

FEATURES

- Complies With Universal Serial Bus Specification Rev. 2.0 (USB 2.0)
- Transmits and Receives Serial Data at Both Full-Speed (12-Mbit/s) and Low-Speed (1.5-Mbit/s) Data Rates
- Integrated Bypassable 5-V to 3.3-V Voltage Regulator for Powering Via USB VBUS
- Low-Power Operation, Ideal for Portable Equipment
- Meets the IEC-61000-4-2 Contact (±9KV) and Air-gap (±9KV) ESD Ratings
- Separate I/O Supply With Operation Down to 1.65 V
- Very-Low Power Consumption to Meet USB Suspend Current Requirements
- No Power-Supply Sequencing Requirements

APPLICATIONS

- Cellular Phones
- Personal Digital Assistants (PDAs)
- Handheld Computers

NC – No internal connection

DESCRIPTION/ORDERING INFORMATION

The TUSB2551 is a single-chip transceiver that complies with the physical-layer specifications of universal serial bus (USB) 2.0. The device supports both full-speed (12-Mbit/s) and low-speed (1.5-Mbit/s) operation. The TUSB2551 delivers superior edge rate control, producing crisper eye diagrams, which ease the task of passing USB compliance testing.

A dual supply-voltage operation allows the TUSB2551 to reference the system interface I/O signals to a supply voltage down to 1.6 V, while independently powered by the USB $V_{CC(5.0)}$. This allows the system interface to operate at its core voltage without the addition of buffering logic, and also reduce system operating current.

ORDERING INFORMATION

T _A	PACKA	GE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
-40°C to 85°C	QFN – RGT	Reel of 2000	TUSB2551RGTR	ZWT	
-40 C 10 65 C	TSSOP – PW	Reel of 3000	TUSB2551PWR	TU2551	


(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCES667-FEBRUARY 2008

TERMINAL FUNCTIONS

TERMINAL				
NAME	RGT NO.	PW NO.	I/O	DESCRIPTION
V _{CC(I/O)}	15	1	I	System interface supply voltage. Used to provide reference supply voltage for system I/O interface signaling.
SPEED	1	2	I	Speed. Edge-rate control: A logic HIGH operates at edge rates for full-speed operation. A logic LOW operates at edge rates for low-speed operation.
RCV	2	3	0	Receive data. Output for USB differential data.
VP	3	4	I/O	If $\overline{OE} = 1$, VP = Receiver output (+) If $\overline{OE} = 0$, VP = Driver input (+)
VM	4	5	I/O	If $\overline{OE} = 1$, VM = Receiver output (–) If $\overline{OE} = 0$, VM = Driver input (–)
SOFTCON	5	6	I	Soft connect. Controls state of $V_{PU(3.3)}$. Refer to $V_{PU(3.3)}$ pin description for details.
GND	6	7		Ground reference
SUSPEND	7	8	I	Suspend. Active high. Turns off internal circuits to reduce supply current.
NC	8, 16			No internal connection
ŌĒ	9	9	I	Output enable. Active low. Enables the transceiver to transmit data onto the bus. When inactive, the transceiver is in the receive mode.
D–, D+	10, 11	10, 11	I/O	Differential data lines conforming to the USB standard
V _{reg(3.3)}	12	12	0	3.3-V reference supply. Requires a minimum 0.1- μ F decoupling capacitor for stability. A 1- μ F capacitor is recommended.
V _{PU(3.3)}	13	13	0	Pullup supply voltage. Used to connect 1.5-k Ω pullup speed detect resistor. If SOFTCON = 1, V _{PU(3.3)} is high impedance. If SOFTCON = 0, V _{PU(3.3)} = 3.3 V.
V _{CC(5.0)}	14	14	I	USB bus supply voltage. Used to power USB transceiver and internal circuitry.

FUNCTIONAL DESCRIPTION

FUNCTION SELECTION

SUSPEND	ŌĒ	D+, D-	RCV	VP, VM	FUNCTION
0	0	Driving	Active	Active	Normal transmit mode
0	1	Receiving	Active	Active	Normal receive mode
1	0	Hi-Z	0	Not active	Low power state
1	1	Hi-Z	0	Active	Receiving during suspend (low power state) ⁽¹⁾

(1) During suspend, VP and VM are active in order to detect out-of-band signaling conditions.

TRUTH TABLE DURING NORMAL MODE

<u>OE</u> = 0								
INF	TUT		OUTPUT					
VP	VM	D+	D-	RCV	RESULT			
0	0	0	0	X ⁽¹⁾	SE0			
0	1	0	1	0	Logic 0			
1	0	1	0	1	Logic 1			
1	1	1	1	X ⁽¹⁾	Undefined			
<u>OE</u> = 1								
Inp	out		RESULT					
D+	D-	VP	VM	RCV	RESULI			
0	0	0	0	X ⁽¹⁾	SE0			
0	1	0	1	0	Logic 0			
1	0	1	0	1	Logic 1			
1	1	1	1	X ⁽¹⁾	Undefined			

(1) X = Undefined

SCES667-FEBRUARY 2008

Power-Supply Configurations

The TUSB2551 can be used with different power-supply configurations, which can be dynamically changed. An overview is given in Table 1.

- Normal mode Both V_{CC(I/O)} and V_{CC(5.0)} or V_{CC(5.0)} and V_{reg(3.3)} are connected. For 5-V operation, V_{CC(5.0)} is connected to a 5-V source (4 V to 5.5 V). The internal voltage regulator then produces 3.3 V for the USB connections. For 3.3-V operation, both V_{CC(5.0)} and V_{reg(3.3)} are connected to a 3.3-V source (3 V to 3.6 V). V_{CC(I/O)} is independently connected to a voltage source (1.65 V to 3.6 V), depending on the supply voltage of the external circuit.
- Disable mode V_{CC(I/O)} is not connected; V_{CC(5.0)} or V_{CC(5.0)} and V_{reg(3.3)} are connected. In this mode, the internal circuits of the TUSB2551 ensure that the D+ and D– pins are in 3-state, and the power consumption drops to the low-power (suspended) state level. Some hysteresis is built into the detection of V_{CC(I/O)} lost.
- Sharing mode $V_{CC(I/O)}$ is connected; $V_{CC(5.0)}$ and $V_{reg(3.3)}$ are not connected. In this mode, the D+ and Dpins are made 3-state, and the TUSB2551 allows external signals of up to 3.6 V to share the D+ and Dlines. The internal circuits of the TUSB2551 ensure that virtually no current (maximum 10 mA) is drawn via the D+ and D- lines. The power consumption through $V_{CC(I/O)}$ drops to the low-power (suspended) state level. Both the VP and VM pins are driven HIGH to indicate this mode. Pin RCV is made LOW. Some hysteresis is built into the detection of $V_{reg(3.3)}$ lost.

Configuration Mode	VBUS/VTRM	VIF	Notes
Normal	Connected	Connected	Normal supply configuration and operation.
Disconnect (D+/D– sharing)	Open	Connected	VP/VM are HIGH outputs, RCV is LOW. With OE# = 0 and SUSPEND = 1, data lines may be driven with external devices up to 3.6 V. With D+, D– floating, $I_{CC(I/O)}$ draws less than 1 µA.
Disconnect	Ground	Connected	VP/VM are HIGH outputs, RCV is LOW. With D+, D– floating, $I_{CC(I/O)F}$ draws less than 1 μ A.
Disable Mode	Connected	Open	Logic controlled inputs pins are Hi-Z
Prohibited	Connected	Ground	Prohibited condition

Table 1. Power-Supply Configuration Overview

PINS	DISABLE-MODE STATE	SHARING-MODE STATE
V _{CC(5.0)} /V _{reg(3.3)}	5-V input/3.3-V output, 3.3-V input/3.3-V input	Not present
V _{CC(I/O)}	Not present	1.65-V to 3.6-V input
V _{PU(3.3)}	High impedance (off)	High impedance (off)
D+, D–	High impedance	High impedance
VP, VM	Invalid ⁽¹⁾	Н
RCV	Invalid ⁽¹⁾	L
Inputs (SPEED, SUSPEND, OE, SOFTCON)	High impedance	High impedance

(1) High impedance or driven LOW

Power-Supply Input Options

The TUSB2551 has two power-supply input options.

- Internal regulator V_{CC(5.0)} is connected to 4 V to 5.5 V. The internal regulator is used to supply the internal circuitry with 3.3 V (nominal). V_{reg(3.3)} becomes a 3.3-V output reference.
- Regulator bypass $V_{CC(5.0)}$ and $V_{reg(3.3)}$ are connected to the same supply. The internal regulator is bypassed, and the internal circuitry is supplied directly from the $V_{reg(3.3)}$ power supply. The voltage range is 3 V to 3.6 V to comply with the USB specification.

The supply-voltage range for each input option is specified in Table 3.

Table 3. Power-Supply Input Options

INPUT OPTION	V _{CC(5.0)}	V _{reg(3.3)}	V _{CC(I/O)}
Internal regualtor	Supply input for internal regulator (4 V to 5.5 V)	Voltage-reference output (3.3 V, 300 μA)	Supply input for digital I/O pins (1.4 V to 3.6 V)
Regulator bypass	Connected to V _{reg(3.3)} with maximum voltage drop of 0.3 V (2.7 V to 3.6 V)	Supply input (3 V to 3.6 V)	Supply input for digital I/O pins (1.4 V to 3.6 V)

Electrostatic Discharge (ESD)

PIN NAME	ESD	TYP	UNIT
	IEC61000-4-2, Air-Gap Discharge	±9	
	IEC61000-4-2, Contact Discharge	±9	kV
	Human-Body Model	±15	
All other pins	Human-Body Model	±2	kV

TUSB2551 ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVER

SCES667-FEBRUARY 2008

TEXAS NSTRUMENTS www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC(5.0)}	Supply voltage range	-0.5	6	V
V _{CC(I/O)}	I/O supply voltage range	-0.5	4.6	V
V _{reg(3.3)}	Regulated voltage range	-0.5	4.6	V
VI	DC input voltage range	-0.5	$V_{CC(I/O)} + 0.5$	mA
I _{O(D+, D-)}	Output Current (D+, D-)		±50	mA
lo	Output Current (all others)		±15	mA
l _l	Input Current		±50	mA
T _{stg}	Storage temperature range	-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC(5.0)}	Supply voltage, internal regulator option	5-V operation	4	5	5.25	V
V _{reg(3.3)}	Supply voltage, regulator bypass option	3.3-V operation	3	3.3	3.6	V
V _{CC(I/O)}	I/O supply voltage		1.65		3.6	V
V _{IL}	Low-level input voltage ⁽¹⁾		V _{CC(I/O)} –0.3		0.15 V _{CC(I/O)}	V
V _{IH}	High-level input voltage ⁽¹⁾		0.85 V _{CC(I/O)}		$V_{CC(I/O)} + 0.3$	V
D+, D–	Input voltage on analog I/O pins		0		3.6	V
T _c	Junction temperature range		-40		85	°C

(1) Specification applies to the following pins: SUSPEND, SPEED, RCV, SOFTCON, VP, VM, OE

SCES667-FEBRUARY 2008

DC ELECTRICAL CHARACTERISTICS SYSTEM AND USB INTERFACE⁽¹⁾

 $V_{CC(I/O)} = 3.6 \text{ V}, V_{CC(5.0)} = 5 \text{ V}$ (unless otherwise noted), $T_A = 25 \text{ C}$. Bold indicates specifications over temperature, -40°C to 85°C

P	ARAMETER		TES		DITIONS		MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage ⁽²⁾	I _{OH} = 20 μ	A				0.9 V _{CC(I/O)}			V
V _{OL}	Low-level output voltage ⁽²⁾	I _{OL} = 20 μ	A						0.1	V
IIL	Input leakage current ⁽²⁾						-5	1.5	5	μA
		SPEED	SUSPEND	OE	VOLTAGE	LOAD				
		1	0	1	-			1	5	
		1	0	0				1	5	
		0	0	1				1	5	μA
	V _{CC(I/O)} supply current	0	0	0	$V_{CC(5.0)} = 5.25 V$			1	5	
00(1/0)		0	1	0	$V_{CC(I/O)} =$			1	5	
		1	0	0	3.6 V	f = 6 MHz, C _L = 50 pF		1	2	mA
		0	0	0		f = 750 kHz, C _L = 600 pF		260	280	μΑ
		1	0	1	$V_{CC(5.0)} = 5.25 V$			800	1100	
		1	0	0				3000	5000	μA
		0	0	1				230	350	
		0	0	0				400	700	
I _{CC(5.0)}	OH voltage (2) IoH = 20 μ X 0.3 VCcl 0L Low-level output voltage (2) IoL = 20 μ X IoL = 10 μ X IoL = 10 μ X IoL = 20 μ X IoL = 10 μ X Io		130	200						
CC(5.0) PU(3.3)LEAK CC(I/O)LEAK		1	0	0	3.6 V			6	10	mA
		0	0	0				43	5	
I _{PU(3.3)LEAK}	V _{PU(3.3)} leakage current	SOFTCO	V = 1, V _{PU(3.3)}	= 0 V	1		-5		5	μA
I _{CC(I/O)LEAK}	V _{CC(I/O)} leakage current		, ,				-5		5	μA
V _{PU(3.3)}	Pullup output voltage	$I_{reg(3.3)} = 2$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		to 5.25 V		3	3.3	3.6	V
R _{SW}		$I_{reg(3.3)} = 1$	$r_{eg(3.3)} = 200 \ \mu\text{A}, \ V_{CC(5.0)} = 4 \ V \ to \ 5.25 \ V$					10		Ω
ESD PROTEC	TION									
IEC-61000-4-	Air-Gap Discharge	10 pulses						±9		
2 (D+, D–, V _{CC(5.0)} only)	Contact Discharge	10 pulses						±9		kV

(1)

Specification for packaged product only Specification applies to the following pins: RCV, VP, VM, $\overline{\text{OE}}$. (2)

TUSB2551 ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVER

SCES667-FEBRUARY 2008

DC ELECTRICAL CHARACTERISTICS TRANSCEIVER⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
LEAKAGE CURRENT									
I _{LO}	Hi-Z state data line leakage (suspend mode)	0 V < V _{IN} < 3.3 V, SUSPEND = 1	-10		10	μA			
INPUT L	EVELS								
V _{DI}	Differential input sensitivity	(D+) - (D-)	0.2			V			
V _{CM}	Differential common mode range	Includes V _{DI} range	0.8		2.5	V			
V _{SE}	Single-ended receiver threshold		0.8		2	V			
	Receiver hysteresis			200		mV			
OUTPUT	T LEVELS		L						
V _{OL}	Static output low	$R_L = 1.5 \text{ k}\Omega \text{ to } 3.6 \text{ V}$			0.3	V			
V _{OH}	Static output high	$R_L = 15 \text{ k}\Omega \text{ to GND}$	2.8		3.6	V			
CAPACI	ITANCE		L						
C _{IN}	Transceiver capacitance	Pin to GND		10		pF			
Z _{DRV}	Driver output resistance	Steady-state drive	1	6	11	Ω			

(1) Specification for packaged product only

TUSB2551 ADVANCED UNIVERSAL SERIAL BUS TRANSCEIVER

SCES667-FEBRUARY 2008

AC ELECTRICAL CHARACTERISTICS⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
DRIVE	R CHARACTERISTICS (LOW SPEED)		ľ		
T _R	Transition rise time	$C_L = 200 \text{ pF}$, See Figure 2 $C_L = 600 \text{ pF}$	75	300	ns
T _F	Transition fall time	$C_L = 200 \text{ pF}$, See Figure 2 $C_L = 600 \text{ pF}$	75	300	ns
LRFM	Rise/fall time matching	T _R , T _F	80	125	%
V _{CRS}	Output signal crossover voltage		1.3	2	V
DRIVE	R CHARACTERISTICS (FULL SPEED)				
T _R	Transition rise time	$C_L = 50 \text{ pF}$, See Figure 2	4	20	ns
T _F	Transition fall time	$C_L = 50 \text{ pF}, \text{ Figure 2}$	4	20	ns
FRFM	Rise/fall time matching	(TR, TF)	90	111.1	%
V _{CRS}	Output signal crossover voltage		1.3	2	V
TRANS	CEIVER TIMING (FULL SPEED)				
t _{PVZ}	OE to receiver 3-state delay	See Figure 1		15	ns
t _{PZD}	Receiver 3-state to transmit delay	See Figure 1	15		ns
t _{PDZ}	OE to driver 3-state delay	See Figure 1		15	ns
t _{PZV}	Driver 3-state to receive delay	See Figure 1	15		ns
t _{PLH} t _{PHL}	$V_{\text{P}},V_{\text{M}}$ to D+, D– propagation delay	See Figure 4		17	ns
t _{PLH} t _{PHL}	D+, D– to RCV propagation delay	See Figure 3		17	ns
t _{PLH} t _{PHL}	D+, D– to V_P , V_M propagation delay	See Figure 3		10	ns

(1) Specification for packaged product only

TIMING DIAGRAMS

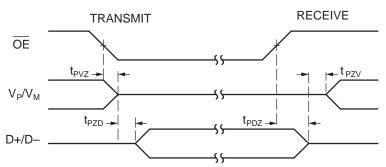


Figure 1. Enable and Disable Times

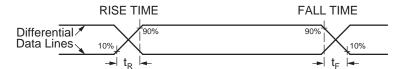


Figure 2. Rise and Fall Times

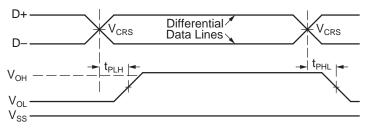


Figure 3. Receiver Propagation Delay

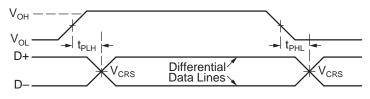


Figure 4. Driver Propagation Delay

TEST CIRCUITS

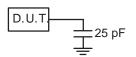


Figure 5. Load for V_P , V_M , RCV

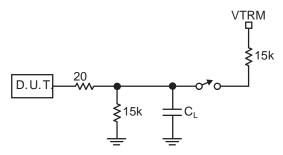


Figure 6. Load for D+, D-

24-Sep-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TUSB2551PWR	NRND	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TU2551	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

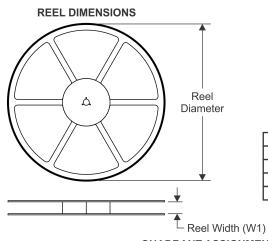
(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

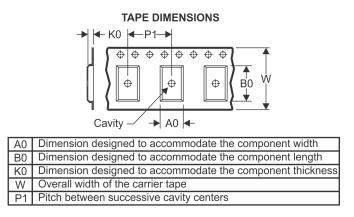
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

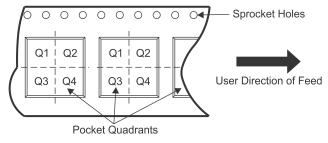
www.ti.com

PACKAGE OPTION ADDENDUM


24-Sep-2015


PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions a	are nominal
-------------------	-------------

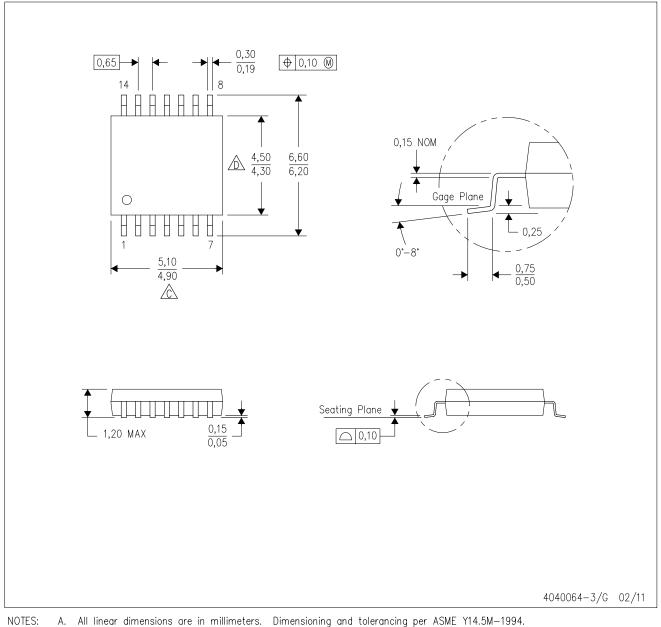

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TUSB2551PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

2-Sep-2015

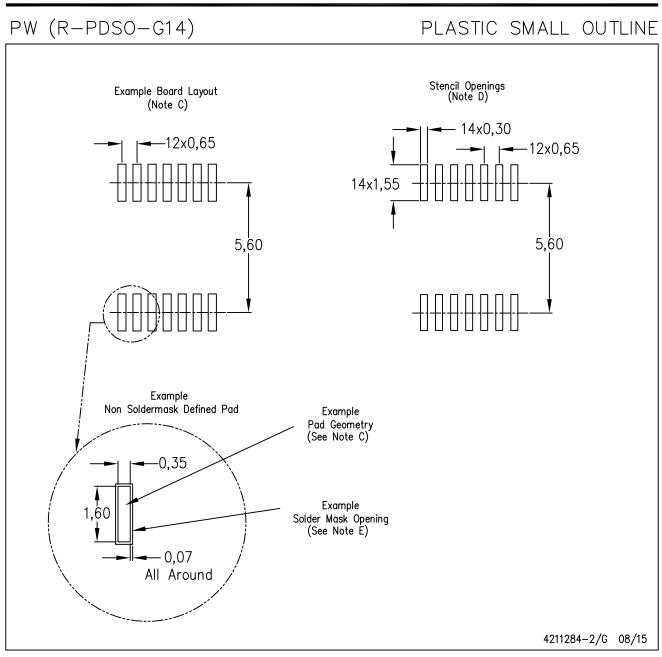


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TUSB2551PWR	TSSOP	PW	14	2000	367.0	367.0	35.0

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE


A. An integration of the information o

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated