

MMC, SD CARD, Memory Stick[™] VOLTAGE-TRANSLATION TRANSCEIVER WITH ESD PROTECTION AND EMI FILTERING

Check for Samples: TXS0206

FEATURES

- Level Translator
 - V_{CCA} and V_{CCB} Range of 1.1 V to 3.6 V
 - Fast Propagation Delay (4 ns Max When Translating Between 1.8 V and 3 V)
- Integrated EMI Filtering and ESD Protection Circuitry
- ESD Protection Exceeds JESD 22 (A Port)
 - 2500-V Human-Body Model (A114-B)
 - 250-V Machine Model (A115-A)
 - 1500-V Charged-Device Model (C101)
- ±8-kV Contact Discharge IEC 61000-4-2 ESD (B-port)

	YFP (T			(AG EW)	E
	1	2	3	4	_
A	\bigcirc	\bigcirc	\bigcirc	()	
В	\bigcirc	()	()	\bigcirc	
С	\bigcirc	()	()	\bigcirc	
D	\bigcirc	()	()	\bigcirc	
E	()	\bigcirc	\bigcirc	()	

TERMINAL ASSIGNMENTS

	1	2	3	4
Α	DAT2A	V _{CCA}	WP	DAT2B
В	DAT3A	CD	V _{CCB}	DAT3B
С	CMDA	GND	GND GND	
D	DAT0A	CLKA	CLKB	DAT0B
E	DAT1A	CLK-f	EN	DAT1B

DESCRIPTION/ORDERING INFORMATION

The TXS0206 is a level shifter for interfacing microprocessors with MultiMediaCards (MMCs), secure digital (SD) cards, and Memory Stick[™] cards. It includes a high-speed level translator along with ESD protection and EMI filtering circuitry.

The voltage-level translator has two supply voltage pins. V_{CCA} as well as V_{CCB} can be operated over the full range of 1.1 V to 3.6 V. The TXS0206 enables system designers to easily interface applications processors or digital basebands to memory cards and SDIO peripherals operating at a different I/O voltage level.

Memory card standards recommend high-ESD protection for devices that connect directly to the external memory card. To meet this need, the TXS0206 incorporates ±8-kV Contact Discharge protection on the card side.

The TXS0206 is offered in a 20-bump wafer chip scale package (WCSP). This package has dimensions of 1.96 mm x 1.56 mm, with a 0.4-mm ball pitch for effective board-space savings. Memory cards are widely used in mobile phones, PDAs, digital cameras, personal media players, camcorders, set-top boxes, etc. Low static power consumption and small package size make the TXS0206 an ideal choice for these applications.

ORDERING INFORMATION⁽¹⁾

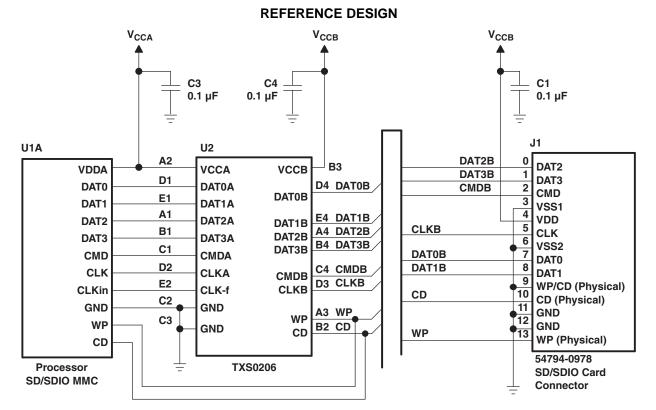
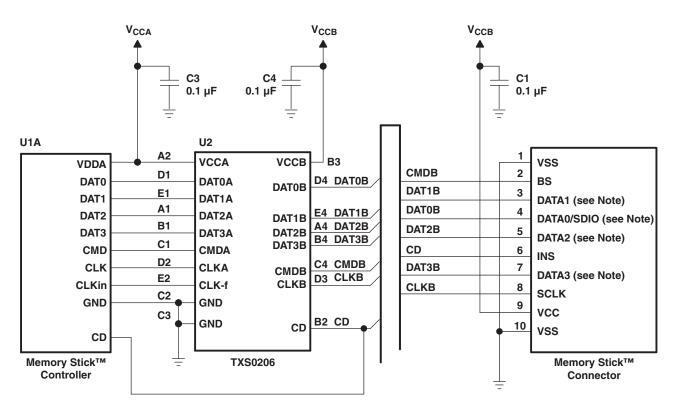
T _A	PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽³⁾	
–40°C to 85°C	WCSP – YFP (Pb-free)	Tape and reel	TXS0206YFPR	3T_	

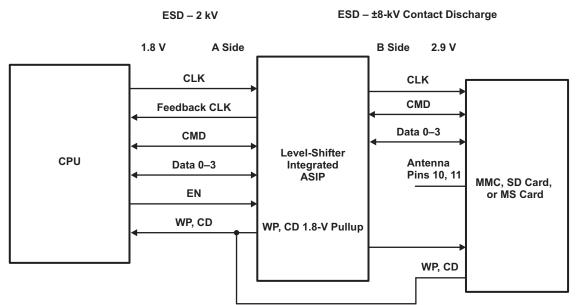
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

YFP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following (3)character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, •= Pb-free).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.


Figure 1. Interfacing With SD/SDIO Card

NOTE: The TXS0206 has integrated pullup resistor values that dynamically change value depending on whether a low or high signal is being transmitted through the device. When the output is low, the TXS0206 internal pullup value is 40 kΩ, and when the output is high, the internal pullup value change to a value of 4 kΩ. For MSA and MSH Memory Stick[™] memory cards, to ensure that a valid V_{IH} (i.e., receiver input voltage high) is achieved, the internal pulldown resistors for these memory cards are not smaller than a 10-kΩ value. See the *Application Information* section of this data sheet, which explains the impact of adding too heavy (i.e., <10-kΩ value) of a pulldown resistor to the data lines of the TXS0206 device and the resulting 4-kΩ pullup/10-kΩ pulldown voltage divider network, which has a direct impact on the V_{IH} of the signal being sent into the Memory Stick[™].

Figure 2. Interfacing With Memory Stick[™] Card

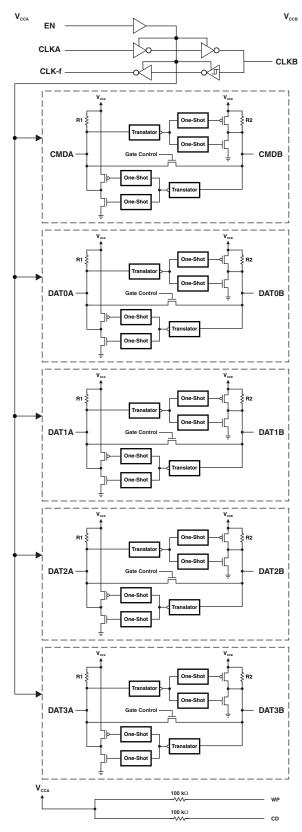
Integrated Pullup/Pulldown Resistors

Figure 3. Typical Application Circuit

EN TRANSLATOR I/Os					
L	Disabled, pulled to V_{CCA},V_{CCB} through 40 $k\Omega$				
н	Active				

LOGIC TABLE

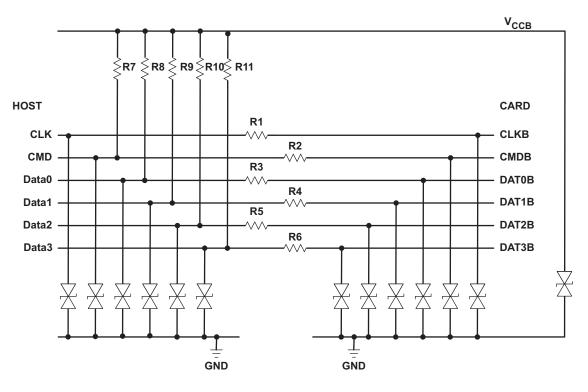
Texas

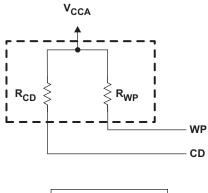

INSTRUMENTS

SCES697C - AUGUST 2009-REVISED JANUARY 2010

TERMINAL FUNCTIONS

TER	TERMINAL				DESCRIPTION			
NO.	NAME	TYPE	DESCRIPTION					
A1	DAT2A	I/O	Data bit 2 connected to host. Referenced to V_{CCA} . Includes a 40-k Ω pullup resistor to V_{CCA} .					
A2	V _{CCA}	Pwr	A-port supply voltage. V _{CCA} powers all A-port I/Os and control inputs.					
A3	WP	0	Connected to write protect on the mechanical connector. The WP pin has an internal 100-k Ω pullup resistor to V _{CCA} .					
A4	DAT2B	I/O	Data bit 2 connected to memory card. Referenced to V_{CCB} . Includes a 40-k Ω pullup resistor to V_{CCB} .					
B1	DAT3A	I/O	Data bit 3 connected to host. Referenced to V_{CCA} . Includes a 40-k Ω pullup resistor to V_{CCA} .					
B2	CD	0	Connected to card detect on the mechanical connector. The CD pin has an internal 100-k Ω pullup resistor to V_{CCA}					
B3	V _{CCB}	Pwr	B-port supply voltage. V _{CCB} powers all B-port I/Os.					
B4	DAT3B	I/O	Data bit 3 connected to memory card. Referenced to V_{CCB} . Includes a 40-k Ω pullup resistor to V_{CCB} .					
C1	CMDA	I/O	Command bit connected to host. Referenced to V_{CCA} . Includes a 40-k Ω pullup resistor to V_{CCA} .					
C2, C3	GND		Ground					
C4	CMDB	I/O	Command bit connected to memory card. Referenced to V_{CCB} . Includes a 40-k Ω pullup resistor to V_{CCB} .					
D1	DAT0A	I/O	Data bit 0 connected to host. Referenced to V_{CCA} . Includes a 40-k Ω pullup resistor to V_{CCA} .					
D2	CLKA	I	Clock signal connected to host. Referenced to V _{CCA} .					
D3	CLKB	0	Clock signal connected to memory card. Referenced to V _{CCB} .					
D4	DAT0B	I/O	Data bit 0 connected to memory card. Referenced to V_{CCB} . Includes a 40-k Ω pullup resistor to V_{CCB} .					
E1	DAT1A	I/O	Data bit 1 connected to host. Referenced to V_{CCA} . Includes a 40-k Ω pullup resistor to V_{CCA} .					
E2	CLK-f	0	Clock feedback to host for resynchronizing data to a processor. Leave unconnected if not used.					
E3	EN	I	Enable/disable control. Pull EN low to place all outputs in Hi-Z state. Referenced to V _{CCA} .					
E4	DAT1B	I/O	Data bit 1 connected to memory card. Referenced to V_{CCB} . Includes a 40-k Ω pullup resistor to V_{CCB} .					





SCES697C - AUGUST 2009-REVISED JANUARY 2010

RESISTORS			BIDIRECTIONAL ZE	NER DIODES
R1, R2, R3, R4, R5, R6	40 Ω		Vbr min	14 V at 1 mA
Tolerance	±20%		Line capacitance	<20 pF
R7, R8, R9, R10, R11	40 kΩ			
Tolerance	±30%			

Figure 5. ASIP Block Diagram

RESISTORS			
R _{WP} , R _{CD}	100 kΩ		
Tolerance	±30%		

Figure 6. WP, CD Pullup Resistors

ABSOLUTE MAXIMUM RATINGS⁽¹⁾ Level Translator

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V_{CCA}	Supply voltage range		-0.5	4.6	V	
V _{CCB}	Supply voltage range		-0.5	4.6	V	
		I/O ports (A port)	-0.5	4.6		
VI	Input voltage range	I/O ports (B port)	-0.5	4.6	V	
		Control inputs	-0.5	4.6		
	Voltage range applied to any output in the high-impedance or power-off	A port	-0.5	4.6	V	
Vo	state	B port	-0.5	4.6		
V		A port	-0.5	4.6	V	
Vo	Voltage range applied to any output in the high or low state	B port	-0.5	4.6	V	
I _{IK}	Input clamp current	V ₁ < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
I _O	Continuous output current		±50	mA		
	Continuous current through V _{CCA} or GND				mA	
T _{stg}	Storage temperature range		-65	150	°C	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL IMPEDANCE RATINGS

θ_{JA}	Package thermal impedance ⁽¹⁾	117	°C/W

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾ Level Translator

			V _{CCA}	V _{CCB}	MIN	MAX	UNIT	
V _{CCA}	Supply voltage				1.1	3.6	V	
V _{CCB}	Supply voltage				1.1	3.6	V	
		A-Port CMD and	1.1 V to 1.95 V	1.1 V to 1.95 V				
V _{IH}	High-level input voltage	DATA I/Os B-Port CMD and DATA I/Os	1.95 V to 3.6 V	1.95 V to 3.6 V	V _{CCI} - 0.2	V _{CCI}	V	
		EN and CLKA	1.1 V to 3.6 V	1.1 V to 3.6 V	V _{CCI} x 0.65	V _{CCI}		
		A-Port CMD and	1.1 V to 1.95 V	1.1 V to 1.95 V				
V _{IL}	Low-level input voltage	DATA I/Os B-Port CMD and DATA I/Os	1.95 V to 3.6 V	1.95 V to 3.6 V	0	0.15	V	
		EN and CLKA	1.1 V to 3.6 V	1.1 V to 3.6 V	0	V _{CCI} x 0.35		
V	Output voltage	Active state			0	V _{CCO}	V	
Vo	Output voltage	3-state			0	3.6	V	
			1.1 V to 3.6 V			-100	μA	
		-	1.1 V to 1.3 V			-0.5	-	
	link laural autout au	ment (OLK foutput)	1.4 V to 1.6 V			-1		
I _{ОН}	High-level output current (CLK-f output)		1.65 V to 1.95 V	1.1 V to 3.6 V		-2	mA	
			2.3 V to 2.7 V			-4		
			3 V to 3.6 V			-8		
			1.1 V to 3.6 V			100	μA	
		-	1.1 V to 1.3 V			0.5		
			1.4 V to 1.6 V			1		
I _{OL}	Low-level output cu	rent (CLK-r output)	1.65 V to 1.95 V	1.1 V to 3.6 V		2	mA	
		-	2.3 V to 2.7 V			4		
						8		
				1.1 V to 3.6 V		-100		
				1.1 V to 1.3 V		-0.5		
	link laural autout au			1.4 V to 1.6 V		-1		
I _{ОН}	High-level output cu	rrent (CLK output)	1.1 V to 3.6 V	1.65 V to 1.95 V		-2		
				2.3 V to 2.7 V		-4		
				3 V to 3.6 V		-8		
				1.1 V to 3.6 V		100	μA	
				1.1 V to 1.3 V		0.5		
		ment (CLK output)	11/10261	1.4 V to 1.6 V		1		
I _{OL}	Low-level output cu	ient (CLK output)	1.1 V to 3.6 V	1.65 V to 1.95 V		2	mA	
				2.3 V to 2.7 V		4		
				3 V to 3.6 V		8	8	
Δt/Δv	Input transition rise	or fall rate				5	ns/V	
T _A	Operating free-air te	emperature			-40	85	°C	

(1) All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

ELECTRICAL CHARACTERISTICS Level Translator

over recommended operating free-air temperature range (unless otherwise noted)

F	PARAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN	TYP ⁽¹⁾ MAX	UNIT
		I _{OH} = −100 μA	1.1 V to 3.6 V	_	V _{CCA} * 0.8		
		I _{OH} = -0.5 mA	1.1 V		0.8		
	A port	I _{OH} = -1 mA	1.4 V		1.05		
	(CLK-f output)	I _{OH} = -2 mA	1.65 V		1.2		
V _{OH}		$I_{OH} = -4 \text{ mA}$	2.3 V	1.1 V to 3.6 V	1.75		V
		I _{OH} = -8 mA	3 V		2.3		
	A port (DAT and CMD outputs)	I _{OH} = -20 μA	1.1 V to 3.6 V		V _{CCA} × 0.8		
		I _{OL} = 100 μA	1.1 V to 3.6 V			V _{CCA} × 0.8	
		I _{OL} = 0.5 mA	1.1 V			0.35	V
	A port (CLK-f output)	I _{OL} = 1 mA	1.4 V	1.1 V to 3.6 V		0.35	
		$I_{OL} = 2 \text{ mA}$	1.65 V			0.45	
		$I_{OL} = 4 \text{ mA}$	2.3 V			0.55	
V _{OL}		I _{OL} = 8 mA	3 V			0.7	
		I _{OL} = 135 μA	1.1 V to 3.6 V			0.4	
	A port	I _{OL} = 180 μA				0.4	V
	(DAT and CMD	I _{OL} = 220 μA				0.4	
	outputs)	I _{OL} = 300 μA				0.4	
		I _{OL} = 400 μA				0.55	
		I _{OH} = −100 μA		1.1 V to 3.6 V	$V_{CCA} \times 0.8$		
		I _{OH} = -0.5 mA		1.1 V	0.8		
	B port	$I_{OH} = -1 \text{ mA}$		1.4 V	1.05		
V _{OH}	(CLK output)	$I_{OH} = -2 \text{ mA}$	1.1 V to 3.6 V	1.65 V	1.2		v
·UH		$I_{OH} = -4 \text{ mA}$		2.3 V	1.75		v
		I _{OH} = -8 mA		3 V	2.3		
	B port (DAT output)	I _{OH} = -20 μA		1.1 V to 3.6 V	$V_{CCA} \times 0.8$		

(1) All typical values are at $T_A = 25^{\circ}C$.

ELECTRICAL CHARACTERISTICS Level Translator (continued)

I	PARAMETER	TEST CONDITIO	NS V _{CCA}	V _{CCB}	MIN TYP ⁽¹⁾ MAX	UNIT
		I _{OL} = 100 μA		1.1 V to 3.6 V	$V_{CCA} \times 0.3$	3
		I _{OL} = 0.5 mA		1.1 V	0.3	5
	D nort	I _{OL} = 1 mA	11/10261/	1.4 V	0.3	5 V
	B port	$I_{OL} = 2 \text{ mA}$	1.1 V to 3.6 V	1.65 V	0.4	
		$I_{OL} = 4 \text{ mA}$		2.3 V	0.5	5
V_{OL}		I _{OL} = 8 mA		3 V	0.	7
		I _{OL} = 135 μA		1.1 V to 3.6 V	0	1
	B port (DAT output)	I _{OL} = 180 μA		1.4 V	0	1
		I _{OL} = 220 μA	1.1 V to 3.6 V	1.65 V	0.4	4 V
		I _{OL} = 300 μA		2.3 V	0.4	1
		I _{OL} = 400 μA		3 V	0.5	5
I _I	Control inputs	$V_I = V_{CCA}$ or GND		1.1 V to 3.6 V	±	I μA
I_{CCA}		$V_{I} = V_{CCI} \text{ or } GND, I_{O}$	= 0 1.1 V to 3.6 V	1.1 V to 3.6 V		δµΑ
I _{CCB}		$V_{I} = V_{CCI} \text{ or } GND, I_{O}$	= 0 1.1 V to 3.6 V	1.1 V to 3.6 V		5 μΑ
<u> </u>	A port				5.5 6.4	5 5
C _{io}	B port				15 17.	pF
~	Control inputs				3.5 4.4	5
Ci	Clock input	$V_{I} = V_{CCA}$ or GND			3	pF 1

SCES697C - AUGUST 2009 - REVISED JANUARY 2010

www.ti.com

TIMING REQUIREMENTS

 $V_{CCA} = 1.2 V \pm 0.1 V$

over recommended operating free-air temperature range (unless otherwise noted)

			V _{ССВ} = ± 0.1		V _{ССВ} = ± 0.		V _{ССВ} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Commond	Push-pull driving		30		40		40		40		40	Mana
Data rata	Command	Open-drain driving		0.9		1		1		1		1	Mbps
Data rate	Clock	Duch mult driving		30		40		50		60		60	MHz
	Data	Push-pull driving		30		40		40		40		40	Mbps
	Commond	Push-pull driving	33		25		25		25		25		ns
Pulse	Command	Open-drain driving	1		1		1		1		1		μs
t _W duration	Clock	Duch mult driving	16.7		12.5		10		8.3		8.3		ns
	Data	Push-pull driving	33		25		25		25		25		ns

TIMING REQUIREMENTS

 $V_{CCA} = 1.5 V \pm 0.1 V$

over recommended operating free-air temperature range (unless otherwise noted)

			V _{ССВ} = ± 0.1		V _{ССВ} = ± 0.1		V _{CCB} = ± 0.7		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
			MIN	MAX									
	Command	Push-pull driving		30		60		60		60		60	Mhaa
Data rate	Command	Open-drain driving		1		1		1		1		1	Mbps
Dala fale	Clock	Duch mult driving		50		60		60		60		60	MHz
	Data	Push-pull driving		30		60		60		60		60	Mbps
	Command	Push-pull driving	33		17		17		17		17		ns
, Pulse	Command	Open-drain driving	1		1		1		1		1		μs
t _W duration	Clock	Duch null driving	10		8.3		8.3		8.3		8.3		ns
	Data	Push-pull driving	33		17		17		17		17		ns

TIMING REQUIREMENTS $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$

			V _{ССВ} = ± 0.1		V _{CCB} = ± 0.		V _{ССВ} = ± 0.1		V _{ССВ} = ± 0.2		V _{ССВ} = ± 0.3		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Commond	Push-pull driving		30		60		60		60		60	Maria
Data sata	Command	Open-drain driving		1		1		1		1		1	Mbps
Data rate	Clock	Duch mult driving		50		60		60		60		60	MHz
	Data	Push-pull driving		30		60		60		60		60	Mbps
	Commond	Push-pull driving	33		17		17		17		17		ns
Pulse	Command	Open-drain driving	1		1		1		1		1		μs
t _W duration	Clock	Development and the second	10		8.3		8.3		8.3		8.3		ns
1	Data	Push-pull driving	33		17		17		17		17		ns

TIMING REQUIREMENTS

 $V_{CCA} = 2.5 V \pm 0.2 V$

over recommended operating free-air temperature range (unless otherwise noted)

			V _{CCB} = ± 0.1		V _{CCB} = ± 0.1		V _{CCB} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
			MIN	MAX									
	Command	Push-pull driving		30		60		60		60		60	Mhaa
Data rata	Command	Open-drain driving		1		1		1		1		1	Mbps
Data rate	Clock	Push-pull driving		60		60		60		60		60	MHz
	Data	Push-puil anving		30		60		60		60		60	Mbps
	Command	Push-pull driving	33		17		17		17		17		ns
. Pulse	Command	Open-drain driving	1		1		1		1		1		μs
t _W duration	Clock	Duch null driving	8.3		8.3		8.3		8.3		8.3		ns
	Data	Push-pull driving	33		17		17		17		17		ns

TIMING REQUIREMENTS

 $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$

			V _{ССВ} = ± 0.1		V _{ССВ} = ± 0.		V _{ССВ} = ± 0.1		V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
	Command	Push-pull driving		30		60		60		60		60	Mhna
Data rate	Command	Open-drain driving		0.9		1		1		1		1	Mbps
Data Tate	Clock	Duch null driving		55		55		55		55		55	MHz
	Data	Push-pull driving		30		60		60		60		60	Mbps
	Command	Push-pull driving	33		17		17		17		17		ns
, Pulse	Command	Open-drain driving	1		1		1		1		1		μs
t _W duration	Clock	Duch pull driving	9		9		9		9		9		ns
	Data	Push-pull driving	33		17		17		17		17		ns

SCES697C - AUGUST 2009 - REVISED JANUARY 2010

SWITCHING CHARACTERISTICS

 $V_{CCA} = 1.2 \text{ V} \pm 0.1 \text{ V}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _C = 1. ± 0.	2 V	V _C = 1. ± 0.	5 V	V _C = 1. ± 0.1	8 V	V _C = 2. ± 0.	5 V	V _C = 3. ± 0.	3 V	UNIT
	((0011 01)	Companione	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
			Push-pull driving		15.3		12.2		10.8		10.4		10.8	
	CMDA	CMDB	Open-drain driving (H-to-L)	4.1	16.6	3.7	12.6	3.4	11.5	3.3	10.6	3.2	10.3	
			Open-drain driving (L-to-H)	204	308	164	256	133	224	95	175	71	147	
			Push-pull driving		19.7		15.1		13.4		12		11.2	
t _{pd}	CMDB	CMDA	Open-drain driving (H-to-L)	4.7	19.4	3.8	12.4	3.4	10.5	3.1	9.2	2.9	9.4	ns
			Open-drain driving (L-to-H)	211	353	170	304	139	282	101	243	77	204	
	CLKA	CLKB	Push-pull driving		15.6		12.3		11.5		10.9		11.7	
	DATxA	DATxB	Duch null driving		15.9		12.6		11.2		10.7		11.1	
	DATxB	DATxA	Push-pull driving		18.2		14.3		12.8		11.5		10.6	
	CLKA	CLK-f	Push-pull driving		37.9		30.7		26.8		24.7		24.2	
	EN	B-port	Push-pull driving		1		1		1		1		1	
t _{en}	EN	A-port	Push-pull driving		1		1		1		1		1	μs
	EN	B-port	Push-pull driving		68		55		46		40		38	
t _{dis}	EN	A-port	Push-pull driving		62		56		48		40		37	ns
	01454		Push-pull driving	1.7	14.1	1.5	13	1.5	12.7	1.6	12.2	1.9	11.9	
	CMDA	rise time	Open-drain driving	170	260	128	205	96	171	57	120	32	91	
t _{rA}	CLK-f	rise time	Durah and datain a	0.6	10.6	0.6	10.9	0.6	12	0.6	12.3	0.6	12.7	ns
	DATxA	rise time	Push-pull driving	1.7	13.7	1.5	12.6	1.5	12	1.6	11.6	1.9	11.5	
	OMDD		Push-pull driving	1.9	12.4	2.3	9.2	1.9	7.3	1.8	6.7	1.7	3.9	
	CMDB	rise time	Open-drain driving	175	300	145	261	118	245	86	214	66	181	
t _{rB}	CLKB	rise time	Durah and datain a	1	7.7	0.8	7.1	0.8	6.2	1.7	4.8	1.7	4.3	ns
	DATxB	rise time	Push-pull driving	2.9	11.8	2.3	8.9	1.9	7.4	0.9	4.7	0.4	6.8	
		foll time	Push-pull driving	1	8	1	5.4	1	4.5	1	3.9	0.8	4	
	CIVIDA	fall time	Open-drain driving	2.3	8.3	1.9	4.9	1.7	4.4	1.6	3.9	1.6	3.7	
t _{fA}	CLK-f	fall time	Push-pull driving	1	5.8	1	4.6	1	4.1	1	3.8	1	4	ns
	DATxA	A fall time		1.8	8	1.3	5.4	1	4.5	1	3.9	1	3.8	
	CMDD	fall time	Push-pull driving	2.1	7.9	1.8	5.2	1.7	4.6	1.6	4.5	1.5	4.3	
+	CIVIDB	s fall time	Open-drain driving	1.9	8.3	1.5	5.9	1.3	5.1	1.1	4.3	1	4.2	
t _{fB}	CLKB	fall time		2	7.1	1.8	5.4	1.8	4.5	1.7	4	1.6	3.9	ns
	DATxE	3 fall time	Push-pull driving	2.1	8.5	1.1	6.4	0.9	5	1	3.9	1.1	4.8	
t _{SK(O)}		-to-channel kew	Push-pull driving		1		1		1		1		1	ns
	0		Push-pull driving		30		40		40		40		40	N 41-
Max data tata	Con	nmand	Open-drain driving		0.9		1		1		1		1	Mbp
Max data rate	С	lock	Buch pull driving		30		40		50		60		60	MH
	C	Data	Push-pull driving		30		40		40		40		40	Mbp

SWITCHING CHARACTERISTICS

 $V_{CCA} = 1.5 V \pm 0.1 V$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _C = 1. ± 0.	2 V	V _C = 1. ± 0.	5 V	V _C = 1. ± 0.1	8 V	V _C = 2. ± 0.	5 V	V _C = 3. ± 0.	3 V	UNIT
	(01)	(0011 01)	Companiente	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
			Push-pull driving		12		8.6		6.9		6.1		6	
	CMDA	CMDB	Open-drain driving (H-to-L)	3.7	12.8	3.2	8.7	2.9	7.6	2.7	6.6	2.7	6.5	
			Open-drain driving (L-to-H)	192	297	191	295	157	252	112	180	83	138	
			Push-pull driving		15.2		9.8		8		6.8		6.3	
t _{pd}	CMDB	CMDA	Open-drain driving (H-to-L)	3.7	20.4	2.9	11.8	2.5	9.4	2.2	7.3	2.1	6.6	ns
			Open-drain driving (L-to-H)	199	337	196	316	162	282	117	214	87	177	
	CLKA	CLKB	Push-pull driving		12.3		8.7		7.7		6.1		6.2	
	DATxA	DATxB			12.5		8.9		7.2		6.2		6.1	
	DATxB	DATxA	Push-pull driving		13.9		9.2		7.6		6.5		6.1	
	CLKA	CLK-f	Push-pull driving		29		20		16		13		12	
	EN	B-port	Push-pull driving		1		1		1		1		1	
t _{en}	EN	A-port	Push-pull driving		1		1		1		1		1	με
	EN	B-port	Push-pull driving		57		53		46		39		37	
t _{dis}	EN	A-port	Push-pull driving		58		54		46		38		35	n
	CMDA	rise time	Push-pull driving	1.6	10.5	0.4	9.5	0.2	8.9	0.4	8.3	1	7.9	
	CIMDA	lise unie	Open-drain driving	166	254	157	247	121	203	74	127	44	85	
t _{rA}	CLK-f	rise time	Push-pull driving	0.5	5.5	0.5	5.5	0.5	6.2	0.5	7	0.5	7.2	n
	DATxA	rise time	Push-pull anving	2	10.3	0.7	9.4	0.5	8.9	0.6	8.4	0.7	8.3	
	CMDB	rise time	Push-pull driving	1.9	11.2	2	8	1.9	6.5	0.5	5.6	0.5	3.1	
•	CINDB	iise uiile	Open-drain driving	157	273	163	264	135	253	96	196	71	165	
t _{rB}	CLKB	rise time	Push-pull driving	1.3	7.5	0.6	6.7	0.4	5.9	1.5	4.9	1.9	4.3	n
	DATxB	rise time	r usii-puli uriving	2.2	10.9	2	8.4	1.7	6.9	0.8	5	0.6	4	
	CMDA	fall time	Push-pull driving	1.5	5.5	1.3	3.8	0.9	2.9	0.8	2.3	0.8	2.3	
t.,	CIVIDA		Open-drain driving	2.3	8	2	4.8	1.8	4.2	1.7	3.7	1.6	3.5	ns
t _{fA}	CLK-f	fall time	Push-pull driving	0.4	3.9	0.4	3.7	0.4	4	0.4	3.7	0.4	6.8	118
	DATxA	fall time		0.8	6	0.6	4.8	0.1	4.1	0.1	3.8	0.1	3.8	
	CMDD	fall time	Push-pull driving	1	11.6	1.5	7.1	1.5	5.8	1.4	5.4	1.6	3.6	
t	CIVIDB		Open-drain driving	1.7	5.2	1.5	3.8	1.2	3	1	2.3	0.9	2.3	ns
t _{fB}	CLKB	fall time	Push pull driving	1.1	10.8	1	8.8	1.8	6	1.7	4.1	1.6	3.9	11
	DATxE	3 fall time	Push-pull driving	1.1	13.3	1.2	7.7	1.2	6.5	2.3	4.3	2.5	4.2	
t _{SK(O)}		-to-channel kew	Push-pull driving		1		1		1		1		1	ns
	0	nmand	Push-pull driving		30		60		60		60		60	
Max data rate	Con	inanu	Open-drain driving		1		1		1		1		1	Mbp
ויומג טמומ ומופ	С	lock	Puch pull driving		50		60		60		60		60	MH
	D	lata	Push-pull driving		30		60		60		60		60	Mbp

SCES697C - AUGUST 2009 - REVISED JANUARY 2010

SWITCHING CHARACTERISTICS $V_{CCA} = 1.8 V \pm 0.15 V$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _C = 1. ± 0.	2 V	V _{C0} = 1.5 ± 0.7	5 V	V _C (= 1.4 ± 0.1	8 V	V _C = 2. ± 0.2	5 V	V _C = 3. ± 0.	3 V	UNI
	. ,	. ,		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
			Push-pull driving		11.3		7.3		5.7		4.6		4.4	
	CMDA	CMDB	Open-drain driving (H-to-L)	3.4	11.8	2.9	7.6	2.7	6.5	2.5	5.5	2.4	5.1	
			Open-drain driving (L-to-H)	179	286	183	288	168	286	121	201	89	151	
			Push-pull driving		13.2		8.3		6.5		5.2		4.8	
t _{pd}	CMDB	CMDA	Open-drain driving (H-to-L)	3.5	19.7	2.8	11.1	2.4	8.6	2.1	6.4	2	5.7	ns
			Open-drain driving (L-to-H)	186	323	190	304	173	303	125	215	93	166	
	CLKA	CLKB	Push-pull driving		11.6		7.7		6.2		4.7		4.5	
	DATxA	DATxB	Durah and dations		11.7		7.5		5.8		4.7		4.4	
	DATxB	DATxA	Push-pull driving		12.1		7.9		6.3		5		4.6	
	CLKA	CLK-f	Push-pull driving		25.1		16.5		12		8.9		7.9	
	EN	B-port	Push-pull driving		1		1		1		1		1	
t _{en}	EN	A-port	Push-pull driving		1		1		1		1		1	μs
	EN	B-port	Push-pull driving		39		37		37		35		35	
t _{dis}	EN	A-port	Push-pull driving		49		47		47		38		35	ns
			Push-pull driving	1.8	8.4	1.2	6.8	1.1	5.9	1.1	5.9	1.6	5.8	
	CMDA	rise time	Open-drain driving	154	246	155	262	135	238	85	150	52	99	
t _{rA}	CLK-f	rise time	6	0.4	4	0.4	4.3	0.4	4.7	0.4	4.5	0.4	4.1	ns
	DATxA	rise time	Push-pull driving	1.9	8.6	1.2	7.1	0.9	6.8	1	6.3	1.3	6.1	
	01400		Push-pull driving	1.8	10.2	2	7.7	1.7	6.5	1	5.2	1.7	3.1	
	CMDB	rise time	Open-drain driving	137	251	148	245	141	251	100	184	73	142	
t _{rB}	CLKB	rise time	6	1.5	7.3	0.7	6.6	0.4	5.9	1.5	4.9	1.9	4.3	ns
	DATxB	rise time	Push-pull driving	2.3	10.3	1.8	8	1.5	6.8	0.9	5.2	0.2	5	
	CMDA	fall time	Push-pull driving	0.6	4.5	0.4	3.8	0.2	3.3	0.2	2.9	0.2	3.1	
	CIVIDA	fall time	Open-drain driving	2.3	7.9	2	4.8	1.8	4.2	1.7	3.7	1.6	3.5	-
t _{fA}	CLK-f	fall time	Buch pull driving	0.1	2	0.2	2.2	0.7	1.6	0.7	1.5	0.1	3	ns
	DATxA	fall time	Push-pull driving	1	4.3	0.8	3.6	1	2.7	0.1	2.7	0.2	2.6	
	01400	fall tim	Push-pull driving	1	10.3	1.4	6.8	1.8	5.4	1.6	5	1.6	3.6	
	CIVIDB	fall time	Open-drain driving	1.4	4	1.3	3	1.2	2.6	0.9	1.9	0.8	1.8	
t _{fB}	CLKB	fall time		1.1	10.8	1	10.3	1.4	6.3	1.8	4.2	1.7	4	ns
	DATxE	8 fall time	Push-pull driving	1	11.8	15	7	1.2	6.3	1.6	4.9	0.8	3.6	
t _{SK(O)}		-to-channel kew	Push-pull driving		1		1		1		1		1	ns
	0		Push-pull driving		30		60		60		60		60	N 41
Nov data rat-	Con	nmand	Open-drain driving		1		1		1		1		1	Mbp
Max data rate	С	lock	Duch null debuiere		50		60		60		60		60	МН
	D	ata	Push-pull driving		30		60		60		60		60	Mbp

SWITCHING CHARACTERISTICS V_{CCA} = 2.5 V ± 0.2 V

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _C , = 1. ± 0.	2 V	V _C = 1. ± 0.	5 V 🛛	V _C = 1. ± 0.1	8 V	V _C = 2. ± 0.2	5 V	V _C = 3. ± 0.	3 V	υΝΙΤ
	. ,	. ,		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
			Push-pull driving		10.6		6.5		4.9		3.7		3.3	
	CMDA	CMDB	Open-drain driving (H-to-L)	3.2	10.9	2.7	6.7	2.4	5.5	2.2	4.4	2.1	4.1	
			Open-drain driving (L-to-H)	156	253	162	258	149	261	126	249	98	190	
			Push-pull driving		12.5		7.4		5.6		4.1		3.6	
t _{pd}	CMDB	CMDA	Open-drain driving (H-to-L)	3.5	19.2	2.7	10.5	2.3	7.9	2	5.7	1.9	4.8	ns
			Open-drain driving (L-to-H)	163	295	169	273	158	274	131	261	99	202	
	CLKA	CLKB	Push-pull driving		10.8		6.8		5.4		3.7		3.4	
	DATxA	DATxB	Duch null driving		10.9		6.7		5		3.7		3.3	
	DATxB	DATxA	Push-pull driving		11.5		7.1		5.4		3.9		3.5	
	CLKA	CLK-f	Push-pull driving		23.7		14.9		10.2		6.8		5.7	
•	EN	B-port	Push-pull driving		1		1		1		1		1	
t _{en}	EN	A-port	Push-pull driving		1		1		1		1		1	με
	EN	B-port	Push-pull driving		48		45		45		38		36	
t _{dis}	EN	A-port	Push-pull driving		45		38		38		38		35	n
	CMDA	ria a tima a	Push-pull driving	1.9	4.7	1.7	4.4	1.7	3.8	1.9	3.2	2.3	3.3	
	CMDA	rise time	Open-drain driving	135	216	136	237	121	228	96	201	62	141	
t _{rA}	CLK-f	rise time	Duch null driving	0.8	1.6	0.3	1.9	0.6	1.8	0.7	1.5	0.7	1.3	n
	DATxA	rise time	Push-pull driving	1.9	6.1	1.8	4.5	1.7	4.1	1.9	4	1.8	4.2	
	CMDD	ria a tima a	Push-pull driving	1.7	10.8	2.9	7.6	1.8	6.6	1.5	5.2	1.5	3.8	
	CMDB	rise time	Open-drain driving	102	205	116	197	112	207	101	214	76	165	
t _{rB}	CLKB	rise time	Duch null driving	1.6	7.3	0.5	6.8	0.4	5.8	1.6	5	1.7	4.4	ns
	DATxB	rise time	Push-pull driving	2.2	10.3	1.9	7.9	1.8	6.6	1.4	5.3	0.9	4.4	
	01404	6-11 4ins -	Push-pull driving	0.4	2.4	0.4	1.6	0.4	1.5	0.5	1.5	0.3	1.4	
	CMDA	fall time	Open-drain driving	2.2	7.6	1.9	4.8	1.8	4.2	1.7	3.7	1.6	3.5	
t _{fA}	CLK-f	fall time	Duch null driving	0.3	2.2	0.3	2.7	0.3	2.6	0.3	2.4	0.3	2.8	ns
	DATxA	fall time	Push-pull driving	0.4	4	0.4	3.6	0.4	3.2	0.5	2.9	0.3	2.6	
	OMDO	6-11 Alian -	Push-pull driving	1	13.4	1.8	7.2	1.7	6.3	1.6	5.6	1.6	3.7	
	CIVIDB	fall time	Open-drain driving	1	2.3	1	1.7	1	1.7	1	1.6	0.8	1.4	
t _{fB}	CLKB	fall time	Durah and dativity a	1.1	12.7	1	11.3	0.9	8.7	1.8	4.5	1.7	4.1	ns
	DATxE	8 fall time	Push-pull driving	1	16	0.7	9	08	7	0.8	4.9	0.2	4	
t _{SK(O)}		-to-channel kew	Push-pull driving		1		1		1		1		1	ns
	0	mond	Push-pull driving		30		60		60		60		60	N 41
	Con	nmand	Open-drain driving		1		1		1		1		1	Mbp
Max data rate	С	lock	Durah and dations		50		60		60		60		60	MH
	C	Data	Push-pull driving		30		60		60		60		60	Mbp

SCES697C - AUGUST 2009 - REVISED JANUARY 2010

SWITCHING CHARACTERISTICS

 $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _C = 1. ± 0.	2 V	V _C = 1. ± 0.	5 V	V _C = 1. ± 0.1	8 V	V _C = 2. ± 0.	5 V	V _C = 3. ± 0.	3 V	UNIT
	(01)	(00.1.01)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
			Push-pull driving		12.5		7.2		5.3		3.8		3.2	
	CMDA	CMDB	Open-drain driving (H-to-L)	3.2	10.6	2.7	6.4	2.4	5.2	2.1	4.1	2	3.7	
			Open-drain driving (L-to-H)	136	212	141	235	129	235	112	233	101	201	
			Push-pull driving		10.7		6.6		5.1		3.4		3	
t _{pd}	CMDB	CMDA	Open-drain driving (H-to-L)	4.3	16.4	3.3	8.7	2.8	6.6	2.4	4.6	2.2	3.6	ns
			Open-drain driving (L-to-H)	142	273	148	246	139	248	122	248	105	212	
	CLKA	CLKB	Push-pull driving		10.8		6.5		4.8		3.5		3.1	
	DATxA	DATxB			11.5		6.9		5.1		3.7		3.2	
	DATxB	DATxA	Push-pull driving		23.6		14.4		9.6		6.2		5.1	
	CLKA	CLK-f	Push-pull driving		17.1		9.1		6.8		4.8		4.2	
	EN	B-port	Push-pull driving		1		1		1		1		1	
t _{en}	EN	A-port	Push-pull driving		1		1		1		1		1	μs
	EN	B-port	Push-pull driving		38		34		34		34		34	
t _{dis}	EN	A-port	Push-pull driving		45		37		36		36		35	ns
	CMDA	rise time	Push-pull driving	0.7	5.6	0.7	5	0.7	4.2	0.8	4.1	1	4.2	
	CINDA	lise unie	Open-drain driving	117	178	118	213	104	206	85	194	74	155	ns
t _{rA}	CLK-f	rise time	Push-pull driving	0.7	1.5	0.5	1.7	0.7	1.5	0.7	1.4	0.7	1.4	112
	DATxA	rise time		0.9	5	1.1	3.9	1.3	3.4	1.4	3.3	1.1	3	
	CMDB	rise time	Push-pull driving	1.7	10.8	2.3	7.4	2.2	6.4	2	5	1.9	4	
+	CINDB		Open-drain driving	69	167	84	156	83	167	79	185	79	166	ns
t _{rB}	CLKB	rise time	Push-pull driving	1	7.7	0.3	7.1	0.5	5.9	1.6	5.1	1.9	4.4	112
	DATxB	rise time		2.1	10.5	2	7.9	2	6.6	1.8	5.3	1	14	
	CMDA	fall time	Push-pull driving	0.3	2.8	0.4	2.4	0.4	2	0.4	2	1	2.3	
t _{fA}	UNDA		Open-drain driving	2	7.6	1.8	5	1.7	4.4	1.6	3.9	1.6	3.7	ns
٩t	CLK-f	fall time	Push-pull driving	0.6	1.3	0.6	1.3	0.6	1.3	0.6	1.3	0.6	1.3	113
	DATxA	fall time		0.3	2.7	0.4	2.3	0.4	1.4	0.4	1.8	0.5	1.7	
	CMDB	fall time	Push-pull driving	1	13.3	0.7	7.9	0.9	6.2	0.8	6.3	1	5	
t _{fB}	SIVIDE		Open-drain driving	0.7	1.5	0.7	1.4	0.8	1.4	0.9	1.3	0.9	1.3	ns
۲B	CLKB	fall time	Push-pull driving	1	15.5	1	9.1	0.9	7.8	0.9	5.1	0.9	4.3	110
	DATxE	8 fall time		1	15	0.9	6.8	0.9	6.8	0.8	6.9	0.8	5	
t _{SK(O)}		-to-channel kew	Push-pull driving		1		1		1		1		1	ns
	Cor	nmand	Push-pull driving		30		60		60		60		60	Mbp
Max data rate	COIL		Open-drain driving		0.9		1		1		1		1	ivint
	С	lock	Push-pull driving		55		55		55		55		55	MH
	D	Data			30		60		60		60		60	Mbp

TXS0206

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C, V_{CCA} = 1.2 V$

	PARAMETE	-0	TEST			V _{CCE}	TYP			UNIT
	PARAIVIET	=K	CONDITIONS	1.2 V	1.5 V	1.8 V	2.5 V	3 V	3.3 V	UNIT
	A-port input,	CLK Enabled		15	15	14.9	14.9	15	15	
	B-port output	DATA Enabled		6.3	6.4	6.5	6.5	6.5	6.5	
C (1)	B-port input, A-port output	DATA Enabled	C _L = 0, f = 10 MHz,	12.5	12.3	12.3	12.1	12	11.9	– pF
C _{pdA} ⁽¹⁾	A-port input, B-port	CLK Disabled	$t_r = t_f = 1 \text{ ns}$	0.2	0.2	0.2	0.3	0.3	0.3	рг
	output	DATA Disabled		1.2	1.2	1.2	1.2	1.2	1.2	
	B-port input, A-port output	DATA Disabled		0.2	0.2	0.2	0.3	0.3	0.3	
	A-port input, B-port output	DATA Enabled		26.2	27.3	28.2	29.7	30	31.2	
	B-port input,	CLK Enabled		25.7	25.6	25.6	26.4	27	28.1	
C (1)	A-port output	DATA Enabled	C _L = 0, f = 10 MHz,	13.7	12.2	11.4	12	12.5	12.9	- pF
C _{pdB} ⁽¹⁾	A-port input, B-port output	DATA Disabled	$t_r = t_f = 1 \text{ ns}$	0.6	0.5	0.5	0.5	0.5	0.6	pr
	B-port input,	CLK Disabled		0.6	0.5	0.5	0.5	0.5	0.6	
	A-port output	DATA Disabled		1.2	1.2	1.2	1	1	0.9	

(1) Power dissipation capacitance per transceiver

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C, V_{CCA} = 1.5 V$

		-0	TEST			V _{CCE}	3 TYP			
	PARAMETE	=R	CONDITIONS	1.2 V	1.5 V	1.8 V	2.5 V	3 V	3.3 V	UNIT
	A-port input,	CLK Enabled		15	15	15	14.9	14.9	14.9	
	B-port output	DATA Enabled		6.4	6.3	6.2	6	6	6	
c (1)	B-port input, A-port output	DATA Enabled	$C_L = 0,$	13.2	12.3	12.2	12	12	11.9	_
C_{pdA} ⁽¹⁾	A-port input,	CLK Disabled	f = 10 MHz, $t_r = t_f = 1 \text{ ns}$	0.1	0.1	0.1	0.1	0.1	0.1	pF
	B-port output	DATA Disabled		1.2	1.2	1.2	1.2	1.2	1.2	
	B-port input, A-port output	DATA Disabled		0.1	0.1	0.1	0.1	0.1	0.1	

(1) Power dissipation capacitance per transceiver

OPERATING CHARACTERISTICS (continued)

 $T_A = 25^{\circ}C, V_{CCA} = 1.5 V$

	PARAMET	- D	TEST		V _{CCB} TYP							
			CONDITIONS	1.2 V	1.5 V	1.8 V	2.5 V	3 V	3.3 V	UNIT		
B-port output B-port ir		DATA Enabled		25.8	26.3	27.3	29.2	29.2	30.6			
	B-port input, A-port output	CLK Enabled		25.8	25.6	25.6	26.2	26.2	27.2			
C _{pdB} ⁽¹⁾		DATA Enabled	$C_{L} = 0,$ f = 10 MHz, $t_{r} = t_{f} = 1 \text{ ns}$	13.7	12.3	11.4	12	12	12.8	~ [
C _{pdB} (A-port input, B-port output	DATA Disabled		0.1	0.1	0.1	0.1	0.1	0.1	pF		
	B-port input,	CLK Disabled		0.1	0.1	0.1	0.1	0.1	0.1			
	A-port output	DATA Disabled		1.2	1.2	1.1	1	1	0.9			

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C, V_{CCA} = 1.8 V$

		-0	TEST	V _{CCB} TYP							
	PARAMETI	ER	CONDITIONS	1.2 V	1.5 V	1.8 V	2.5 V	3 V	3.3 V	UNIT	
	A-port input,	CLK Enabled		15.2	15.1	15.1	15	15	15		
	B-port output	DATA Enabled		6.7	6.2	5.8	5.4	5.4	5.3		
C _{pdA} ⁽¹⁾	B-port input, A-port output	DATA Enabled	C _L = 0, f = 10 MHz,	13.9	13.1	12.4	12.1	12	11.9	- pF	
	A-port input, B-port output	CLK Disabled	$t_r = t_f = 1 \text{ ns}$	0.1	0.1	0.1	0.1	0.1	0.1	рг	
		DATA Disabled		1.3	1.3	1.3	1.3	1.3	1.3		
	B-port input, A-port output	DATA Disabled		0.1	0.1	0.1	0.1	0.1	0.1		
	A-port input, B-port output	DATA Enabled		25.9	26.1	26.7	28.8	28.8	30.3	- pF	
	B-port input,	CLK Enabled		25.8	25.6	25.6	26.2	26.2	27		
C (1)	A-port output	DATA Enabled	$C_{L} = 0,$	13.6	12.2	11.5	12.1	12.1	12.9		
E	A-port input, B-port output	DATA Disabled	f = 10 MHz, t _r = t _f = 1 ns	0.2	0.1	0.1	0.1	0.1	0.1		
	B-port input,	CLK Disabled		0.2	0.1	0.1	0.1	0.1	0.1		
	A-port output	DATA Disabled		1.2	1.2	1.1	1	1	0.8		

(1) Power dissipation capacitance per transceiver

www.ti.com

TXS0206

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C, V_{CCA} = 2.5 V$

	PARAMETE	- D	TEST		V _{CCB} TYP							
	PARAMEI	=R	CONDITIONS	1.2 V	1.5 V	1.8 V	2.5 V	3 V	3.3 V	UNIT		
	A-port input,	CLK Enabled		16.2	16	15.9	15.8	15.8	15.7			
	B-port output	DATA Enabled		7.3	6.5	5.9	5.5	5.4	5.3			
C _{pdA} ⁽¹⁾	B-port input, A-port output	DATA Enabled	C _L = 0, f = 10 MHz,	15.3	14.6	14	13	12.8	12.5	~		
	A-port input, B-port	CLK Disabled	$t_r = t_f = 1 \text{ ns}$	0.1	0.1	0.1	0.1	0.1	0.1	pF		
	output	DATA Disabled		1.3	1.3	1.3	1.3	1.3	1.3	1		
	B-port input, A-port output	DATA Disabled		0.1	0.1	0.1	0.1	0.1	0.1			
	A-port input, B-port output	DATA Enabled		25.6	25.8	26.2	27.6	29	29.5			
	B-port input,	CLK Enabled		25.9	25.7	25.7	26.2	26.5	26.9	_		
C (1)	A-port output	DATA Enabled	C _L = 0, f = 10 MHz,	13.6	12.2	11.5	12.3	12.7	13.2			
C _{pdB} ⁽¹⁾	A-port input, B-port output	DATA Disabled	$t_r = t_f = 1 \text{ ns}$	0.3	0.1	0.1	0.1	0.1	0.1	– pF		
	B-port input, A-port	CLK Disabled		0.3	0.1	0.1	0.1	0.1	0.1			
	output	DATA Disabled		1.2	1.2	1.1	1	0.9	0.8			

(1) Power dissipation capacitance per transceiver

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C, V_{CCA} = 3.3 V$

	PARAMETE	-0	TEST	V _{CCB} TYP						
	FARAMETER		CONDITIONS	1.2 V	1.5 V	1.5 V 1.8 V		3 V	3.3 V	UNIT
	A-port input, B-port output	CLK Enabled		18.3	17.7	17.5	17.3	17.2	17.1	
		DATA Enabled		8.1	7	6.2	5.7	5.6	5.6	
c (1)	B-port input, A-port output	DATA Enabled	$C_L = 0,$	17	16.1	15.6	14.8	14.4	14	_
C_{pdA} ⁽¹⁾	A-port input,	CLK Disabled	f = 10 MHz, $t_r = t_f = 1 \text{ ns}$	0.1	0.1	0.1	0.1	0.1	0.1	pF
B A	B-port output	DATA Disabled		1.3	1.3	1.3	1.3	1.3	1.3	
	B-port input, A-port output	DATA Disabled		0.1	0.1	0.1	0.1	0.1	0.1	-

(1) Power dissipation capacitance per transceiver

SCES697C-AUGUST 2009-REVISED JANUARY 2010

OPERATING CHARACTERISTICS (continued)

 $T_A = 25^{\circ}C, V_{CCA} = 3.3 V$

	PARAMETE	- D	TEST	V _{CCB} TYP							
	PARAIVIEI		CONDITIONS	1.2 V	1.5 V	1.8 V	2.5 V	3 V	3.3 V	UNIT	
		DATA Enabled		25.2	25.6	26	27.1	28	28.5		
	B-port input, A-port output	CLK Enabled		26	25.8	25.8	26.3	26.8	27		
C _{pdB} ⁽¹⁾		DATA Enabled	$C_{L} = 0,$ f = 10 MHz, $t_{r} = t_{f} = 1 \text{ ns}$	13.7	12.1	11.4	12.2	12.7	13.2	~ [
UpdB (A-port input, B-port output	DATA Disabled		0.3	0.1	0.1	0.1	0.1	0.1	pF	
	B-port input,	CLK Disabled		0.3	0.1	0.1	0.1	0.1	0.1		
	A-port output	DATA Disabled		1.2	1.2	1.1	1	0.9	0.8		

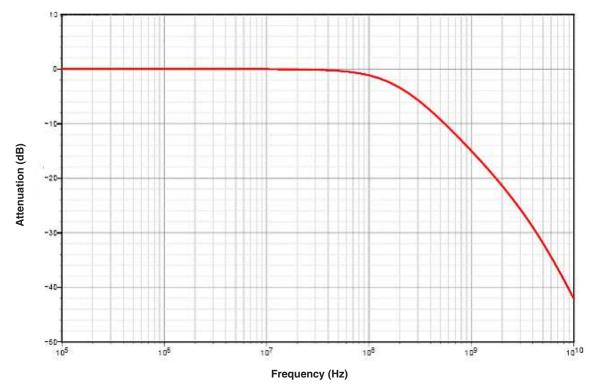
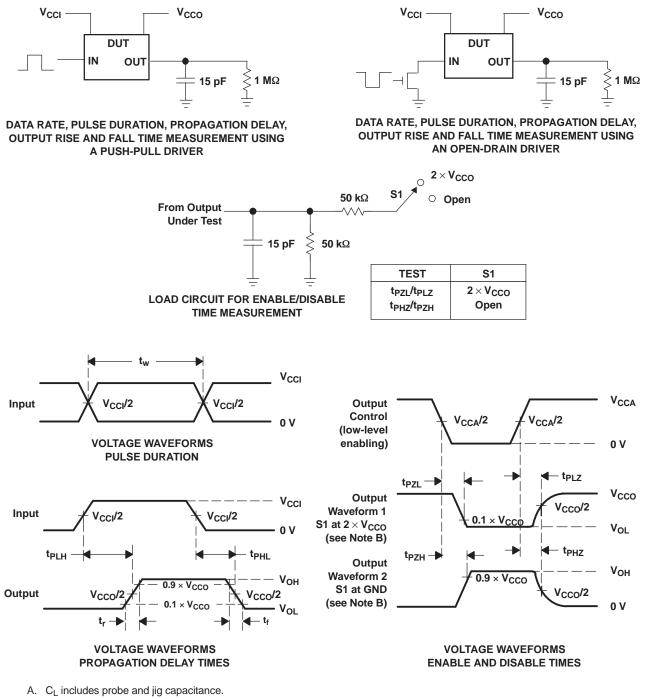



Figure 7. Typical ASIP EMI Filter Frequency Response

www.ti.com

PARAMETER MEASUREMENT INFORMATION

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, dv/dt ≥ 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- D. The outputs are measured one at a time, wit
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.
- J. All parameters and waveforms are not applicable to all devices.

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 8. Load Circuit and Voltage Waveforms

APPLICATION INFORMATION

The TXS0206 has integrated pullup resistors on the data and command ports and their values dynamically change. When the port is in a low signal state, there is a nominal pullup resistor value of 40 k Ω , and power consumption is minimized. When the port is in a high signal state, the nominal pullup resistor value changes to 4 k Ω , and simultaneous switching performance is improved as a result. The threshold at which the resistance changes is approximately V_{CCx}/2.

When using the TXS0206 device with MMCs, SD, and Memory StickTM to ensure that a valid receiver input voltage high (V_{IH}) is achieved, the value of any pulldown resistors (external or internal to a memory card) must not be smaller than a 10-k Ω value. The impact of adding too heavy (i.e., <10-k Ω value) a pulldown resistor to the data and command lines of the TXS0206 device and the resulting 4-k Ω pullup / 10-k Ω pulldown voltage divider network has a direct impact on the V_{IH} of the signal being sent into the memory card and its associated logic.

The resulting V_{IH} voltage for the 10-k Ω pulldown resistor value would be:

 $V_{CC} \times 10 \text{ k}\Omega / (10 \text{ k}\Omega + 4 \text{ k}\Omega) = 0.714 \times V_{CC}$

This is marginally above a valid input high voltage for a 1.8-V signal (i.e., $0.65 \times V_{CC}$).

The resulting V_{IH} voltage for 20-k Ω pulldown resistor value would be: V_{CC} × 20 k Ω / (20 k Ω + 4 k Ω) = 0.833 × V_{CC}

Which is above the valid input high voltage for a 1.8-V signal of 0.65 \times V_{CC}.

10-May-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TXS0206YFPR	ACTIVE	DSBGA	YFP	20	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(3T2 ~ 3TR)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

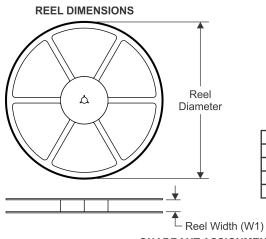
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

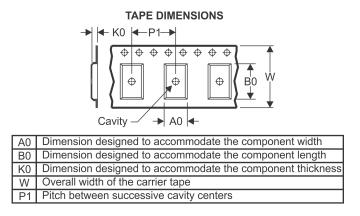
(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

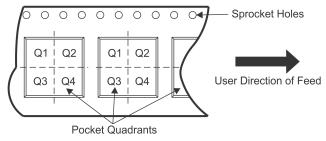
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM


10-May-2015

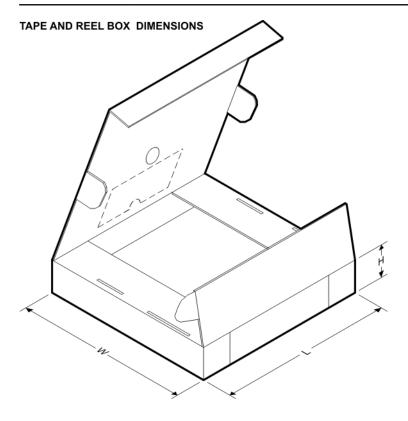

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TXS0206YFPR	DSBGA	YFP	20	3000	180.0	8.4	1.66	2.06	0.56	4.0	8.0	Q1

TEXAS INSTRUMENTS

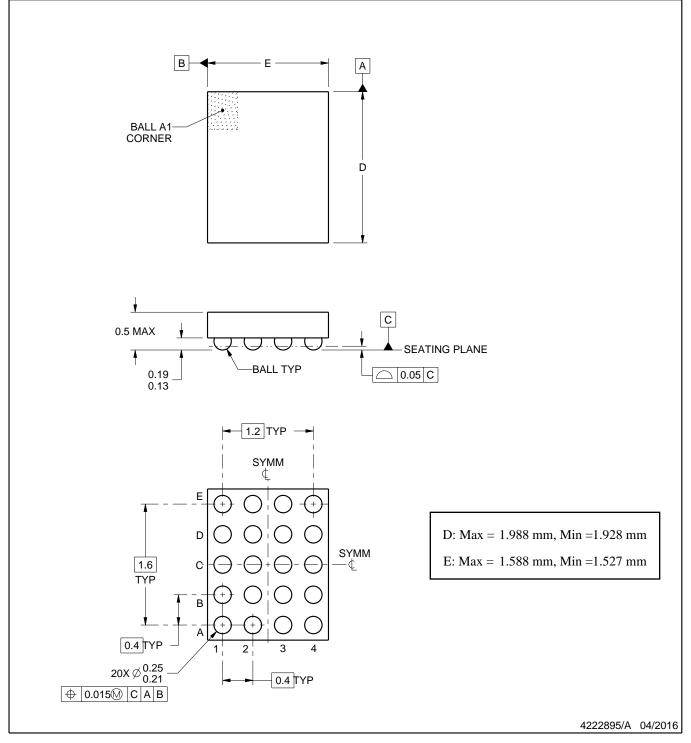
www.ti.com

PACKAGE MATERIALS INFORMATION

7-Sep-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TXS0206YFPR	DSBGA	YFP	20	3000	182.0	182.0	20.0


YFP0020

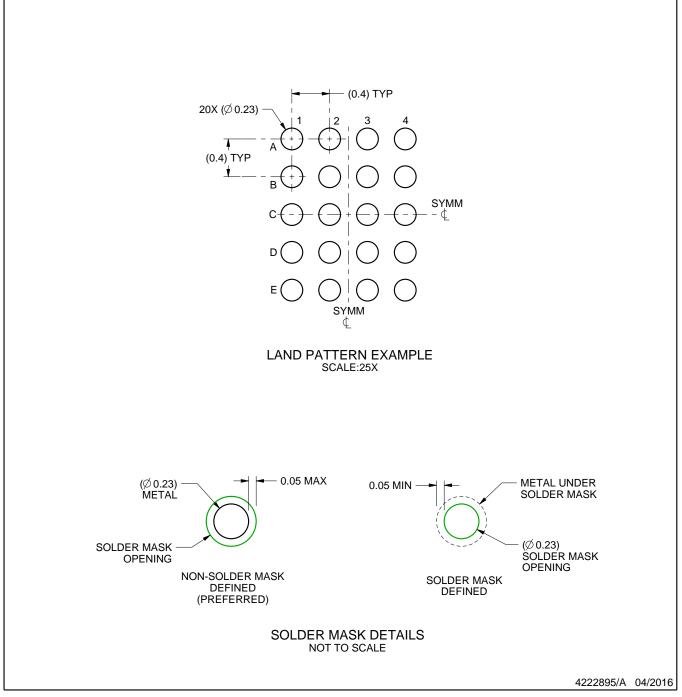
PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



YFP0020

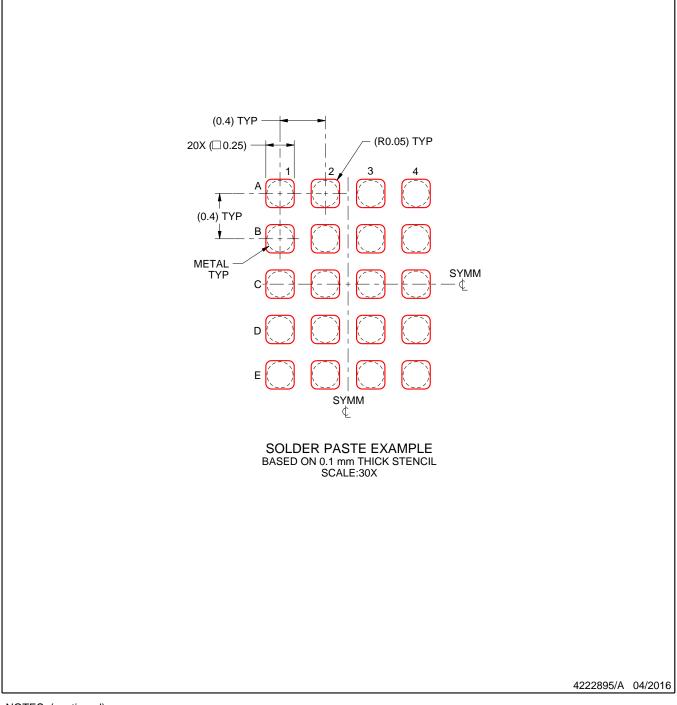
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).



YFP0020

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated