



Order

Now





EXAS Instruments

**TXS0101** SCES638D - OCTOBER 2007-REVISED JUNE 2017

# TXS0101 1-Bit Bidirectional Level-Shifting, Voltage-Level Translator With Auto-Direction-Sensing for Open-Drain and Push-Pull Applications

#### Features 1

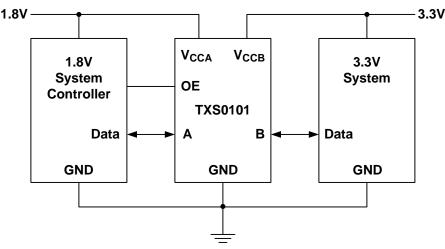
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
  - A Port
    - 2500 V Human-Body Model (A114-B)
    - 200 V Machine Model (A115-A)
    - 1500 V Charged-Device Model (C101)
  - B Port
    - 8 kV Human-Body Model (A114-B)
    - 200 V Machine Model (A115-A)
    - 1500 V Charged-Device Model (C101)
- No Direction-Control Signal Needed
- Maximum Data Rates
  - 24 Mbps (Push Pull)
  - 2 Mbps (Open Drain)
- Available in the Texas Instruments NanoFree™ Package
- 1.65 V to 3.6 V on A port and 2.3 V to 5.5 V on B port ( $V_{CCA} \leq V_{CCB}$ )
- $V_{\text{CC}}$  Isolation Feature If Either  $V_{\text{CC}}$  Input Is at GND, Both Ports Are in the High-Impedance State
- No Power-Supply Sequencing Required Either V<sub>CCA</sub> or V<sub>CCB</sub> Can be Ramped First
- Ioff Supports Partial-Power-Down Mode Operation

# 2 Applications

- Handsets
- Smartphones
- Tablets
- **Desktop PCs**

# 3 Description

This one-bit non-inverting translator uses two separate configurable power-supply rails. The A port is designed to track V\_{CCA}. V\_{CCA} accepts any supply voltage from 1.65 V to 3.6 V. The B port is designed to track V<sub>CCB</sub>. V<sub>CCA</sub> must be less than or equal to  $V_{CCB}$ .  $V_{CCB}$  accepts any supply voltage from 2.3 V to 5.5 V. This allows for low voltage bidirectional translation between any of the 1.8 V, 2.5 V, 3.3 V, and 5 V voltage nodes.


When the output-enable (OE) input is low, all outputs are placed in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

#### Device Information<sup>(1)</sup>

| PACKAGE     | BODY SIZE (NOM)                       |  |  |  |  |  |  |  |
|-------------|---------------------------------------|--|--|--|--|--|--|--|
| SOT-23 (6)  | 2.90 mm × 1.60 mm                     |  |  |  |  |  |  |  |
| SC70 (6)    | 2.00 mm × 1.25 mm                     |  |  |  |  |  |  |  |
| SOT-5X3 (6) | 1.90 mm × 1.60 mm                     |  |  |  |  |  |  |  |
| DSBGA (6)   | 0.89 mm × 1.39 mm                     |  |  |  |  |  |  |  |
|             | SOT-23 (6)<br>SC70 (6)<br>SOT-5X3 (6) |  |  |  |  |  |  |  |

(1) For all available packages, see the orderable addendum at the end of the data sheet.



## **Typical Operating Circuit**

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.



Product Folder Links: TXS0101

## **Table of Contents**

| 1 | Feat  | ures 1                                                                          |
|---|-------|---------------------------------------------------------------------------------|
| 2 | Арр   | lications1                                                                      |
| 3 | Desc  | cription 1                                                                      |
| 4 | Revi  | sion History2                                                                   |
| 5 | Pin ( | Configuration and Functions 3                                                   |
| 6 | Spee  | cifications 4                                                                   |
|   | 6.1   | Absolute Maximum Ratings 4                                                      |
|   | 6.2   | ESD Ratings 4                                                                   |
|   | 6.3   | Recommended Operating Conditions5                                               |
|   | 6.4   | Thermal Information5                                                            |
|   | 6.5   | Electrical Characteristics 6                                                    |
|   | 6.6   | Timing Requirements: V $_{CCA}$ = 1.8 V $\pm$ 0.15 V $\ldots \ldots .7$         |
|   | 6.7   | Timing Requirements $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V} \dots 7$         |
|   | 6.8   | Timing Requirements: 3.3 V $\pm$ 0.3 V7                                         |
|   | 6.9   | Switching Characteristics: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V} \dots 8$ |
|   | 6.10  | Switching Characteristics: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V} \dots 9$  |
|   | 6.11  | Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V} 12$       |
|   | 6.12  | Typical Characteristics 13                                                      |
| 7 | Para  | meter Measurement Information 14                                                |
|   | 7.1   | Load Circuits 14                                                                |
|   | 7.2   | Voltage Waveforms 15                                                            |

| 8  | Deta | iled Description                                | 16 |
|----|------|-------------------------------------------------|----|
|    | 8.1  | Overview                                        | 16 |
|    | 8.2  | Functional Block Diagram                        | 16 |
|    | 8.3  | Feature Description                             | 17 |
|    | 8.4  | Device Functional Modes                         | 17 |
| 9  | App  | lication and Implementation                     | 18 |
|    | 9.1  | Application Information                         |    |
|    | 9.2  | Typical Application                             | 18 |
| 10 |      | ver Supply Recommendations                      |    |
| 11 |      | out                                             |    |
|    | 11.1 | Layout Guidelines                               | 20 |
|    | 11.2 | Layout Example                                  |    |
| 12 | Dev  | ice and Documentation Support                   | 21 |
|    | 12.1 |                                                 |    |
|    | 12.2 | Receiving Notification of Documentation Updates | 21 |
|    | 12.3 | Community Resources                             | 21 |
|    | 12.4 | Trademarks                                      | 21 |
|    | 12.5 | Electrostatic Discharge Caution                 | 21 |
|    | 12.6 | Glossary                                        |    |
| 13 | Mec  | hanical, Packaging, and Orderable               |    |
| -  |      | mation                                          | 21 |

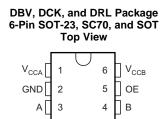
#### **4** Revision History

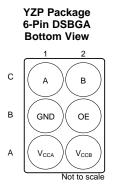
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| • | Changed YZP package pinout diagram with new image and added YZP pin assignments in Pin Functions table |
|---|--------------------------------------------------------------------------------------------------------|
| ٠ | Added Junction temperature, T <sub>J</sub> in Absolute Maximum Ratings table 4                         |
| ٠ | Added Receiving Notification of Documentation Updates section                                          |

#### Changes from Revision B (January 2009) to Revision C

Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ......1


# Page




Page



# 5 Pin Configuration and Functions





#### **Pin Functions**

|           | PIN              |     |      |                                                                                                                 |  |  |  |
|-----------|------------------|-----|------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| NAME      | DBV, DCK,<br>DRL | YZP | TYPE | DESCRIPTION                                                                                                     |  |  |  |
| А         | 3                | C1  | I/O  | Input/output A. Referenced to V <sub>CCA</sub>                                                                  |  |  |  |
| В         | 4                | C2  | I/O  | Input/output B. Referenced to V <sub>CCB</sub>                                                                  |  |  |  |
| GND       | 2                | B1  | G    | Ground                                                                                                          |  |  |  |
| OE        | 5                | B2  | I    | Output enable. Pull OE low to place all outputs in 3-state mode. Referenced to V <sub>CCA</sub> .               |  |  |  |
| $V_{CCA}$ | 1                | A1  | I    | A-port supply voltage. 1.65 V $\leq$ V <sub>CCA</sub> $\leq$ 3.6 V and V <sub>CCA</sub> $\leq$ V <sub>CCB</sub> |  |  |  |
| $V_{CCB}$ | 6                | A2  | Ι    | B-port supply voltage. 2.3 V $\leq$ V <sub>CCB</sub> $\leq$ 5.5 V                                               |  |  |  |

TEXAS INSTRUMENTS

www.ti.com

## 6 Specifications

#### 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                  |                                                                                                      |                    | MIN  | MAX                    | UNIT |
|------------------|------------------------------------------------------------------------------------------------------|--------------------|------|------------------------|------|
| V <sub>CCA</sub> | Supply voltage                                                                                       |                    | -0.5 | 4.6                    | V    |
| V <sub>CCB</sub> | Supply voltage                                                                                       |                    | -0.5 | 6.5                    | V    |
| V                | Input voltage <sup>(2)</sup>                                                                         | A port             | -0.5 | 4.6                    | V    |
| VI               | input voitage                                                                                        | B port, OE         | -0.5 | 6.5                    | V    |
|                  | Voltage range applied to any output                                                                  | A port             | -0.5 | 4.6                    | V    |
| Vo               | in the high-impedance or power-off state <sup>(2)</sup>                                              | B port             | -0.5 | 6.5                    | V    |
| Vo               | Voltage range applied to any output in the high or low state $^{\left(2\right)}$ $^{\left(3\right)}$ | A port             | -0.5 | V <sub>CCA</sub> + 0.5 | V    |
|                  |                                                                                                      | B port             | -0.5 | V <sub>CCB</sub> + 0.5 | V    |
| I <sub>IK</sub>  | Input clamp current                                                                                  | V <sub>1</sub> < 0 |      | -50                    | mA   |
| I <sub>OK</sub>  | Output clamp current                                                                                 | V <sub>O</sub> < 0 |      | -50                    | mA   |
| I <sub>O</sub>   | Continuous output current                                                                            |                    |      | ±50                    | mA   |
|                  | Continuous current through V <sub>CCA</sub> , V <sub>CCB</sub> , or GND                              |                    |      | ±100                   | mA   |
| TJ               | Junction temperature                                                                                 |                    |      | 150                    | °C   |
| T <sub>stg</sub> | Storage temperature                                                                                  |                    | -65  | 150                    | °C   |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V<sub>CCA</sub> and V<sub>CCB</sub> are provided in the recommended operating conditions table.

### 6.2 ESD Ratings

|             |                                                                           |                                                                                          | VALUE | UNIT |
|-------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------|------|
|             |                                                                           | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, A Port <sup>(1)</sup>                | ±2500 |      |
|             | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, B Port <sup>(1)</sup> | ±8000                                                                                    |       |      |
| $V_{(ESD)}$ | Electrostatic discharge                                                   | Charged device model (CDM), per JEDEC specification JESD22-C101, B $\mathrm{Port}^{(2)}$ | ±1500 | V    |
|             |                                                                           | Machine model (MM, A115-A), A Port                                                       | ±200  |      |

(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.



### 6.3 Recommended Operating Conditions

See<sup>(1) (2)</sup>

|                                          |                                               |                                    | V <sub>CCA</sub> | V <sub>CCB</sub>        | MIN             | MAX                     | UNIT |      |
|------------------------------------------|-----------------------------------------------|------------------------------------|------------------|-------------------------|-----------------|-------------------------|------|------|
| V <sub>CCA</sub>                         | Supply voltage <sup>(3)</sup>                 |                                    |                  |                         | 1.65            | 3.6                     | V    |      |
| V <sub>CCB</sub>                         | Supply voltage (*)                            |                                    |                  |                         | 2.3             | 5.5                     | v    |      |
| V <sub>IH</sub> High-level input voltage |                                               | A port I/Op                        | 1.65 V to 1.95 V | 2.3 V to 5.5 V          | $V_{CCI} - 0.2$ | V <sub>CCI</sub>        |      |      |
|                                          | Lligh lovel input veltage                     | A-port I/Os                        | 2.3 V to 3.6 V   | 2.3 V 10 5.5 V          | $V_{CCI} - 0.4$ | V <sub>CCI</sub>        | v    |      |
|                                          | High-level input voltage                      | B-port I/Os                        | 1.65 V to 2.6 V  |                         | $V_{CCI} - 0.4$ | V <sub>CCI</sub>        |      |      |
|                                          | OE input                                      | 1.65 V to 3.6 V                    | 2.3 V to 5.5 V   | V <sub>CCA</sub> × 0.65 | 5.5             |                         |      |      |
|                                          | VIL Low-level input voltage                   | A-port I/Os                        | 1.65 V to 3.6 V  |                         | 0               | 0.15                    |      |      |
| VIL                                      |                                               | B-port I/Os                        |                  | 1.65 V to 3.6 V         | 1.65 V to 3.6 V | 2.3 V to 5.5 V          | 0    | 0.15 |
|                                          |                                               | OE input                           |                  |                         | 0               | V <sub>CCA</sub> × 0.35 |      |      |
|                                          | A-port I/Os, push-<br>pull driving            |                                    |                  |                         | 10              |                         |      |      |
| $\Delta t / \Delta v$                    | Input transition rise or fall rate            | B-port I/Os, push-<br>pull driving | 1.65 V to 3.6 V  | 2.3 V to 5.5 V          |                 | 10                      | ns/V |      |
|                                          |                                               | Control Input                      |                  |                         |                 | 10                      |      |      |
| T <sub>A</sub>                           | T <sub>A</sub> Operating free-air temperature |                                    |                  |                         | -40             | 85                      | °C   |      |

(1)

 $V_{CCI}$  is the supply associated with the input port.  $V_{CCO}$  is the supply associated with the output port.  $V_{CCA}$  must be less than or equal to  $V_{CCB}$ , and  $V_{CCA}$  must not exceed 3.6 V. (2) (3)

#### 6.4 Thermal Information

|                       |                                              | TXS0101      |            |           |             |      |  |
|-----------------------|----------------------------------------------|--------------|------------|-----------|-------------|------|--|
|                       | THERMAL METRIC <sup>(1)</sup>                | DBV (SOT-23) | DCK (SC70) | DRL (SOT) | DSBGA (YZP) | UNIT |  |
|                       |                                              | 6 PINS       | 6 PINS     | 6 PINS    | 6 PINS      |      |  |
| $R_{\theta JA}$       | Junction-to-ambient thermal resistance       | 223.9        | 266.9      | 204.2     | 107.8       | °C/W |  |
| R <sub>0JC(top)</sub> | Junction-to-case (top) thermal resistance    | 185.6        | 80.4       | 76.4      | 1.6         | °C/W |  |
| $R_{\theta JB}$       | Junction-to-board thermal resistance         | 63.5         | 99.1       | 38.7      | 10.8        | °C/W |  |
| ΨJT                   | Junction-to-top characterization parameter   | 63.5         | 1.5        | 3.4       | 3.1         | °C/W |  |
| ΨЈВ                   | Junction-to-board characterization parameter | 71.8         | 98.3       | 38.5      | 10.8        | °C/W |  |

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

SCES638D-OCTOBER 2007-REVISED JUNE 2017



www.ti.com

#### 6.5 Electrical Characteristics

over recommended operating free-air temperature range of -40°C to 85°C (unless otherwise noted) See<sup>(1) (2) (3)</sup>

| P                  | ARAMETER           | TEST<br>CONDITIONS                                                                          | V <sub>CCA</sub>           | V <sub>CCB</sub> | MIN TYP M               | АХ       | UNIT  |  |
|--------------------|--------------------|---------------------------------------------------------------------------------------------|----------------------------|------------------|-------------------------|----------|-------|--|
| V <sub>OHA</sub>   |                    | $\begin{array}{l} I_{OH} = -20 \ \mu A, \\ V_{IB} \ \geq V_{CCB} \ - \ 0.4 \ V \end{array}$ | 1.65 V to 3.6 V            | 2.3 V to 5.5 V   | V <sub>CCA</sub> × 0.67 |          | V     |  |
| V <sub>OLA</sub>   |                    | $I_{OL} = 1 \text{ mA},$<br>$V_{IB} \le 0.15 \text{ V}$                                     | 1.65 V to 3.6 V            | 2.3 V to 5.5 V   |                         | 0.4      | V     |  |
| V <sub>ОНВ</sub>   |                    | $    I_{OH} = -20 \ \mu A, \\ V_{IA} \ge V_{CCA} - 0.2 \ V $                                | 1.65 V to 3.6 V            | 2.3 V to 5.5 V   | V <sub>CCB</sub> × 0.67 |          | V     |  |
| V <sub>OLB</sub>   |                    | $I_{OL} = 1 \text{ mA},$<br>$V_{IA} \leq 0.15 \text{ V}$                                    | 1.65 V to 3.6 V            | 2.3 V to 5.5 V   |                         | 0.4      | V     |  |
| I <sub>I</sub>     | OE                 | $T_A = 25^{\circ}C$<br>-40°C to 85°C                                                        | 1.65 V to 3.6 V            | 1.65 V to 5.5 V  |                         | ±1       | μA    |  |
|                    |                    |                                                                                             |                            |                  |                         |          | ±2    |  |
|                    | A port             | $T_A = 25^{\circ}C$                                                                         | 0 V                        | 0 to 5.5 V       |                         | ±1       | μA    |  |
| off                | B port             | -40°C to 85°C                                                                               |                            | 0 V              |                         | ±2       |       |  |
|                    |                    | $T_{A} = 25^{\circ}C$ $-40^{\circ}C \text{ to } 85^{\circ}C$                                | 0 to 3.6 V                 |                  |                         | ±1<br>±2 | μA    |  |
|                    |                    | $T_{A} = 25^{\circ}C$                                                                       |                            |                  |                         | ±2<br>±1 |       |  |
| loz                | A or B port        | $T_{\rm A} = 25 \text{ C}$<br>-40°C to 85°C                                                 | 1.65 V to 3.6 V            | 2.3 V to 5.5 V   |                         | ±1<br>±2 | μA    |  |
|                    |                    | -40 C 10 00 C                                                                               | 1.65 V to V <sub>CCB</sub> | 2.3 V to 5.5 V   |                         | 2.4      |       |  |
| I <sub>CCA</sub>   |                    | $V_I = V_O = open,$                                                                         | 3.6 V                      | 0 V              |                         | 2.2      | .2 μΑ |  |
| CCA                |                    | $I_{O} = 0$                                                                                 | 0 V                        | 5.5 V            |                         | _1       |       |  |
|                    |                    |                                                                                             | 1.65 V to V <sub>CCB</sub> | 2.3 V to 5.5 V   |                         | 12       |       |  |
| I <sub>CCB</sub>   |                    | $V_I = V_O = open,$                                                                         | 3.6 V                      | 0 V              |                         | -1       | μA    |  |
| 000                |                    | $I_{O} = 0$                                                                                 | 0 V                        | 5.5 V            |                         | 1        | F 1   |  |
| I <sub>CCA</sub> + | ⊦ I <sub>CCB</sub> | $V_{I} = V_{CCI},$ $I_{O} = 0$                                                              | 1.65 V to V <sub>CCB</sub> | 2.3 V to 5.5 V   | 1                       | 4.4      | μA    |  |
| ~                  | 05                 | T <sub>A</sub> = 25°C                                                                       | 0.01/                      | 0.01/            | 2.5                     |          |       |  |
| CI                 | OE                 | –40°C to 85°C                                                                               | 3.3 V                      | 3.3 V            |                         | 3.5      | pF    |  |
|                    | Anort              | T <sub>A</sub> = 25°C                                                                       |                            |                  | 5                       |          | рF    |  |
| ~                  | A port             | -40°C to 85°C                                                                               | 2.2.1                      | 2.2.1/           | 6                       |          |       |  |
| C <sub>io</sub>    | Diment             | $T_A = 25^{\circ}C$                                                                         | 3.3 V                      | 3.3 V            | 6                       |          |       |  |
|                    | B port             | –40°C to 85°C                                                                               |                            |                  | 7.5                     |          |       |  |

 $\begin{array}{ll} \mbox{(1)} & V_{CCI} \mbox{ is the } V_{CC} \mbox{ associated with the input port.} \\ \mbox{(2)} & V_{CCO} \mbox{ is the } V_{CC} \mbox{ associated with the output port.} \\ \mbox{(3)} & V_{CCA} \mbox{ must be less than or equal to } V_{CCB}, \mbox{ and } V_{CCA} \mbox{ must not exceed 3.6 V.} \\ \end{array}$ 



# 6.6 Timing Requirements: V <sub>CCA</sub> = 1.8 V $\pm$ 0.15 V

|                         |                              |                                              |                                              | MIN | NOM | MAX | UNIT |
|-------------------------|------------------------------|----------------------------------------------|----------------------------------------------|-----|-----|-----|------|
|                         |                              | $V_{CCB} = 2.5 \text{ V}, \pm 0.2 \text{ V}$ |                                              |     | 21  |     |      |
|                         | Push-pull driving, Figure 4  |                                              | $V_{CCB} = 3.3 \text{ V}, \pm 0.3 \text{ V}$ |     |     | 22  |      |
| Data rate               |                              |                                              | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$   |     |     | 24  | Mhpa |
| Data Tale               |                              |                                              | $V_{CCB} = 2.5 \text{ V}, \pm 0.2 \text{ V}$ |     |     | 2   | Mbps |
|                         | Open-drain driving, Figure 5 |                                              | $V_{CCB}=3.3~V,~\pm~0.3~V$                   |     |     | 2   |      |
|                         |                              |                                              | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$   |     |     | 2   |      |
| t <sub>w</sub>          | Push-pull driving, Figure 4  |                                              | $V_{CCB}=2.5~V,~\pm~0.2~V$                   | 47  |     |     |      |
|                         |                              |                                              | $V_{CCB} = 3.3 \text{ V}, \pm 0.3 \text{ V}$ | 45  |     |     |      |
| Pulse duration Figure 7 |                              | - Data inputs                                | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$   | 41  |     |     | 20   |
| Pulse duration Figure 7 |                              | Data inputs                                  | $V_{CCB} = 2.5 \text{ V}, \pm 0.2 \text{ V}$ | 500 |     |     | ns   |
|                         | Open-drain driving, Figure 5 |                                              | $V_{CCB}=3.3~V,~\pm~0.3~V$                   | 500 |     |     |      |
|                         |                              |                                              | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$   | 500 |     |     |      |

## 6.7 Timing Requirements $V_{CCA} = 2.5 V \pm 0.2 V$

|                         |                              |                                              |                                              | MIN | NOM | MAX  | UNIT  |
|-------------------------|------------------------------|----------------------------------------------|----------------------------------------------|-----|-----|------|-------|
|                         |                              |                                              | $V_{CCB} = 2.5 \text{ V}, \pm 0.2 \text{ V}$ |     |     | 20   |       |
|                         | Push-pull driving, Figure 4  | $V_{CCB} = 3.3 \text{ V}, \pm 0.3 \text{ V}$ |                                              |     | 22  |      |       |
| Data rate               |                              | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$   |                                              |     | 24  | Mbps |       |
|                         |                              |                                              | $V_{CCB} = 2.5 \text{ V}, \pm 0.2 \text{ V}$ |     |     | 2    | Minha |
|                         | Open-drain driving, Figure 5 | $V_{CCB}=3.3~V,\pm0.3~V$                     |                                              |     | 2   |      |       |
|                         |                              | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$   |                                              |     | 1   |      |       |
| t <sub>w</sub>          |                              |                                              | $V_{CCB} = 2.5 \text{ V}, \pm 0.2 \text{ V}$ | 50  |     |      |       |
|                         | Push-pull driving, Figure 4  |                                              | $V_{CCB}=3.3~V,\pm0.3~V$                     | 45  |     |      |       |
| Dulas duration Figure 7 |                              | Data inputa                                  | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$   | 41  |     |      |       |
| Pulse duration Figure 7 |                              | Data inputs                                  | $V_{CCB} = 2.5 \text{ V}, \pm 0.2 \text{ V}$ | 500 |     |      | ns    |
|                         | Open-drain driving, Figure 5 |                                              | $V_{CCB} = 3.3 \text{ V}, \pm 0.3 \text{ V}$ | 500 |     |      |       |
|                         |                              |                                              | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$   | 500 |     |      |       |

## 6.8 Timing Requirements: 3.3 V ± 0.3 V

|                         |                              |                                            |                                              | MIN | NOM | MAX  | UNIT |  |
|-------------------------|------------------------------|--------------------------------------------|----------------------------------------------|-----|-----|------|------|--|
|                         | Push-pull driving, Figure 4  | $V_{CCB}=3.3~V,~\pm~0.3~V$                 |                                              |     | 23  |      |      |  |
| Data rate               | Fush-pull anving, Figure 4   | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$ |                                              |     | 24  | Mhoo |      |  |
|                         | Open-drain driving, Figure 5 |                                            |                                              |     |     | 2    | Mbps |  |
|                         | Open-drain driving, Figure 5 | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$ |                                              |     | 2   |      |      |  |
|                         | Duch null driving Figure 4   |                                            | $V_{CCB} = 3.3 \text{ V}, \pm 0.3 \text{ V}$ | 43  |     |      |      |  |
| Pulse duration Figure 7 | Push-pull driving, Figure 4  | Data inputa                                | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$   | 41  |     |      |      |  |
|                         | Onen drein driving Figure F  | Data inputs                                | $V_{CCB} = 3.3 \text{ V}, \pm 0.3 \text{ V}$ | 500 |     |      | ns   |  |
|                         | Open-drain driving, Figure 5 |                                            | $V_{CCB} = 5 \text{ V}, \pm 0.5 \text{ V}$   | 500 |     |      |      |  |

STRUMENTS

EXAS

#### www.ti.com

# 6.9 Switching Characteristics: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$

| PARAMETER                 | FROM<br>(INPUT) | TO<br>(OUTPUT)       | TEST CONDIT                                   | IONS (DRIVING)                                                                           | MIN | МАХ  | UNIT |  |
|---------------------------|-----------------|----------------------|-----------------------------------------------|------------------------------------------------------------------------------------------|-----|------|------|--|
|                           |                 |                      |                                               | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$                                              |     | 5.3  |      |  |
|                           |                 |                      | Push-pull, Figure 4                           | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              |     | 5.4  |      |  |
|                           |                 |                      |                                               | $V_{CCB} = 5 V \pm 0.5 V$                                                                |     | 6.8  |      |  |
| t <sub>PHL</sub> Figure 8 |                 |                      |                                               | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$                                              | 2.3 | 8.8  |      |  |
|                           |                 |                      | Open-drain, Figure 5                          | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              | 2.4 | 9.6  |      |  |
|                           | ^               | P                    |                                               | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$                                                | 2.6 | 10   | 20   |  |
|                           | A               | В                    |                                               | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$                                              |     | 6.8  | ns   |  |
|                           |                 |                      | Push-pull, Figure 4                           | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              |     | 7.1  |      |  |
|                           |                 |                      |                                               | $V_{CCB} = 5 V \pm 0.5 V$                                                                |     | 7.5  |      |  |
| t <sub>PLH</sub> Figure 8 |                 |                      |                                               | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$                                              | 45  | 260  |      |  |
|                           |                 |                      | Open-drain, Figure 5                          | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              | 36  | 208  |      |  |
|                           |                 |                      |                                               | $V_{CCB} = 5 V \pm 0.5 V$                                                                | 27  | 198  |      |  |
|                           |                 |                      |                                               | $V_{CCB} = 2.5 V \pm 0.2 V$                                                              |     | 4.4  |      |  |
|                           |                 |                      | Push-pull, Figure 4                           | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              |     | 4.5  |      |  |
| <b>F</b> inan 0           |                 |                      |                                               | $V_{CCB} = 5 V \pm 0.5 V$                                                                |     | 4.7  |      |  |
| t <sub>PHL</sub> Figure 8 |                 |                      | $V_{CCB} = 2.5 V \pm 0.2 V$                   | 1.9                                                                                      | 5.3 | ns   |      |  |
|                           | Δ               | Open-drain, Figure 5 | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$   | 1.1                                                                                      | 4.4 |      |      |  |
|                           |                 |                      | $V_{CCB} = 5 V \pm 0.5 V$                     | 1.2                                                                                      | 4   |      |      |  |
|                           | A               |                      | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$   |                                                                                          | 5.3 |      |      |  |
|                           |                 |                      | Push-pull, Figure 4                           | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              |     | 4.5  |      |  |
|                           |                 |                      |                                               | $V_{CCB} = 5 V \pm 0.5 V$                                                                |     | 0.5  |      |  |
| t <sub>PLH</sub> Figure 8 |                 |                      |                                               | $V_{CCB} = 2.5 V \pm 0.2 V$                                                              | 45  | 175  |      |  |
|                           |                 |                      | Open-drain, Figure 5                          | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              | 36  | 140  |      |  |
|                           |                 |                      |                                               | $V_{\rm CCB} = 5 \text{ V} \pm 0.5 \text{ V}$                                            | 27  | 102  |      |  |
|                           |                 |                      |                                               | $V_{CCB} = 2.5 V \pm 0.2 V$                                                              |     | 200  | ns   |  |
| t <sub>en</sub> Figure 9  | OE              | A or B               | Push-pull, Figure 6                           | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              |     | 200  |      |  |
|                           |                 |                      |                                               | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$                                                |     | 200  |      |  |
|                           |                 |                      |                                               | $V_{CCB} = 2.5 V \pm 0.2 V$                                                              |     | 50   |      |  |
| t <sub>dis</sub> Figure 9 | OE              | A or B               |                                               | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              |     | 40   | ns   |  |
|                           |                 |                      |                                               | $V_{CCB} = 5 V \pm 0.5 V$                                                                |     | 35   |      |  |
|                           |                 | I                    |                                               | $V_{CCB} = 2.5 V \pm 0.2 V$                                                              | 3.2 | 9.5  |      |  |
|                           |                 |                      | Push-pull                                     | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              | 2.3 | 9.3  |      |  |
|                           |                 |                      |                                               | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$                                                | 2   | 7.6  |      |  |
| rA                        | A-port          | rise time            |                                               | $V_{CCB} = 2.5 V \pm 0.2 V$                                                              | 38  | 165  | ns   |  |
|                           |                 |                      | Open-drain                                    | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              | 30  | 132  |      |  |
|                           |                 |                      | $V_{\rm CCB} = 5 \text{ V} \pm 0.5 \text{ V}$ | 22                                                                                       | 95  |      |      |  |
|                           |                 |                      |                                               | $V_{CCB} = 2.5 V \pm 0.2 V$                                                              | 1.1 | 10.8 |      |  |
|                           |                 | Push-pull            | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$   | 1                                                                                        | 9.1 |      |      |  |
|                           |                 |                      | - 1 -                                         | $V_{CCB} = 5 V \pm 0.5 V$                                                                | 1   | 7.6  | ns   |  |
| t <sub>rB</sub>           | B-port          | rise time            |                                               | $V_{CCB} = 2.5 V \pm 0.2 V$                                                              | 34  | 145  |      |  |
|                           |                 |                      | Open-drain                                    | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$                                              | 23  | 106  |      |  |
|                           |                 |                      |                                               | $V_{CCB} = 5.0 \text{ V} \pm 0.5 \text{ V}$<br>$V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$ | 10  | 76   |      |  |



## Switching Characteristics: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (continued)

over recommended operating free-air temperature range,  $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$  (unless otherwise noted)

| PARAMETER           | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST COND                                   | DITIONS (DRIVING)                           | MIN | МАХ  | UNIT |  |  |
|---------------------|-----------------|----------------|---------------------------------------------|---------------------------------------------|-----|------|------|--|--|
|                     |                 |                |                                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 1.9 | 5.9  |      |  |  |
|                     |                 |                | Push-pull                                   | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 1.9 | 6    |      |  |  |
| t <sub>fA</sub>     | A por           | t fall time    |                                             | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$   | 1.4 | 13.3 |      |  |  |
| fA A-port fall time |                 |                | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 4.4                                         | 6.9 |      |      |  |  |
|                     |                 | Open-drain     | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 4.3                                         | 6.4 |      |      |  |  |
|                     |                 |                |                                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 4.2 | 6.1  |      |  |  |
|                     |                 |                |                                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 2.2 | 13.8 | ns   |  |  |
|                     |                 |                | Push-pull                                   | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 2.2 | 16.2 |      |  |  |
|                     | D               |                |                                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 2.6 | 16.2 |      |  |  |
| t <sub>fB</sub>     | B-por           | t fall time    | Open-drain                                  | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 6.9 | 13.8 |      |  |  |
|                     |                 |                |                                             | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 7.5 | 16.2 |      |  |  |
|                     |                 |                |                                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 7   | 16.2 | 1    |  |  |
|                     |                 |                |                                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 21  |      |      |  |  |
|                     |                 |                | Push-pull                                   | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 22  |      |      |  |  |
| Manu data wata      |                 |                |                                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 24  |      | N 41 |  |  |
| Max data rate       | A               | or B           |                                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 2   |      | Mbps |  |  |
|                     |                 |                | Open-drain                                  | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 2   |      |      |  |  |
|                     |                 |                |                                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 2   |      |      |  |  |

## 6.10 Switching Characteristics: $V_{CCA} = 2.5 V \pm 0.2 V$

| PARAMETER                 | FROM<br>(INPUT) | TO<br>(OUTPUT)                              | TEST CONDITION                              | IS (DRIVING)                                | MIN | МАХ | UNIT |
|---------------------------|-----------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-----|-----|------|
|                           |                 |                                             |                                             | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$ |     | 3.2 |      |
|                           |                 |                                             | Push-pull, Figure 4                         | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |     | 3.7 |      |
| t <sub>PHL</sub> Figure 8 |                 |                                             | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$   |                                             | 3.8 |     |      |
|                           |                 | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$ | 1.7                                         | 6.3                                         |     |     |      |
|                           |                 | Open-drain, Figure 5                        | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 2                                           | 6   |     |      |
|                           | Α               | в                                           |                                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 2.1 | 5.8 | 20   |
|                           | A               | Б                                           |                                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 |     | 3.5 | ns   |
|                           |                 |                                             | Push-pull, Figure 4                         | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |     | 4.1 |      |
| t Figure 9                |                 |                                             |                                             | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$   |     | 4.4 |      |
| t <sub>PLH</sub> Figure 8 |                 |                                             |                                             | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$ | 43  | 250 |      |
|                           |                 |                                             | Open-drain, Figure 5                        | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 36  | 206 |      |
|                           |                 |                                             |                                             | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$   | 27  | 190 |      |

STRUMENTS

EXAS

# Switching Characteristics: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (continued)

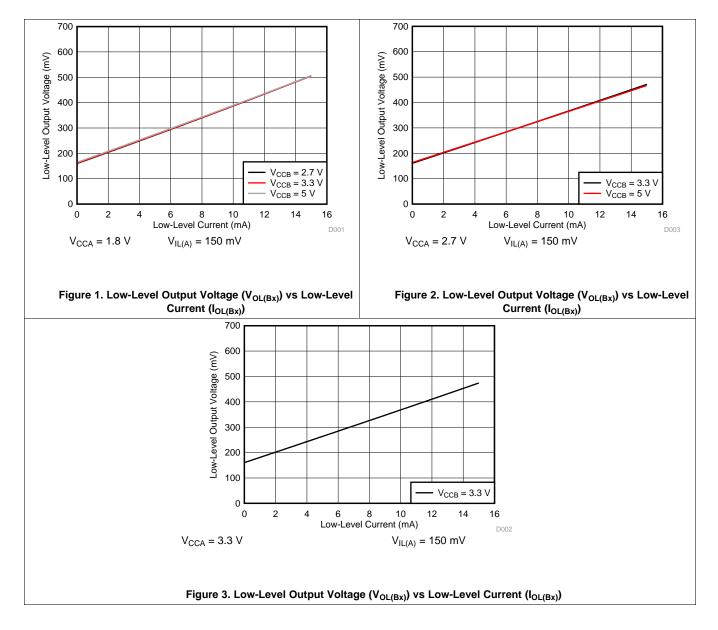
| PARAMETER                 | FROM<br>(INPUT) | TO<br>(OUTPUT) | TEST CONDITI                | ONS (DRIVING)                               | MIN | MAX       | UNIT |  |  |  |
|---------------------------|-----------------|----------------|-----------------------------|---------------------------------------------|-----|-----------|------|--|--|--|
|                           |                 | . ,            |                             | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$ |     | 3         |      |  |  |  |
|                           |                 |                | Push-pull, Figure 4         | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |     | 3.6       |      |  |  |  |
| <b>. .</b>                |                 |                |                             | $V_{CCB} = 5 V \pm 0.5 V$                   |     | 4.3       |      |  |  |  |
| t <sub>PHL</sub> Figure 8 |                 |                |                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 1.8 | 4.7       |      |  |  |  |
|                           |                 |                | Open-drain, Figure 5        | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 1.6 | 4.2       |      |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 1.2 | 4         | 20   |  |  |  |
|                           | В               | A              |                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 |     | 2.5       | ns   |  |  |  |
|                           |                 |                | Push-pull, Figure 4         | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |     | 1.6       |      |  |  |  |
| <b>. . . .</b>            |                 |                |                             | $V_{CCB} = 5 V \pm 0.5 V$                   |     | 1         |      |  |  |  |
| t <sub>PLH</sub> Figure 8 |                 |                |                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 44  | 170       |      |  |  |  |
|                           |                 |                | Open-drain, Figure 5        | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 37  | 140       |      |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 27  | 103       |      |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$ |     | 200       |      |  |  |  |
| t <sub>en</sub> Figure 9  | OE              | A or B         |                             | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |     | 200       | ns   |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 5 V \pm 0.5 V$                   |     | 200       | ns   |  |  |  |
|                           |                 |                | Push-pull, Figure 6         | $V_{CCB} = 2.5 V \pm 0.2 V$                 |     | 50        |      |  |  |  |
| t <sub>dis</sub> Figure 9 | OE              | A or B         |                             | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |     | 40        |      |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 5 V \pm 0.5 V$                   |     | 35        |      |  |  |  |
|                           | - <u>+</u>      |                | $V_{CCB} = 2.5 V \pm 0.2 V$ | 2.8                                         | 7.4 |           |      |  |  |  |
|                           |                 |                | Push-pull                   | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 2.1 | 6.6       |      |  |  |  |
|                           | <b>A</b>        |                |                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 0.9 | 5.6       |      |  |  |  |
| t <sub>rA</sub>           | A-pon           | t rise time    |                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 34  | 149       | ns   |  |  |  |
|                           |                 |                | Open-drain                  | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 28  | 121       |      |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 24  | 89        |      |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 1.3 | 8.3       |      |  |  |  |
|                           |                 |                | Push-pull                   | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 0.9 | 7.2       |      |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 0.4 | 6.1       |      |  |  |  |
| t <sub>rB</sub>           | B-port          | t rise time    |                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 35  | 151       | ns   |  |  |  |
|                           |                 |                | Open-drain                  | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 24  | 112       |      |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 12  | 81        |      |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 1.9 | 5.7       |      |  |  |  |
|                           |                 |                | Push-pull                   | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 1.4 | 5.5       |      |  |  |  |
|                           | A               | t fall time a  |                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 0.8 | 5.3       |      |  |  |  |
| t <sub>fA</sub>           | A-por           | t fall time    |                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 4.4 | 6.9       |      |  |  |  |
|                           |                 |                | Open-drain                  | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 4.3 | 6.2       |      |  |  |  |
|                           |                 |                | $V_{CCB} = 5 V \pm 0.5 V$   | 4.2                                         | 5.8 | <i></i> - |      |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 2.2 | 7.8       | ns   |  |  |  |
|                           |                 |                | Push-pull                   | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 2.4 | 6.7       |      |  |  |  |
|                           | _               |                |                             | $V_{CCB} = 5 V \pm 0.5 V$                   | 2.6 | 6.6       |      |  |  |  |
| t <sub>fB</sub>           | B-por           | t fall time    |                             | $V_{CCB} = 2.5 V \pm 0.2 V$                 | 5.1 | 8.8       |      |  |  |  |
|                           |                 |                | Open-drain                  | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 5.4 | 9.4       |      |  |  |  |
|                           |                 |                |                             | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$   | 5.4 | 10.4      |      |  |  |  |



# Switching Characteristics: $V_{CCA} = 2.5 V \pm 0.2 V$ (continued)

| PARAMETER     | FROM<br>(INPUT)      | TO<br>(OUTPUT) | TEST CONDITIONS                             | UNIT                                        |    |  |        |
|---------------|----------------------|----------------|---------------------------------------------|---------------------------------------------|----|--|--------|
|               |                      |                |                                             | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$ | 20 |  |        |
|               |                      | Push-pull      | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 22                                          |    |  |        |
| Max data rata |                      | or P           |                                             | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$   | 24 |  | Mbps   |
| Max Uala Tale | Max data rate A or B |                |                                             | $V_{CCB} = 2.5 \text{ V} \pm 0.2 \text{ V}$ | 2  |  | Ininha |
|               |                      |                | Open-drain                                  | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 2  |  |        |
|               |                      |                |                                             | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$   | 2  |  |        |

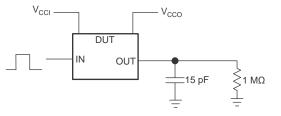
STRUMENTS


EXAS

# 6.11 Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$

| PARAMETER                        | FROM<br>(INPUT) | TO<br>(OUTPUT)            | TEST CONDI                       | TIONS (DRIVING)                             | MIN | MAX | UNIT |  |
|----------------------------------|-----------------|---------------------------|----------------------------------|---------------------------------------------|-----|-----|------|--|
|                                  |                 |                           | Push-pull, Figure 4              | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |     | 2.4 |      |  |
| Eigure 8                         |                 |                           |                                  | $V_{CCB} = 5 V \pm 0.5 V$                   |     | 3.1 |      |  |
| t <sub>PHL</sub> Figure 8        |                 |                           | Open-drain, Figure 5             | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 1.3 | 4.2 |      |  |
|                                  | А               | В                         | Open-urain, Figure 5             | $V_{CCB} = 5 V \pm 0.5 V$                   | 1.4 | 4.6 | ns   |  |
|                                  | A               | В                         | Push-pull, Figure 4              | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |     | 4.2 | 115  |  |
| t <sub>PLH</sub> Figure 8        |                 |                           | Fush-puil, Figure 4              | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$   |     | 4.4 |      |  |
| PLH FIGURE 0                     |                 |                           | Open-drain, Figure 5             | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 36  | 204 |      |  |
|                                  |                 |                           | Open-urain, Figure 5             | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$   | 28  | 165 |      |  |
|                                  |                 |                           | Duch null Figure 4               | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |     | 2.5 |      |  |
|                                  |                 |                           | Push-pull, Figure 4              | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$   |     | 3.3 |      |  |
| PHL Figure 8                     |                 |                           | Onen drein, Figure F             | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 1   | 124 |      |  |
|                                  | В               | ۸                         | Open-drain, Figure 5             | $V_{CCB} = 5 V \pm 0.5 V$                   | 1   | 97  |      |  |
|                                  | D               | A                         | Buch pull Figure 4               | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |     | 2.5 | ns   |  |
| Eigure 9                         |                 |                           | Push-pull, Figure 4              | $V_{CCB} = 5 \text{ V} \pm 0.5 \text{ V}$   |     | 2.6 |      |  |
| <sub>PLH</sub> Figure 8          |                 |                           | On en desir. Einens F            | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 3   | 139 |      |  |
|                                  |                 |                           | Open-drain, Figure 5             | $V_{CCB} = 5 V \pm 0.5 V$                   | 3   | 105 |      |  |
| <b>F</b> igure 0                 | 05              | A                         |                                  | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ |     | 200 |      |  |
| <sub>en</sub> Figure 9           | OE              | A or B                    |                                  | $V_{CCB} = 5 V \pm 0.5 V$                   |     | 200 | ns   |  |
| 5                                | 05              |                           | Push-pull, Figure 6              | V <sub>CCB</sub> = 3.3 V ± 0.3 V            |     | 40  | ns   |  |
| <sub>dis</sub> Figure 9          | OE              | A or B                    |                                  | $V_{CCB} = 5 V \pm 0.5 V$                   |     | 9.8 |      |  |
|                                  |                 |                           | Duch null                        | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 2.3 | 5.6 | - ns |  |
|                                  | A month         |                           | Push-pull                        | $V_{CCB} = 5 V \pm 0.5 V$                   | 1.9 | 4.8 |      |  |
| rA                               | A-port          | rise time                 | On an abasis                     | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 25  | 116 |      |  |
|                                  |                 |                           | Open-drain                       | $V_{CCB} = 5 V \pm 0.5 V$                   | 19  | 85  |      |  |
|                                  |                 |                           | Duch null                        | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 1.6 | 6.4 |      |  |
|                                  | Desert          |                           | Push-pull                        | $V_{CCB} = 5 V \pm 0.5 V$                   | 0.6 | 7.4 | 1    |  |
| rВ                               | B-port          | rise time                 | On en desir                      | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 26  | 116 | ns   |  |
|                                  |                 |                           | Open-drain                       | $V_{CCB} = 5 V \pm 0.5 V$                   | 14  | 72  |      |  |
|                                  |                 |                           | Duck cull                        | V <sub>CCB</sub> = 3.3 V ± 0.3 V            | 1.4 | 5.4 |      |  |
|                                  | <b>A</b>        | Coll Const                | Push-pull                        | $V_{CCB} = 5 V \pm 0.5 V$                   | 1   | 5   |      |  |
| fA                               | А-роп           | fall time                 | On an abasis                     | $V_{CCB} = 3.3 V \pm 0.3 V$                 | 4.3 | 6.1 |      |  |
|                                  |                 |                           | Open-drain                       | $V_{CCB} = 5 V \pm 0.5 V$                   | 4.2 | 5.7 |      |  |
|                                  |                 |                           | <b>D</b>                         | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 2.3 | 7.4 | ns   |  |
| t <sub>fB</sub> B-port fall time | (- 1) ('        | Push-pull                 | $V_{CCB} = 5 V \pm 0.5 V$        | 2.4                                         | 7.6 |     |      |  |
|                                  | tall time       | On an abait               | V <sub>CCB</sub> = 3.3 V ± 0.3 V | 5                                           | 7.6 |     |      |  |
|                                  | Open-drain      | $V_{CCB} = 5 V \pm 0.5 V$ | 4.8                              | 8.3                                         |     |     |      |  |
|                                  |                 |                           | Duck will                        | V <sub>CCB</sub> = 3.3 V ± 0.3 V            | 23  |     |      |  |
|                                  |                 | Push-pull                 | $V_{CCB} = 5 V \pm 0.5 V$        | 24                                          |     |     |      |  |
| Max data rate                    | A               | or B                      |                                  | $V_{CCB} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 2   |     | Mbps |  |
|                                  |                 |                           | Open-drain                       | $V_{CCB} = 5 V \pm 0.5 V$                   | 2   |     |      |  |




#### 6.12 Typical Characteristics



# 7 Parameter Measurement Information

# 7.1 Load Circuits

Figure 4 shows the push-pull driver circuit used for measuring data rate, pulse duration, propagation delay, output rise-time and fall-time. Figure 5 shows the open-drain driver circuit used for measuring data rate, pulse duration, propagation delay, output rise-time and fall-time.



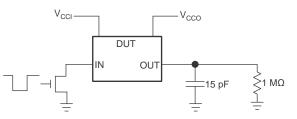
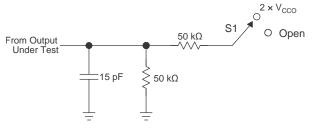




Figure 4. Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using a Push-Pull Driver

Figure 5. Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using an Open-Drain Driver



## Figure 6. Load Circuit for Enable-Time and Disable-Time Measurement

| TEST                                                       | S1                   |
|------------------------------------------------------------|----------------------|
| t <sub>PZL</sub> / t <sub>PLZ</sub><br>(t <sub>dis</sub> ) | 2 × V <sub>CCO</sub> |
| t <sub>PHZ</sub> / t <sub>PZH</sub><br>(t <sub>en</sub> )  | Open                 |

- 1.  $t_{\mathsf{PLZ}}$  and  $t_{\mathsf{PHZ}}$  are the same as  $t_{\mathsf{dis}}.$
- 2.  $t_{\text{PZL}}$  and  $t_{\text{PZH}}$  are the same as  $t_{\text{en}}.$
- 3.  $V_{\text{CCI}}$  is the  $V_{\text{CC}}$  associated with the input port.
- 4.  $V_{CCO}$  is the  $V_{CC}$  associated with the output port.



#### 7.2 Voltage Waveforms

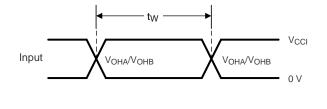
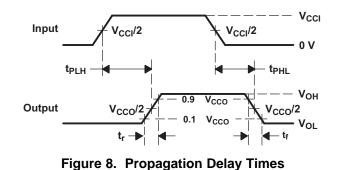
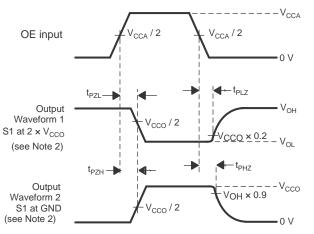




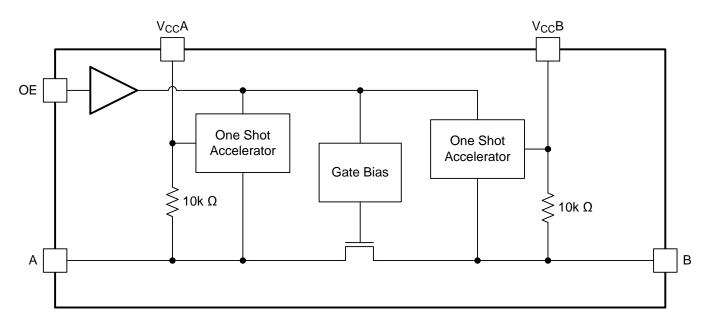

Figure 7. Pulse Duration (Push-Pull)





- C<sub>L</sub> includes probe and jig capacitance.
- Waveform 1 in Figure 9 is for an output with internal such that the output is high, except when OE is high (see Figure 6). Waveform 2 in Figure 9 is for an output with conditions such that the output is low, except when OE is high.
- All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z<sub>O</sub> = 50 Ω, dv/dt ≥ 1 V/ns.
- The outputs are measured one at a time, with one transition per measurement.
- t<sub>PLZ</sub> and t<sub>PHZ</sub> are the same as t<sub>dis</sub>.
- t<sub>PZL</sub> and t<sub>PZH</sub> are the same as t<sub>en</sub>.
- t<sub>PLH</sub> and t<sub>PHL</sub> are the same as t<sub>pd</sub>.
- $V_{CCI}$  is the  $V_{CC}$  associated with the input port.
- V<sub>CCO</sub> is the V<sub>CC</sub> associated with the output port.

#### Figure 9. Enable and Disable Times




### 8 Detailed Description

#### 8.1 Overview

The TXS0101 device is a directionless voltage-level translator specifically designed for translating logic voltage levels. The A port is able to accept I/O voltages ranging from 1.65 V to 3.6 V, while the B port can accept I/O voltages from 2.3 V to 5.5 V. The device is a pass gate architecture with edge rate accelerators (one shots) to improve the overall data rate. 10 k $\Omega$  pullup resistors, commonly used in open drain applications, have been conveniently integrated so that an external resistor is not needed. While this device is designed for open drain applications, the device can also translate push-pull CMOS logic outputs.

#### 8.2 Functional Block Diagram





## TXS0101 SCES638D – OCTOBER 2007 – REVISED JUNE 2017

## 8.3 Feature Description

## 8.3.1 Architecture

The TXS0101 architecture (see Figure 10) does not require a direction-control signal to control the direction of data flow from A to B or from B to A.

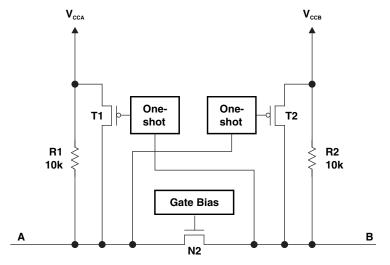



Figure 10. Architecture of a TXS01xx Cell

Each A-port I/O has an internal 10 k $\Omega$  pullup resistor to V<sub>CCA</sub>, and each B-port I/O has an internal 10 k $\Omega$  pullup resistor to V<sub>CCB</sub>. The output one-shots detect rising edges on the A or B ports. During a rising edge, the one-shot turns on the PMOS transistors (T1,T2) for a short duration, which speeds up the low-to-high transition.

#### 8.3.2 Input Driver Requirements

The fall time ( $t_{fA}$ ,  $t_{fB}$ ) of a signal depends on the output impedance of the external device driving the data I/Os of the TXS0101. Similarly, the  $t_{PHL}$  and max data rates also depend on the output impedance of the external driver. The values for  $t_{fA}$ ,  $t_{fB}$ ,  $t_{PHL}$ , and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50  $\Omega$ .

#### 8.3.3 Power Up

During operation, ensure that  $V_{CCA} \leq V_{CCB}$  at all times. During power-up sequencing,  $V_{CCA} \geq V_{CCB}$  does not damage the device, so any power supply can be ramped up first.

#### 8.3.4 Enable and Disable

The TXS0101 has an OE input that is used to disable the device by setting OE low, which places all I/Os in the Hi-Z state. The disable time ( $t_{dis}$ ) indicates the delay between the time when OE goes low and when the outputs actually get disabled (Hi-Z). The enable time ( $t_{en}$ ) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

#### 8.3.5 Pullup or Pulldown Resistors on I/O Lines

Each A-port I/O has an internal 10 k $\Omega$  pullup resistor to V<sub>CCA</sub>, and each B-port I/O has an internal 10 k $\Omega$  pullup resistor to V<sub>CCB</sub>. If a smaller value of pullup resistor is required, an external resistor must be added from the I/O to V<sub>CCA</sub> or V<sub>CCB</sub> (in parallel with the internal 10 k $\Omega$  resistors).

### 8.4 Device Functional Modes

The TXS0101 device has two functional modes, enabled and disabled. To disable the device set the OE input low, which places all I/Os in a high impedance state. Setting the OE input high will enable the device.

TEXAS INSTRUMENTS

www.ti.com

### 9 Application and Implementation

#### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

#### 9.1 Application Information

The TXS0101 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The TXS0101 is ideal for use in applications where an open-drain driver is connected to the data I/Os. The TXB0101 can also be used in applications where a push-pull driver is connected to the data I/Os, but the TXB0102 might be a better option for such push-pull applications.

#### 9.2 Typical Application

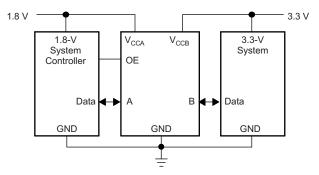



Figure 11. Typical Application Schematic

#### 9.2.1 Design Requirements

For this design example, use the parameters listed in Table 1.

#### **Table 1. Design Parameters**

| DESIGN PARAMETER     | EXAMPLE VALUE |
|----------------------|---------------|
| Input voltage range  | 1.65 to 3.6 V |
| Output voltage range | 2.3 to 5.5 V  |

#### 9.2.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
  - Use the supply voltage of the device that is driving the TXS0101 device to determine the input voltage range. For a valid logic high the value must exceed the V<sub>IH</sub> of the input port. For a valid logic low the value must be less than the V<sub>IL</sub> of the input port.
- Output voltage range
  - Use the supply voltage of the device that the TXS0101 device is driving to determine the output voltage range.
  - The TXS0101 device has 10 kΩ internal pullup resistors. External pullup resistors can be added to reduce the total RC of a signal trace if necessary.



(1)

An external pull down resistor decreases the output V<sub>OH</sub> and V<sub>OL</sub>. Use Equation 1 to calculate the V<sub>OH</sub> as a result of an external pull down resistor.

 $V_{OH} = V_{CCx} \times R_{PD} / (R_{PD} + 10 \text{ k}\Omega)$ 

where

- $V_{\text{CCx}}$  is the supply voltage on either  $V_{\text{CCA}}$  or  $V_{\text{CCB}}$
- R<sub>PD</sub> is the value of the external pull down resistor

#### 9.2.3 Application Curve

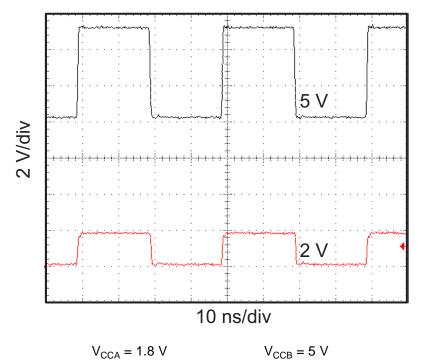



Figure 12. Level-Translation of a 2.5-MHz Signal

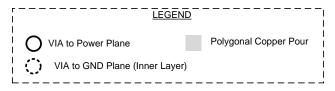


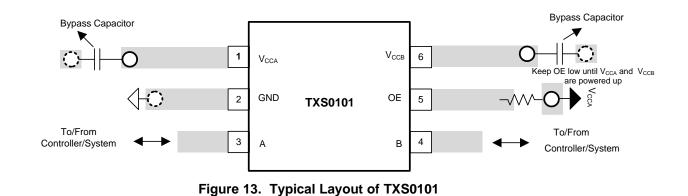
### **10** Power Supply Recommendations

The TXS0101 device uses two separate configurable power-supply rails, V<sub>CCA</sub> and V<sub>CCB</sub>. V<sub>CCB</sub> accepts any supply voltage from 2.3 V to 5.5 V and V<sub>CCA</sub> accepts any supply voltage from 1.65 V to 3.6 V as long as Vs is less than or equal to V<sub>CCB</sub>. The A port and B port are designed to track V<sub>CCA</sub> and V<sub>CCB</sub> respectively allowing for low voltage bidirectional translation between any of the 1.8 V, 2.5 V, 3.3 V, and 5 V voltage nodes.

The TXS0101 device does not require power sequencing between V<sub>CCA</sub> and V<sub>CCB</sub> during power-up so the power-supply rails can be ramped in any order. A V<sub>CCA</sub> value greater than or equal to V<sub>CCB</sub> (V<sub>CCA</sub>  $\ge$  V<sub>CCB</sub>) does not damage the device, but during operation, V<sub>CCA</sub> must be less than or equal to V<sub>CCB</sub> (V<sub>CCA</sub>  $\le$  V<sub>CCB</sub>) at all times.

The output-enable (OE) input circuit is designed so that it is supplied by  $V_{CCA}$  and when the (OE) input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the OE input pin must be tied to GND through a pulldown resistor and must not be enabled until  $V_{CCA}$  and  $V_{CCB}$  are fully ramped and stable. The minimum value of the pulldown resistor to ground is determined by the current-sourcing capability of the driver.


## 11 Layout


#### 11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended.

- Bypass capacitors should be used on power supplies.
- Short trace lengths should be used to avoid excessive loading.
- PCB signal trace-lengths must be kept short enough so that the round-trip delay of any reflection is less than the one shot duration, approximately 30 ns, ensuring that any reflection encounters low impedance at the source driver.
- Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements

### 11.2 Layout Example









## **12 Device and Documentation Support**

#### 12.1 Device Support

#### 12.1.1 Related Documentation

For related documentation, see the following:

- A Guide to Voltage Translation With TXS-Type Translators, SCEA044
- Introduction to Logic, SLVA700

#### 12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

#### 12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E<sup>™</sup> Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support TI's Design Support** Quickly find helpful E2E forums along with design support tools and contact information for technical support.

#### 12.4 Trademarks

NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

#### 12.5 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

#### 12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

### 13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.



22-Dec-2017

## PACKAGING INFORMATION

| Orderable Device | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish<br>(6) | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|---------------|--------------|--------------------|------|----------------|----------------------------|-------------------------|--------------------|--------------|-------------------------|---------|
| TXS0101DBVR      | ACTIVE        | SOT-23       | DBV                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 85    | (NFFF, NFFR)            | Samples |
| TXS0101DBVRG4    | ACTIVE        | SOT-23       | DBV                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 85    | (NFFF, NFFR)            | Samples |
| TXS0101DBVT      | ACTIVE        | SOT-23       | DBV                | 6    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -55 to 125   | NFFR                    | Samples |
| TXS0101DBVTG4    | ACTIVE        | SOT-23       | DBV                | 6    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 85    | NFFR                    | Samples |
| TXS0101DCKR      | ACTIVE        | SC70         | DCK                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 85    | 2GO                     | Samples |
| TXS0101DCKRG4    | ACTIVE        | SC70         | DCK                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 85    | 2GO                     | Samples |
| TXS0101DCKT      | ACTIVE        | SC70         | DCK                | 6    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 85    | 2GO                     | Samples |
| TXS0101DRLR      | ACTIVE        | SOT-5X3      | DRL                | 6    | 4000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 85    | 2GR                     | Samples |
| TXS0101DRLRG4    | ACTIVE        | SOT-5X3      | DRL                | 6    | 4000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-1-260C-UNLIM | -40 to 85    | 2GR                     | Samples |
| TXS0101YZPR      | ACTIVE        | DSBGA        | YZP                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | SNAGCU                  | Level-1-260C-UNLIM | -40 to 85    | (2G7, 2GN)              | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

**PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

**RoHS Exempt:** TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.



22-Dec-2017

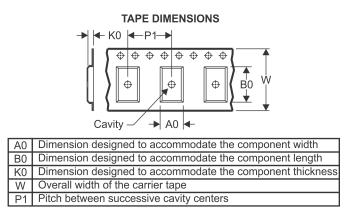
<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

<sup>(6)</sup> Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


# PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

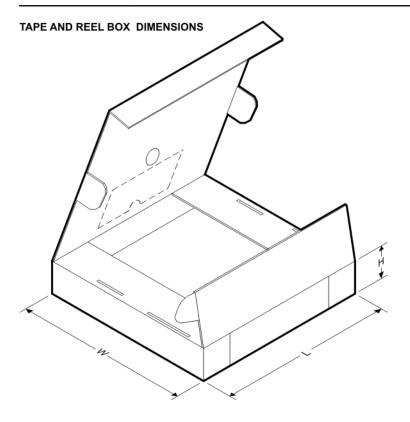
## TAPE AND REEL INFORMATION





## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



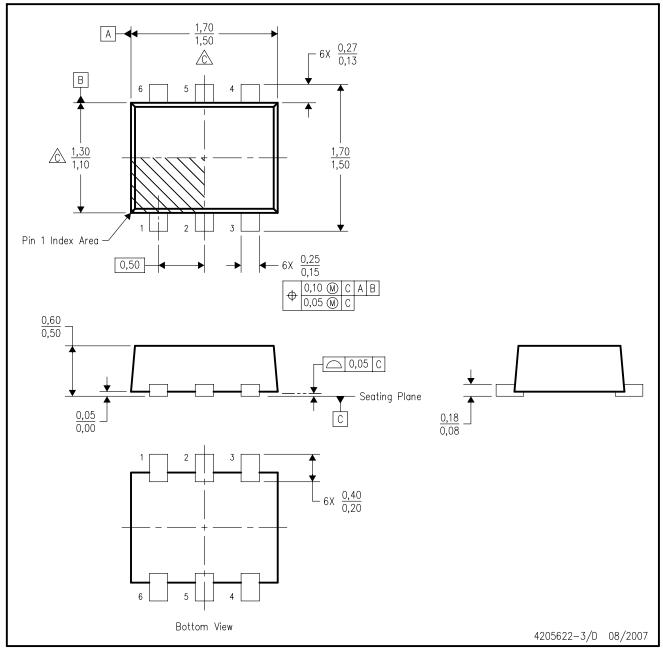

| *All dimensions are nomina | I               |                    |   |      |                          |                          |            |            |            |            |           |                  |
|----------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| Device                     | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
| TXS0101DBVR                | SOT-23          | DBV                | 6 | 3000 | 180.0                    | 8.4                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| TXS0101DBVT                | SOT-23          | DBV                | 6 | 250  | 180.0                    | 8.4                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| TXS0101DCKR                | SC70            | DCK                | 6 | 3000 | 179.0                    | 8.4                      | 2.2        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| TXS0101DCKT                | SC70            | DCK                | 6 | 250  | 179.0                    | 8.4                      | 2.2        | 2.5        | 1.2        | 4.0        | 8.0       | Q3               |
| TXS0101DRLR                | SOT-5X3         | DRL                | 6 | 4000 | 180.0                    | 8.4                      | 1.98       | 1.78       | 0.69       | 4.0        | 8.0       | Q3               |
| TXS0101YZPR                | DSBGA           | YZP                | 6 | 3000 | 178.0                    | 9.2                      | 1.02       | 1.52       | 0.63       | 4.0        | 8.0       | Q1               |

Texas Instruments

www.ti.com

# PACKAGE MATERIALS INFORMATION

5-Aug-2017




\*All dimensions are nominal

| Device      | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TXS0101DBVR | SOT-23       | DBV             | 6    | 3000 | 202.0       | 201.0      | 28.0        |
| TXS0101DBVT | SOT-23       | DBV             | 6    | 250  | 202.0       | 201.0      | 28.0        |
| TXS0101DCKR | SC70         | DCK             | 6    | 3000 | 203.0       | 203.0      | 35.0        |
| TXS0101DCKT | SC70         | DCK             | 6    | 250  | 203.0       | 203.0      | 35.0        |
| TXS0101DRLR | SOT-5X3      | DRL             | 6    | 4000 | 202.0       | 201.0      | 28.0        |
| TXS0101YZPR | DSBGA        | YZP             | 6    | 3000 | 220.0       | 220.0      | 35.0        |

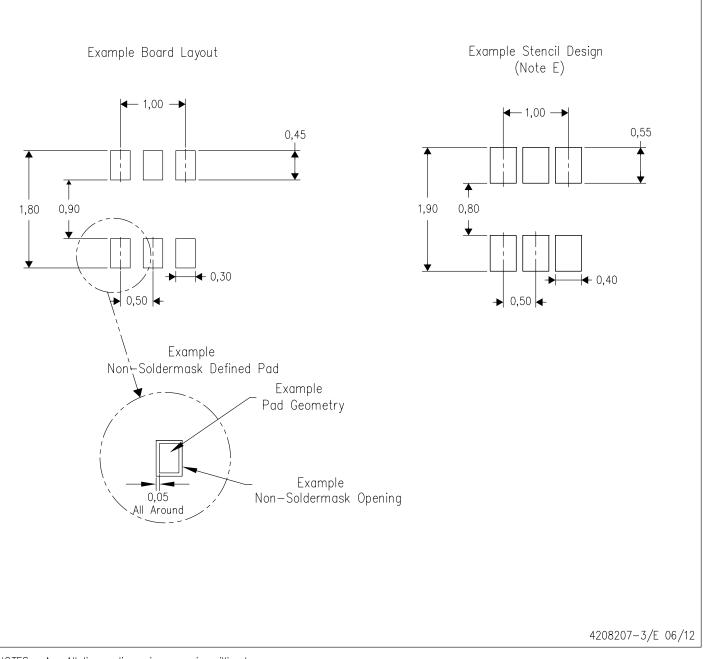
DRL (R-PDSO-N6)

PLASTIC SMALL OUTLINE



NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. B. This drawing is subject to change without notice.


🖄 Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.

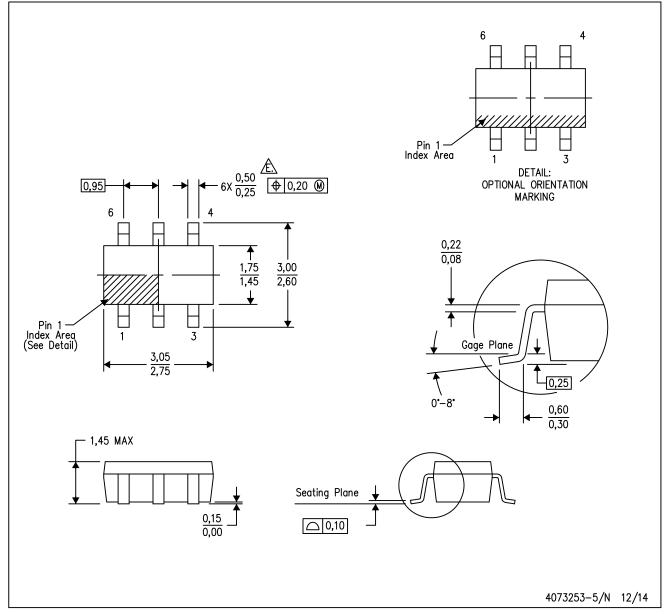
D. JEDEC package registration is pending.



DRL (R-PDSO-N6)

PLASTIC SMALL OUTLINE

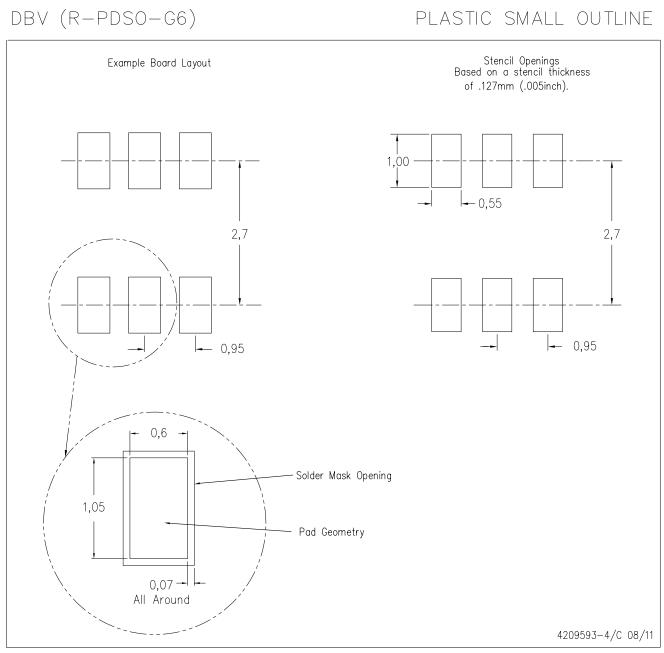



NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.



DBV (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE

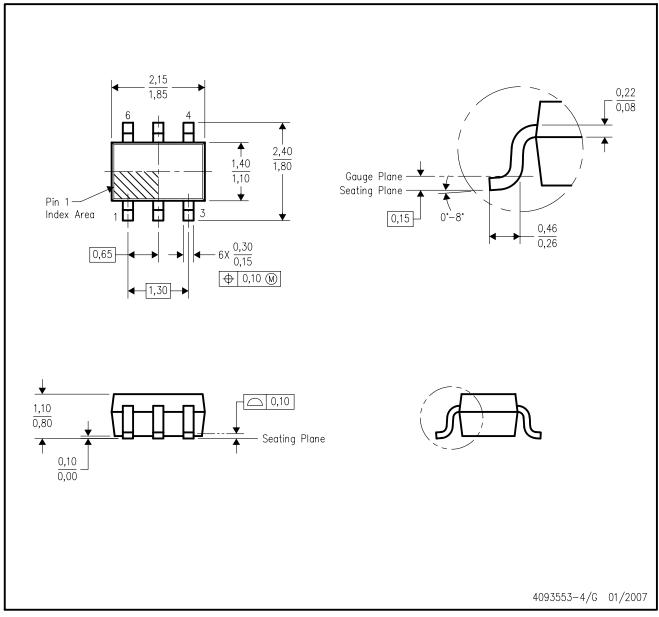


- NOTES:
  - A. All linear dimensions are in millimeters.
  - B. This drawing is subject to change without notice.
  - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
  - D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
  - È Falls within JEDEC MO-178 Variation AB, except minimum lead width.



# LAND PATTERN DATA

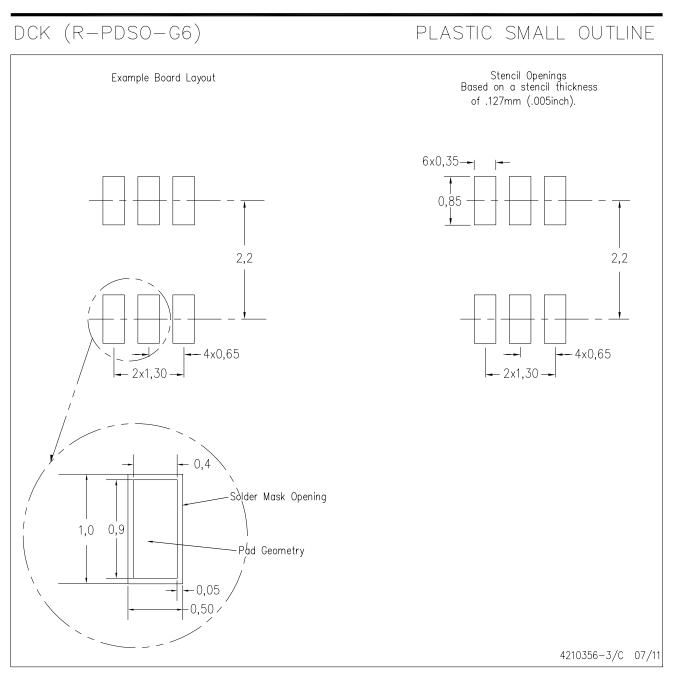



NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.



DCK (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE



- NOTES: A. All linear dimensions are in millimeters.
  - B. This drawing is subject to change without notice.
  - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
  - D. Falls within JEDEC MO-203 variation AB.



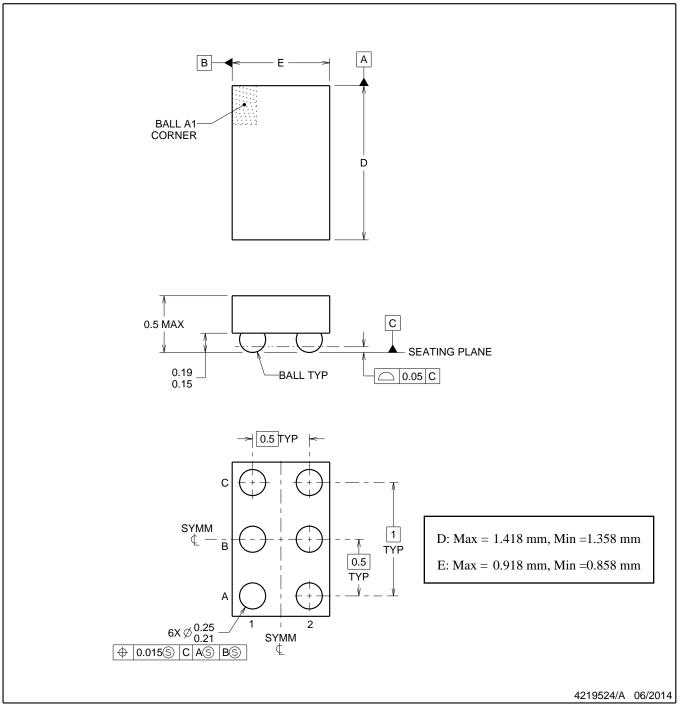
# LAND PATTERN DATA



NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.




# **YZP0006**



# **PACKAGE OUTLINE**

# DSBGA - 0.5 mm max height

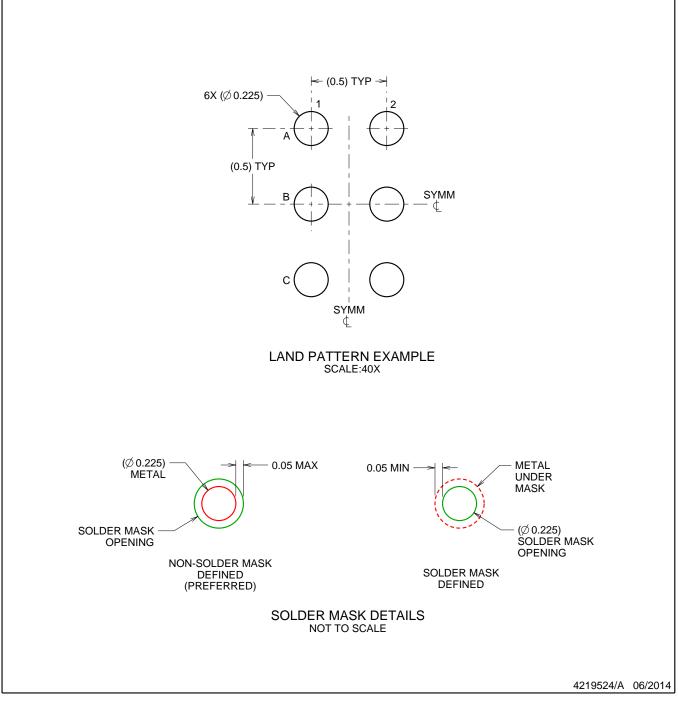
DIE SIZE BALL GRID ARRAY



NOTES:

NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. NanoFree<sup>™</sup> package configuration.




# YZP0006

# **EXAMPLE BOARD LAYOUT**

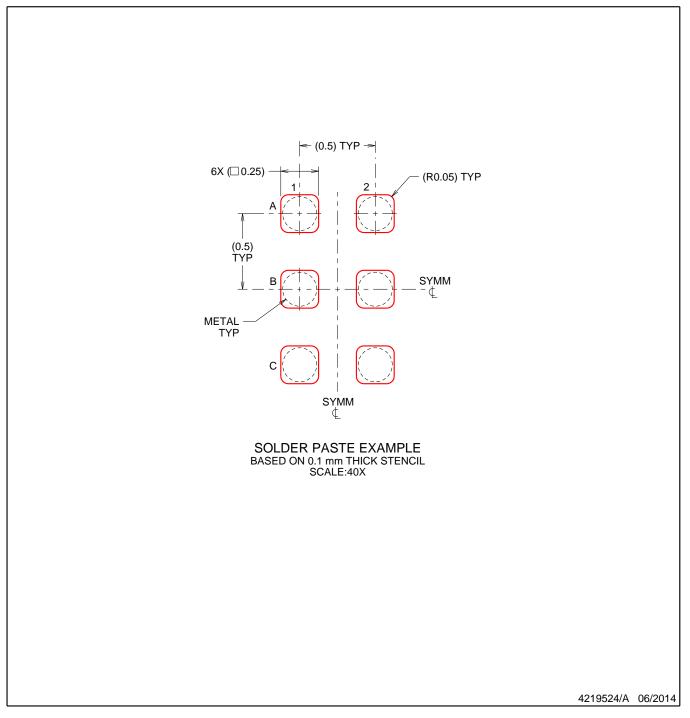
# DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).




# YZP0006

# **EXAMPLE STENCIL DESIGN**

# DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated