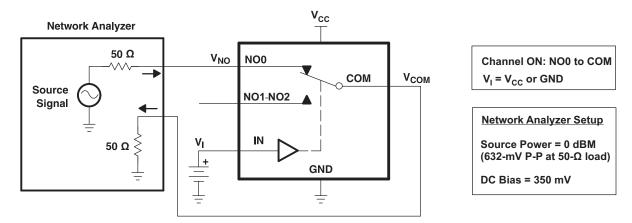


Figure 24. Bandwidth (BW)

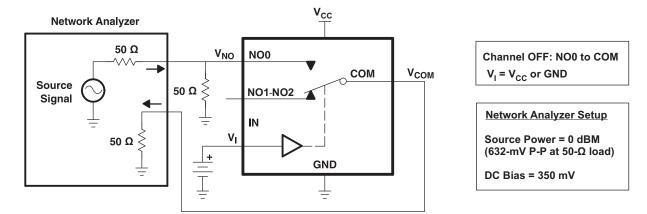


Figure 25. Off Isolation (O_{ISO})

Copyright © 2005–2016, Texas Instruments Incorporated Product Folder Links: *TS5A*3359

Parameter Measurement Information (continued)

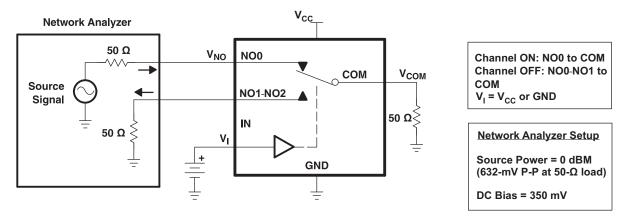
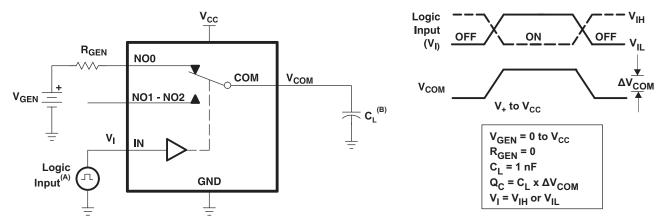



Figure 26. Crosstalk (X_{TALK})

- A. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, ZO = 50 Ω , $t_r < 5$ ns, $t_f < 5$ ns.
- B. C_L includes probe and jig capacitance.

Figure 27. Charge Injection (Q_C)

A. C_L includes probe and jig capacitance.

Figure 28. Total Harmonic Distortion (THD)

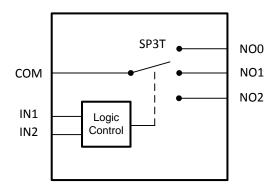
Table 1. Parameter Description

SYMBOL	DESCRIPTION
V _{COM}	Voltage at COM
V _{NO}	Voltage at NO
r _{on}	Resistance between COM and NC or COM and NO ports when the channel is ON
r _{peak}	Peak ON-state resistance over a specified voltage range
Δr _{on}	Difference of r _{on} between channels in a specific device
r _{on(flat)}	Difference between the maximum and minimum value of ron in a channel over the specified range of conditions
I _{NO(OFF)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state
I _{NO(PWROFF)}	Leakage current measured at the NO port during the power-down condition, V _{CC} = 0.
I _{NO(ON)}	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) open
I _{COM(ON)}	Leakage current measured at the COM port, with the corresponding channel (COM to NO or COM to NC) in the ON state and the output (NC or NO) open
I _{COM(OFF)}	Leakage current measured at the COM port during the power-down condition, $V_{CC} = 0$
I _{COM(PWROFF)}	Leakage current measured at the COM port during the power-down condition, $V_{CC} = 0$.
V_{IH}	Minimum input voltage for logic high for the control input (IN)
V_{IL}	Maximum input voltage for logic low for the control input (IN)
V_{I}	Voltage at the control input (IN)
$I_{\rm IH},I_{\rm IL}$	Leakage current measured at the control input (IN)
t _{ON}	Turnon time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning ON.
t _{OFF}	Turnoff time for the switch. This parameter is measured under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM or NO) signal when the switch is turning OFF.
t _{BBM}	Break-before-make time. This parameter is measured under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.
Q_C	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NO or COM) output. This is measured in coulomb (C) and measured by the total charge induced due to switching of the control input. Charge injection, $Q_C = C_L \times \Delta V_{COM}$, C_L is the load capacitance and ΔV_{COM} is the change in analog output voltage.
C _{NO(OFF)}	Capacitance at the NO port when the corresponding channel (NO to COM) is OFF
C _{NO(ON)}	Capacitance at the NO port when the corresponding channel (NO to COM) is ON
C _{COM(ON)}	Capacitance at the COM port when the corresponding channel (COM to NO) is ON
C _{COM(OFF)}	Capacitance at the COM port when the corresponding channel (COM to NO) is OFF
C _I	Capacitance of control input (IN)
O _{ISO}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This is measured in dB in a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state.
X _{TALK}	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to NC). This is measured in a specific frequency and in dB.
BW	Bandwidth of the switch. This is the frequency in which the gain of an ON channel is -3 dB less than the DC gain.
THD	Total harmonic distortion describes the signal distortion caused by the analog switch. This is defined as the ratio of root mean square (RMS) value of the second, third, and higher harmonic to the absolute magnitude of the fundamental harmonic.
I _{CC}	Static power-supply current with the control (IN) pin at V _{CC} or GND

Table 2. Summary of Characteristics⁽¹⁾

PARAMETER	CHARACTERISTIC
Configuration	Triple 3:1 Multiplexer/ Demultiplexer (1 x SP3T)
Number of channels	1
ON-state resistance (r _{on})	1.1 Ω
ON-state resistance match (Δr _{on})	0.1 Ω
ON-state resistance flatness (r _{on(flat)})	0.15 Ω
Turnon/turnoff time (t _{ON} /t _{OFF})	40 ns/35 ns
Break-before-make time (t _{BBM})	1 ns
Charge injection (Q _C)	40 pC
Bandwidth (BW)	100 MHz
OFF isolation (O _{ISO})	-65 dB at 10 MHz
Crosstalk (X _{TALK})	-66 dB at 10 MHz
Total harmonic distortion (THD)	0.01%
Leakage current (I _{COM(OFF)} /I _{NO(OFF)})	±20 μA
Power supply current (I _{CC})	0.1 μΑ
Package options	8-pin DCU or YZP

(1) $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$



8 Detailed Description

8.1 Overview

The TS5A3359 is a bidirectional, single-channel, single-pole triple-throw (SP3T) analog switch that is designed to operate from 1.65 V to 5.5 V. This device provides a signal switching solution while maintaining excellent signal integrity, which makes the TS5A3359 suitable for a wide range of applications in various markets including personal electronics, portable instrumentation, and test and measurement equipment. The device maintains the signal integrity by its low ON-state resistance, excellent ON-state resistance matching, and total harmonic distortion (THD) performance. To prevent signal distortion during the transferring of a signal from one channel to another, the TS5A3359 device also has a specified break-before-make feature. The device consumes very low power and provides isolation when $V_{CC} = 0$.

8.2 Functional Block Diagram

8.3 Feature Description

Isolation in Power-Down Mode, $V_{CC} = 0$

When power is not supplied to the VCC pin, $V_{CC}=0$, the signal paths NO and COM are high impedance. This is specificed in the electrical characterisitics table under the COM and NO OFF leakage current when $V_{CC}=0$. Because the device is high impedance when it is not powered, you may connect other signals to the signal chain without interference of the TS5A3359.

8.4 Device Functional Modes

Table 3. Function Table

IN2	IN1	COM TO NO, NO TO COM					
L	L	OFF					
L	Н	COM = NO0					
Н	L	COM = NO1					
Н	Н	COM = NO2					

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TS5A3359 switch is bidirectional, so the NO and COM pins can be used as either inputs or outputs. This switch is typically used when there is only one signal path that needs to be able to communicate to 3 different signal paths.

9.2 Typical Application

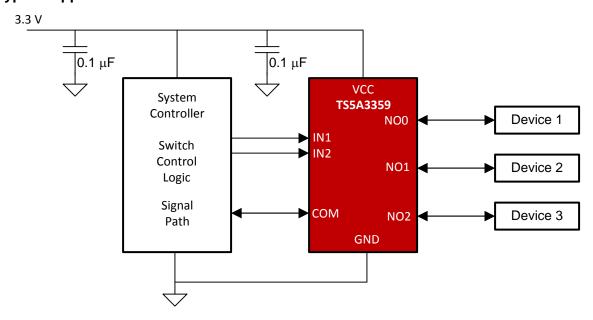


Figure 29. Typical Application Schematic

9.2.1 Design Requirements

The TS5A3359 device can be properly operated without any external components. However, TI recommends connecting unused pins to ground through a $50-\Omega$ resistor to prevent signal reflections back into the device. TI also recommends pulling up the digital control pins (IN1 and IN2) to VCC or pulling down to GND to avoid undesired switch positions that could result from the floating pin.

Select the appropriate supply voltage to cover the entire voltage swing of the signal passing through the switch because the TS5A3359 input and output signal swing through NO and COM are dependent on the supply voltage V_{CC} . For example, if the desired signal level to pass through the switch is 5 V, V_{CC} must be greater than or equal to 5 V. $V_{CC} = 3.3$ V would not be valid for passing a 5-V signal since the Analog signal voltage cannot exceed the supply.

9.2.2 Detailed Design Procedure

The TS5A3359 device can be properly operated without any external components. However, TI recommends connecting unused pins to ground through a $50-\Omega$ resistor to prevent signal reflections back into the device. TI also recommends pulling up the digital control pins (IN1 and IN2) to VCC or pulling down to GND to avoid undesired switch positions that could result from the floating pin.

Typical Application (continued)

Select the appropriate supply voltage to cover the entire voltage swing of the signal passing through the switch because the TS5A3359 input/output signal swing through NO and COM are dependant of the supply voltage $V_{\rm CC}$.

9.2.3 Application Curve

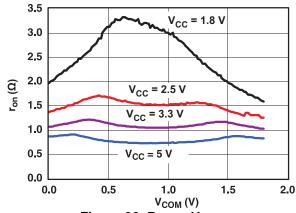


Figure 30. R_{on} vs V_{COM}

Submit Documentation Feedback

Copyright © 2005–2016, Texas Instruments Incorporated

10 Power Supply Recommendations

TI recommends proper power-supply sequencing for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device. Always sequence VCC on first, followed by NO or COM.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the VCC supply to other components. A 0.1- μF capacitor, connected from VCC to GND, is adequate for most applications.

11 Layout

11.1 Layout Guidelines

TI recommends following common printed-circuit board layout guidelines to ensure reliability of the device.

- Bypass capacitors should be used on power supplies.
- Short trace lengths should be used to avoid excessive loading.

11.2 Layout Example

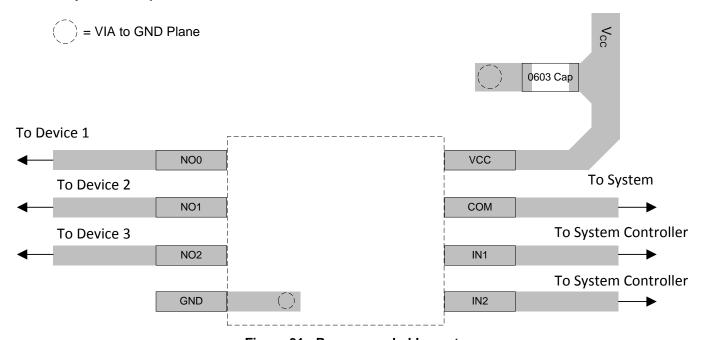


Figure 31. Recommended Layout

12 Device and Documentation Support

12.1 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

28-Sep-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
TS5A3359DCUR	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	(6) CU NIPDAU	(3) Level-1-260C-UNLIM	-40 to 85	(AL, JALR) JZ	Samples
TS5A3359DCURG4	ACTIVE	VSSOP	DCU	8	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(AL, JALR) JZ	Samples
TS5A3359DCUT	ACTIVE	VSSOP	DCU	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(AL, JALR) JZ	Samples
TS5A3359DCUTG4	ACTIVE	VSSOP	DCU	8	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(AL, JALR) JZ	Samples
TS5A3359YZPR	ACTIVE	DSBGA	YZP	8	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(J9, J97)	Samples
TS5A3359YZPRB	OBSOLETE	DSBGA	YZP	8		TBD	Call TI	Call TI		J97	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

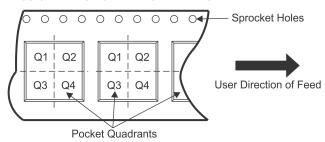
28-Sep-2017

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

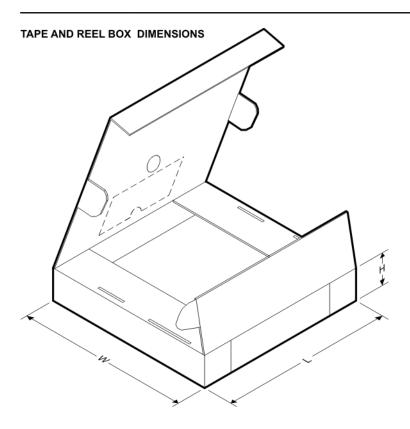
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017


TAPE AND REEL INFORMATION

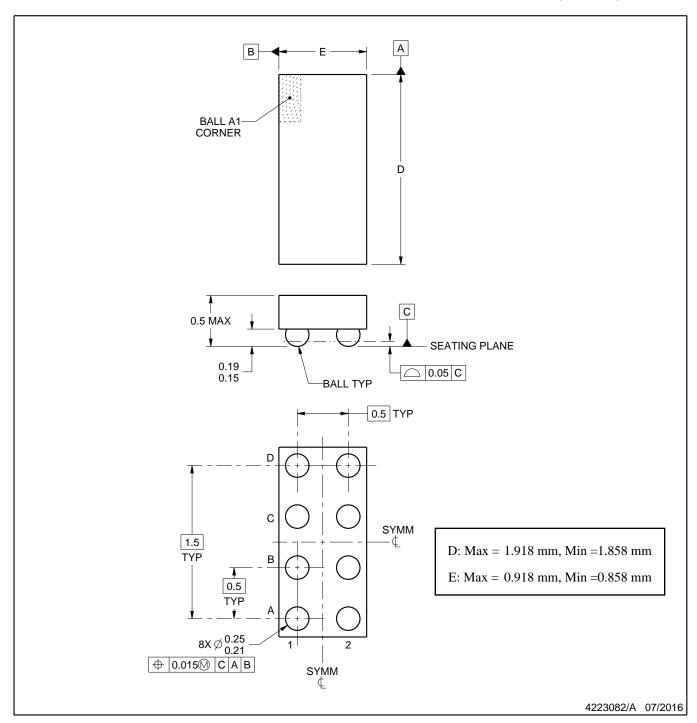
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS5A3359DCUR	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
TS5A3359DCURG4	VSSOP	DCU	8	3000	180.0	8.4	2.25	3.35	1.05	4.0	8.0	Q3
TS5A3359YZPR	DSBGA	YZP	8	3000	180.0	8.4	1.02	2.02	0.63	4.0	8.0	Q1

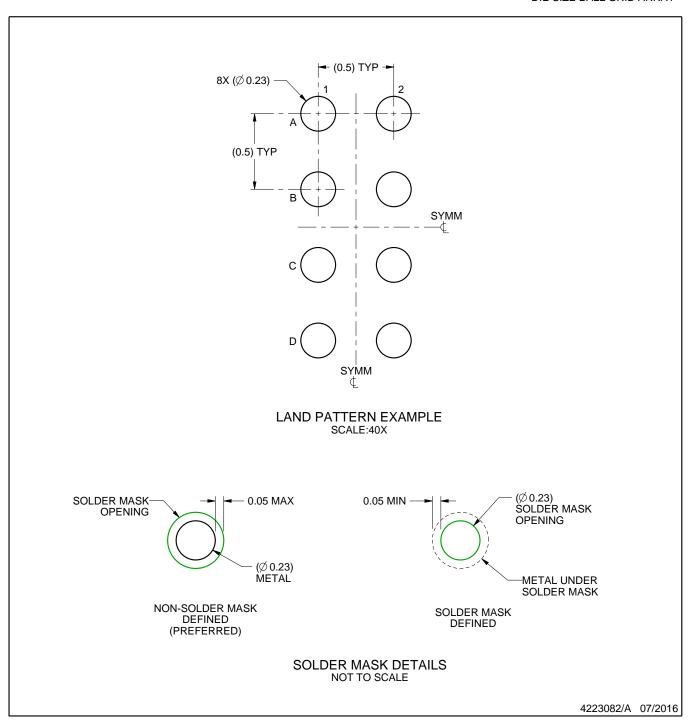
www.ti.com 3-Aug-2017



*All dimensions are nominal

ı	7 III GITTIOTOTOTO GITO TIOTITITA							
	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	TS5A3359DCUR	VSSOP	DCU	8	3000	202.0	201.0	28.0
	TS5A3359DCURG4	VSSOP	DCU	8	3000	202.0	201.0	28.0
	TS5A3359YZPR	DSBGA	YZP	8	3000	210.0	185.0	35.0

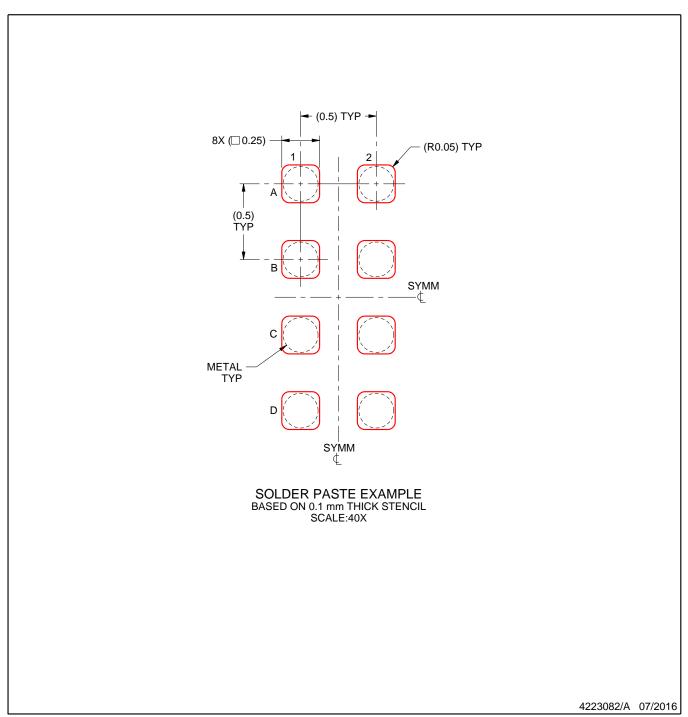
DIE SIZE BALL GRID ARRAY



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

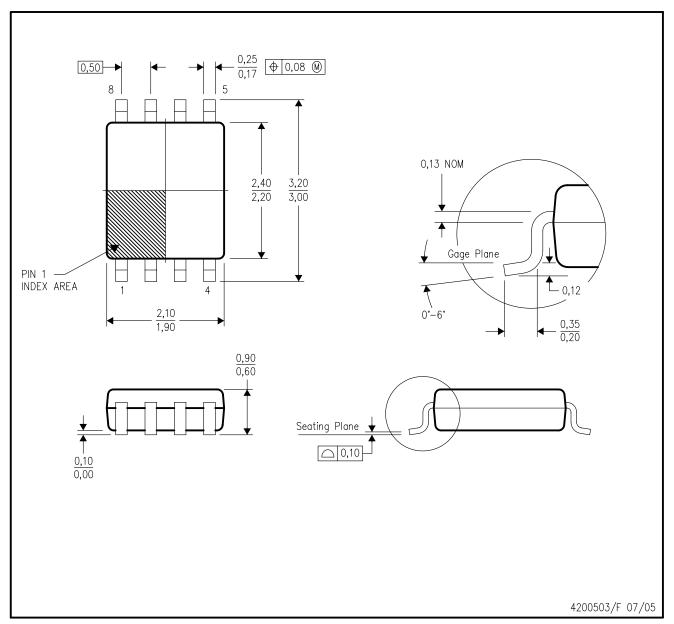
DIE SIZE BALL GRID ARRAY



NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

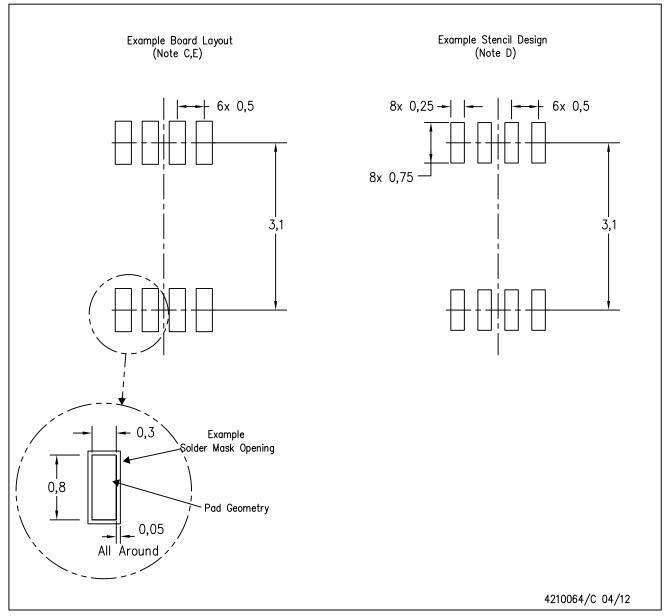
DIE SIZE BALL GRID ARRAY


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

DCU (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE (DIE DOWN)


NOTES:

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-187 variation CA.

DCU (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE (DIE DOWN)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.