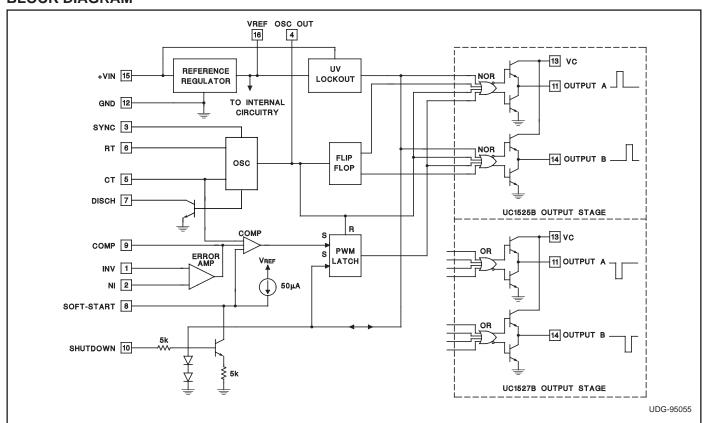


UC1525B UC1527B UC2525B UC2527B UC3525B UC3527B

Regulating Pulse Width Modulators


FEATURES

- 8 to 35V Operation
- 5.1V Buried Zener Reference Trimmed to ±0.75%
- 100Hz to 500kHz Oscillator Range
- · Separate Oscillator Sync Terminal
- Adjustable Deadtime Control
- Internal Soft-Start
- Pulse-by-Pulse Shutdown
- Input Undervoltage Lockout with Hysteresis
- Latching PWM to Prevent Multiple Pulses
- Dual Source/Sink Output Drivers
- Low Cross Conduction Output Stage
- Tighter Reference Specifications

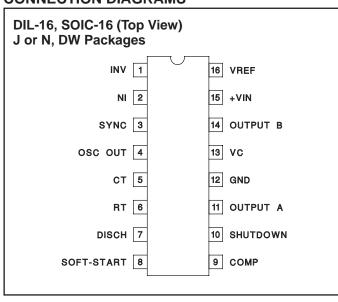
DESCRIPTION

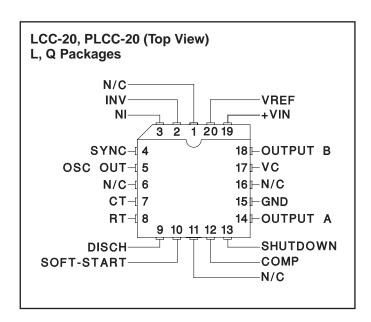
The UC1525B/1527B series of pulse width modulator integrated circuits are designed to offer improved performance and lowered external parts count when used in designing all types of switching power supplies. The on-chip +5.1V buried zener reference is trimmed to ±0.75% and the input common-mode range of the error amplifier includes the reference voltage, eliminating external resistors. A sync input to the oscillator allows multiple units to be slaved or a single unit to be synchronized to an external system clock. A single resistor between the CT and the discharge terminals provide a wide range of dead time adjustment. These devices also feature built-in soft-start circuitry with only an external timing capacitor required. A shutdown terminal controls both the soft-start circuitry and the output stages, providing instantaneous turn off through the PWM latch with pulsed shutdown, as well as soft-start recycle with longer shutdown commands. These functions are also controlled by an undervoltage lockout which keeps the outputs off and the soft-start capacitor discharged for sub-normal input voltages. This lockout circuitry includes approximately 500mV of hysteresis for jitter-free operation. Another feature of these PWM circuits is a latch following the comparator. Once a PWM pulse has been terminated for any reason, the outputs will remain off for the duration of the period. The latch is reset with each clock pulse. The output stages are totem-pole designs capable of sourcing or sinking in excess of 200mA. The UC1525B output stage features NOR logic, giving a LOW output for an OFF state. The UC1527B utilizes OR logic which results in a HIGH output level when OFF.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, (+VIN)	+40V
Collector Supply Voltage (VC)	+40V
Logic Inputs	0.3V to +5.5V
Analog Inputs	–0.3V to VIN
Output Current, Source or Sink	500mA
Reference Output Current	50mA
Oscillator Charging Current	5mA
Power Dissipation at $T_A = +25^{\circ}C$	1000mW
Power Dissipation at $T_C = +25^{\circ}C$	2000mW
Operating Junction Temperature	–55°C to +150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	+300°C


All currents are positive into, negative out of the specified terminal. Consult Packaging Section of Databook for thermal limitations and considerations of packages.


RECOMMENDED OPERATING CONDITIONS (Note 1)

,	
Input Voltage (+VIN)	+8V to +35V
Collector Supply Voltage (VC)	+4.5V to +35V
Sink/Source Load Current (steady state) .	0 to 100mA
Sink/Source Load Current (peak)	0 to 400mA
Reference Load Current	0 to 20mA
Oscillator Frequency Range	100Hz to 400kHz
Oscillator Timing Resistor	$2k\Omega$ to $150k\Omega$
Oscillator Timing Capacitor	0.001μF to 0.1μF
Dead Time Resistor Range	
Note 4. Denote a consultint the device is four	and the second contract of the second

Note 1: Range over which the device is functional and parameter limits are guaranteed.

CONNECTION DIAGRAMS

ELECTRICAL CHARACTERISTICS:Unless otherwise stated, these specifications apply for $T_A = -55^{\circ}\text{C}$ to +125°C for the UC1525B and UC1527B; -40°C to +85°C for the UC2525B and UC2527B; 0°C to +70°C for the UC3525B and UC3527B; +VIN = 20V, $T_A = T_J$.

		UC1525B/UC2525B UC1527B/UC2527B			l l			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Reference Section								
Output Voltage	T _J = 25°C	5.062	5.10	5.138	5.036	5.10	5.164	V
Line Regulation	VIN = 8V to 35V		5	10		5	10	mV
Load Regulation	I _L = 0mA to 20mA		7	15		7	15	mV
Temperature Stability (Note 2)	Over Operating Range		10	50		10	50	mV
Total Output Variation	Line, Load, and Temperature	5.036		5.164	5.024		5.176	V
Short Circuit Current	VREF = 0, T _J =25°C		80	100		80	100	mA
Output Noise Voltage (Note 2)	10Hz ≤ f ≤10kHz, T _J = 25°C		40	200		40	200	μVrms
Long Term Stability (Note 2)	T _J = 125°C, 1000 Hrs.		3	10		3	10	mV

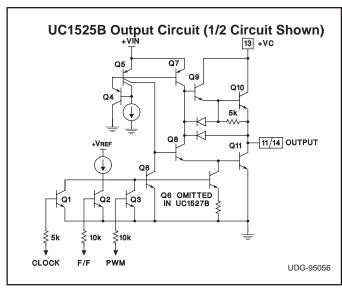
UC3527B Not Recommended For New Designs

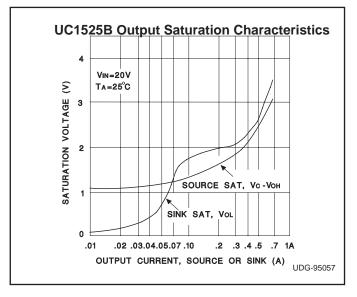
UC1525B UC1527B UC2525B UC2527B UC3525B UC3527B

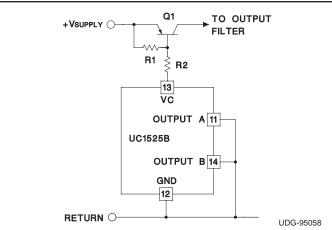
ELECTRICAL CHARACTERISTICS:Unless otherwise stated, these specifications apply for $T_A = -55^{\circ}\text{C}$ to +125°C for the UC1525B and UC1527B; -40°C to +85°C for the UC2525B and UC2527B; 0°C to +70°C for the UC3525B and UC3527B; +VIN = 20V, $T_A = T_J$.

			525B/UC 527B/UC		'			
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Oscillator Section (Note 3)					•			
Initial Accuracy (Notes 2 & 3)	T _J = 25°C		±2	±6		±2	±6	%
Voltage Stability (Notes 2 & 3)	VIN = 8V to 35V		±0.3	±1		±1	±2	%
Temperature Stability (Note 2)	Over Operating Range		±3	±6		±3	±6	%
Minimum Frequency	RT = $200k\Omega$, CT = 0.1μ F			120			120	Hz
Maximum Frequency	RT = 2kΩ, CT = 470pF	400			400			kHz
Current Mirror	I _{RT} = 2mA	1.7	2.0	2.2	1.7	2.0	2.2	mA
Clock Amplitude (Notes 2 & 3)		3.0	3.5		3.0	3.5		V
Clock Width (Notes 2 & 3)	T _J = 25°C	0.3	0.5	1.0	0.3	0.5	1.0	μS
Sync Threshold		1.2	2.0	2.8	1.2	2.0	2.8	V
Sync Input Current	Sync Voltage = 3.5V		1.0	2.5		1.0	2.5	mA
Error Amplifier Section (VCM = 5.1V)	1		•		•	1	1	
Input Offset Voltage			0.5	5		2	10	mV
Input Bias Current			1	10		1	10	μΑ
Input Offset Current				1			1	μA
DC Open Loop Gain	RL ≥ 10 MegΩ	60	75		60	75		dB
Gain-Bandwidth Product (Note 2)	$A_V = 0$ dB, $T_J = 25$ °C	1	2		1	2		MHz
Output Low Level	, , ,		0.2	0.5		0.2	0.5	V
Output High Level		3.8	5.6		3.8	5.6		V
Common Mode Rejection	V _{CM} = 1.5V to 5.2V	60	75		60	75		dB
Supply Voltage Rejection	VIN = 8V to 35V	50	60		50	60		dB
PWM Comparator				I			1	
Minimum Duty Cycle				0			0	%
Maximum Duty Cycle (Note 3)		45	49		45	49		%
Input Threshold (Note 3)	Zero Duty Cycle	0.7	0.9		0.7	0.9		V
Input Threshold (Note 3)	Maximum Duty Cycle		3.3	3.6		3.3	3.6	V
Input Bias Current (Note 2)	maramam 2 asy cycle		0.05	1.0		0.05	1.0	μA
Shutdown Section			0.00	1.0	<u> </u>	0.00	1.0	μον τ
Soft Start Current	V _{SHUTDOWN} = 0V, V _{SOFTSTART} = 0V	25	50	80	25	50	80	μА
Soft Start Low Level	V _{SHUTDOWN} = 2.5V		0.4	0.7		0.4	0.7	V
Shutdown Threshold	To outputs, V _{SOFTSTART} = 5.1V, T _J =25°C	0.6	0.8	1.0	0.6	0.8	1.0	V
Shutdown Input Current	V _{SHUTDOWN} = 2.5V		0.4	1.0		0.4	1.0	mA
Shutdown Delay (Note 2)	V _{SHUTDOWN} = 2.5V, T _J = 25°C		0.2	0.5		0.2	0.5	μS
Output Drivers (Each Output) (Vc = 2								1 1
Output Low Level	I _{SINK} = 20mA		0.2	0.4		0.2	0.4	V
•	I _{SINK} = 100mA		1.0	2.0		1.0	2.0	V
Output High Level	I _{SOURCE} = 20mA	18	19		18	19	-	V
. 5	I _{SOURCE} = 100mA	17	18		17	18		V
Undervoltage Lockout	V _{COMP} and V _{SOFTSTART} = High	6	7	8	6	7	8	V
Collector Leakage	VC = 35V			200			200	μА

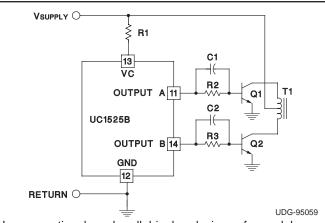
ELECTRICAL CHARACTERISTICS:Unless otherwise stated, these specifications apply for $T_A = -55^{\circ}\text{C}$ to +125°C for the UC1525B and UC1527B; -40°C to +85°C for the UC2525B and UC2527B; 0°C to +70°C for the UC3525B and UC3527B; +VIN = 20V, $T_A = T_J$.

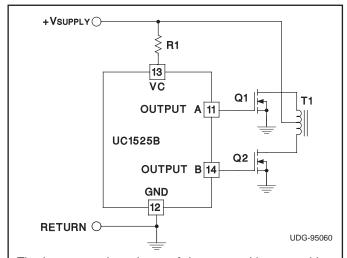

		UC1525B/UC2525B UC1527B/UC2527B		UC3525B UC3527B				
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN TYP MAX			UNITS
Output Drivers (Each Output) (VC = 20V) (cont.)								
Rise Time (Note 2)	$C_L = 1nF, T_J = 25^{\circ}C$		100	600		100	600	ns
Fall Time (Note 2)	$C_L = 1$ nF, $T_J = 25$ °C		50	300		50	300	ns
Cross conduction charge	Per cycle, T _J = 25°C		30			30		nc
Total Standby Current								
Supply Current	VIN = 35V		14	20		14	20	mA


Note 2: Ensured by design. Not 100% tested in production.


Note 3: Tested at fosc= 40kHz (R_T = $3.6K\Omega$, C_T = 0.01μ F, R_D = 0Ω). Approximate oscillator frequency is defined by:

$$f = \frac{1}{C_T \cdot \left(0.7 \cdot R_T + 3R_D\right)}$$


PRINCIPLES OF OPERATION AND TYPICAL CHARACTERISTICS



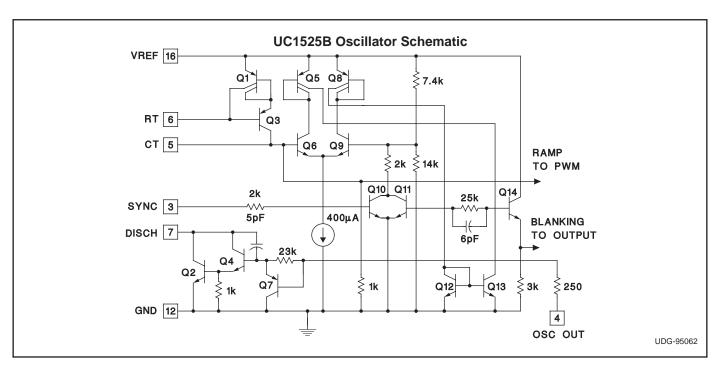
For single-ended supplies, the driver outputs are grounded. The VC terminal is switched to ground by the to-tem-pole source transistors on alternate oscillator cycles.

In conventional push-pull bipolar designs, forward base drive is controlled by R1-R3. Rapid turn-off times for the power devices are achieved with speed-up capacitors C, and C2.

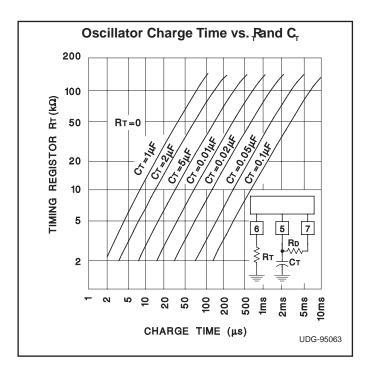
The low source impedance of the output drivers provides rapid charging of power FET input capacitance while minimizing external components.

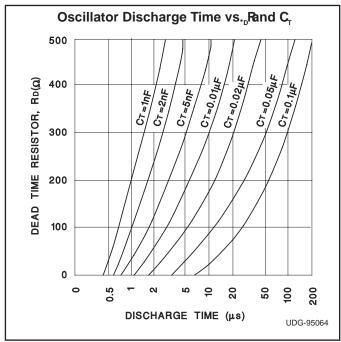
+VSUPPLY Q1 C1 13 R1 **T2** OUTPUT A 11 UC1525B Q2| OUTPUT B 14 C2 ≷ R2 GND 12 **RETURN** O UDG-95061

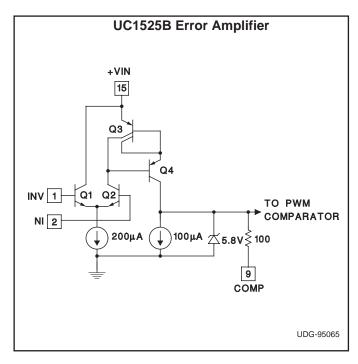
Low power transformers can be driven directly by the UC1525B. Automatic reset occurs during dead time, when both ends of the primary winding are switched to ground.

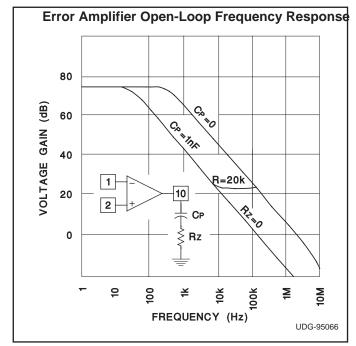

PRINCIPLES OF OPERATION AND TYPICAL CHARACTERISTICS

Shutdown Options (See Block Diagram)

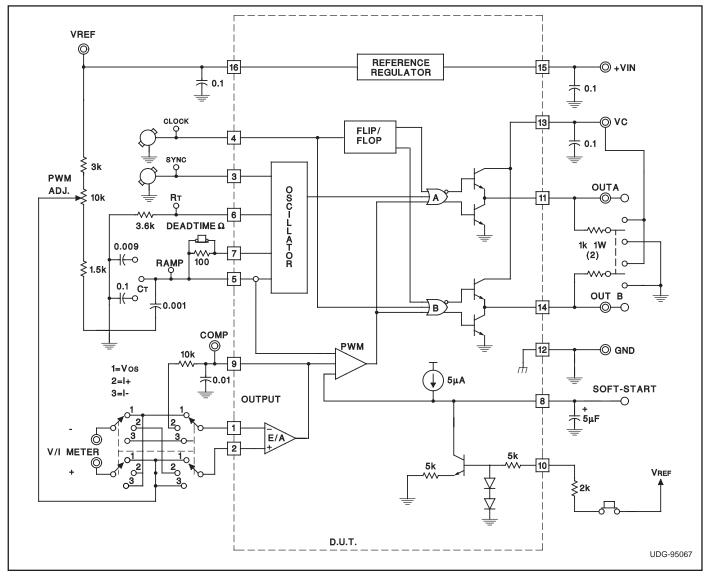

Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of $100\mu A$ to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.


An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by ap-


plying a positive signal on Pin 10 performs two functions: the PWM latch is immediately set providing the fastest turn-off signal to the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release.



UC1525B UC1527B UC2525B UC2527B UC3525B UC3527B



UC1525B UC1527B UC2525B UC2527B UC3525B UC3527B

LAB TEST FIXTURE

26-Mar-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8951105EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8951105EA UC1525BJ/883B	Samples
UC1525BJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	UC1525BJ	Samples
UC1525BJ883B	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8951105EA UC1525BJ/883B	Samples
UC2525BDWTR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2525BDW	Samples
UC2525BDWTRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	UC2525BDW	Samples
UC3525BDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3525BDW	Samples
UC3525BDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3525BDW	Samples
UC3525BDWTR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3525BDW	Samples
UC3525BDWTRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	0 to 70	UC3525BDW	Samples
UC3525BN	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UC3525BN	Samples
UC3525BNG4	ACTIVE	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	UC3525BN	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

26-Mar-2016

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

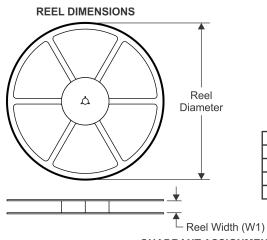
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UC1525B, UC3525B:

Catalog: UC3525B

Military: UC1525B

Space: UC1525B-SP


NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Mar-2013

TAPE AND REEL INFORMATION

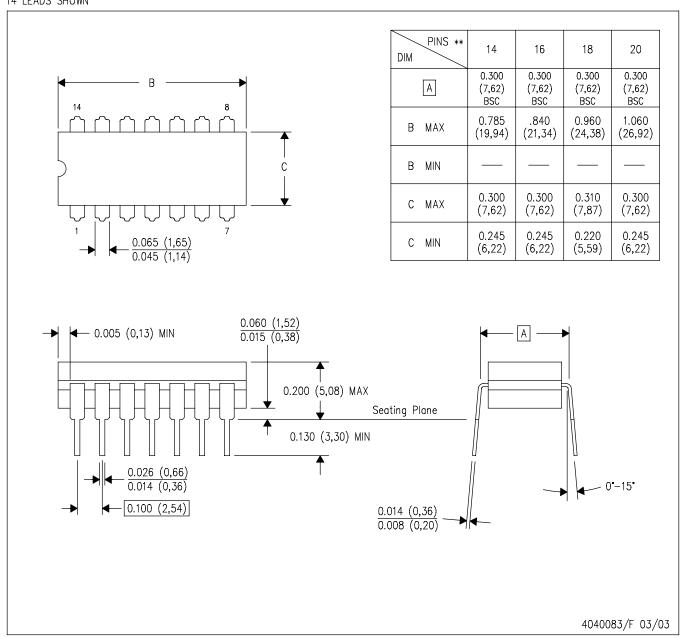
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

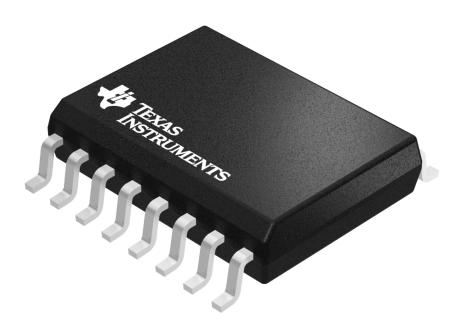
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
UC2525BDWTR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION


www.ti.com 26-Mar-2013

*All dimensions are nominal

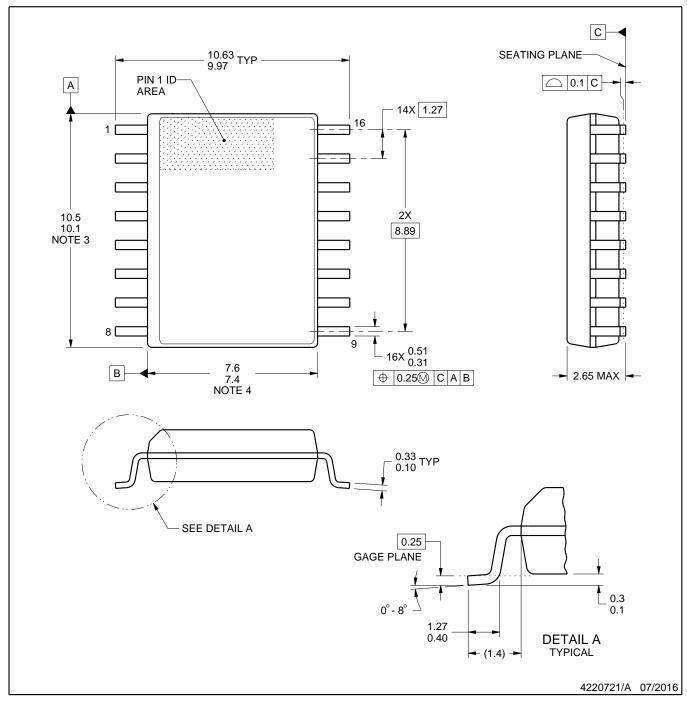
ĺ	Device	Package Type	ge Type Package Drawing Pi			Length (mm)	Width (mm)	Height (mm)	
	UC2525BDWTR	SOIC	DW	16	2000	367.0	367.0	38.0	


14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

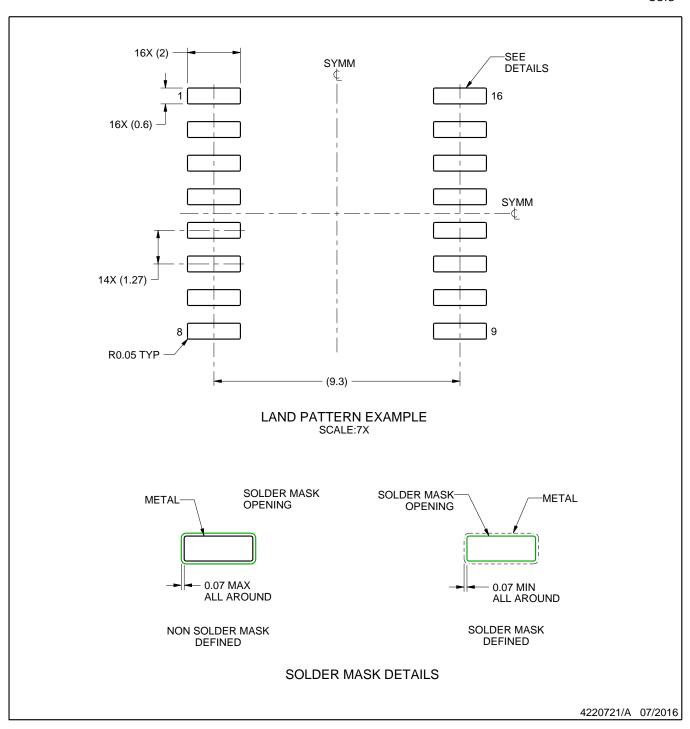
SMALL OUTLINE INTEGRATED CIRCUIT


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040000-2/H

SOIC

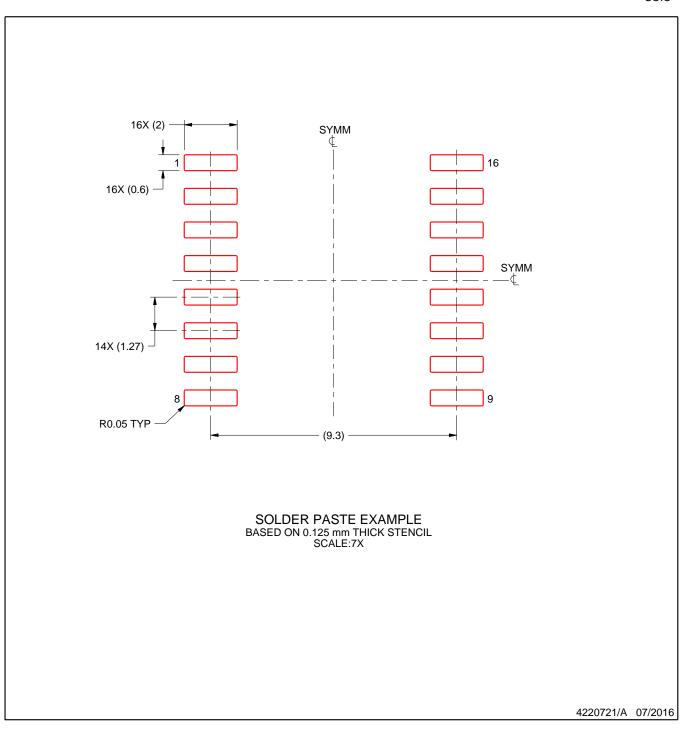
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.